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In recent years, data streams have become an important area of research. Com-

mon data mining tasks involve classifying and clustering changing and evolving data

over an extended period. Due to the complexity of changing data, however, it is

di�cult to produce real or simulated datasets that clearly exhibit behaviors such as

merging and splitting of clusters. In this paper I introduce the implementation of

streamMovingGenerator in package stream that provides a means to generate

several di↵erent types of evolving data models through an intuitive interface. I have

built the framework in R, a popular tool for data mining and statistical analysis, as

a part of the stream framework [6]. It allows researchers to quickly create di↵erent

scenarios that would otherwise be di�cult to reproduce in the real-world without

having precise control over a specific environment. With the provided functionality,

researchers are able to easily and quickly test di↵erent characteristics of data stream

algorithms while getting robust evaluations back. At the end of this paper, I will

provide in-depth examples of such testing.
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Chapter 1

Introduction

The use of datasets to determine particular characteristics of clustering algorithms

is a common practice within the field of data mining. Datasets, whether they are

real or artificially generated, are useful in serving as benchmarks so that di↵erent

algorithms can be objectively compared. Examples of popular real datasets used

within the data mining community include the KDD Cup datasets and the datasets

found within UCI’s Machine Learning Repository [4].

It is di�cult, however, to find real datasets that have specialized behaviors to

test specific features of a clustering algorithm without having precise control of the

environment that is producing them. For this reason, static artificial datasets have

been created to simulate di↵erent scenarios. R packages such asmlbench [14] include

numerous artificial data generators that can alter several attributes and behaviors of

a dataset, including the number of points generated, the density of the data, the

proximity of clusters and the shapes of clusters. These static artificial datasets are

particularly useful in evaluating traditional clustering algorithms such as k-means

and hierarchical clustering because they exhibit characteristics typical of the datasets

these clustering algorithms are expected to perform on. Namely, these datasets are

small in size and static in nature.

These two aspects, however, are detrimental to researchers who desire to test

and/or evaluate algorithms designed to cluster data streams [1]. This is because data

streams are commonly infinite in size and dynamic in nature. Without the ability

to generate nearly limitless, evolving data, it becomes e↵ectively impossible to verify
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the robustness of a data stream clustering algorithm.

Unfortunately, there has been very little e↵ort in developing tools to create ar-

tificial data to evaluate data stream clustering algorithms. As a result, it has been

incredibly challenging to create useful comparisons between the many algorithms pro-

posed over the past several years or to provide any means of examining data stream

clustering behaviors under controlled situations.

The most notable exception has been the development of the MOA framework [5],

which provides a means to generate several di↵erent data streams including hyper-

planes, waveforms and random data. While these generators are useful compared to

the dearth of other data stream generators, they still do not provide the level of gran-

ularity a user would need to define specific behaviors, such as merging and splitting

of clusters.

In addition to MOA, there is also a plethora of publicly accessible datasets that

represent naturally occurring data streams, such as Twitter’s stream of tweets, net-

work packet streams and stock market activity. It goes without saying, however, that

these data streams are incredibly complex in nature. And as mentioned before, any

attempt to control the behavior of any real world data stream to generate a desirable

and testable behavior would be too di�cult or too cost prohibitive, making them poor

candidates for benchmarks. Moreover, to serve as a benchmark, a dataset must also

include its ground truth so that results can be evaluated. This is nearly impossible

for data streams because it would be too time consuming to create.

Because of these reasons, I developed the streamMovingGenerator extension

in the stream package, which will serve as the focus of the remainder of the paper.

The streamMovingGenerator extension is unique in the way that it is con-

structed. Instead of acting as a simple model with di↵erent attributes, the generator

acts as a driver, or a conductor, of several di↵erent individual models that can repre-
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sent each of the clusters in the data stream. Each of these models are then constructed

in such a way that allows for their behavior to be altered over time. By giving such

granular control of not only the overall stream but also over the individual clusters,

users of the streamMovingGenerator package are a↵orded the ability to orches-

trate extremely complex situations that would be impossible to create otherwise.

The paper is organized as follows. I will first begin by discussing the technical

details on how the community currently evaluates clustering algorithms in Chapter 2

and then move on towards discussion of the design of the streamMovingGenera-

tor extension in Chapter 3. Afterwords, I will discuss how to use the streamMov-

ingGenerator by providing an analysis of various clustering algorithms with data

simulated with streamMovingGenerator.
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Chapter 2

Background

This section defines clustering, provides an overview of the evaluation process and

summarizes the data generation methods in the field today.

2.1. Data Stream Cluster Analysis

Clustering within the field of data mining is the process by which one attempts

to group or cluster similar objects together. Cluster analysis is useful in a range of

fields [19]. In biology, for example, it is helpful in finding genetically similar organisms,

and on the World Wide Web, clustering can be leveraged to find di↵erent commu-

nities within social networks. Today, the most popular methods include k-means,

hierarchical clustering and density based models like DBSCAN.

The classic approach to clustering makes the assumption that datasets are static.

Unfortunately, this assumption does not hold for datasets that arrive continuously,

like internet usage, financial transactions, weather data and the data produced by

this package. These datasets are called data streams and are becoming more and

more common in today’s data driven world. To solve for this problem, data stream

clustering algorithms were introduced that are capable of clustering a dataset using

a single pass and with limited memory. Current data stream clustering algorithms

include CluStream [2], ClusTree [13] and DenStream [7].

2.2. Evaluation Measures
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After an algorithm has been proposed, it is common to evaluate how well it per-

forms, or in other words, how well the algorithm is capable of splitting data into its

true parts.

The simplest evaluation method is to calculate the average purity of all of the

clusters. In information retrieval this score is also known as precision.

Condition positive Condition negative

Test outcome positive True positive False positive

Test outcome negative False negative True negative

Purity =
True Positive

True Positive+ False Positive

(2.1)

Additionally, one can also solve for the sensitivity, or what is also known as recall,

of the model. Sensitivity is useful in measuring how well an algorithm is capable of

returning an entire class of objects back in a single cluster.

Sensitivity =
True Positive

True Positive+ False Negative

(2.2)

Unfortunately, however, both precision and recall can be easily biased. For exam-

ple, producing a cluster for each individual object would yield a perfect purity score.

Meanwhile, a single cluster consisting of all objects would result in a perfect recall

score. Both outcomes are undesirable because they unsuccessfully group the data in

any meaningful way. In an attempt to remedy this problem, the F1 measure was

developed as a harmonic mean of the two in order to measure the overall accuracy of

a clustering.

F1 = 2 · precision · recall
precision+ recall

(2.3)
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Another popular method of evaluation includes the Rand index [11] and its deriva-

tives. The Rand index attempts to find the similarity between two clusterings by

measuring the number of correctly identified pairs of results that correspondence to

the original clustering X and the solved clustering Y .

Rand =
a+ b

a+ b+ c+ d

, (2.4)

where a = the number of pairs of elements that are in the same

cluster in X and in the same cluster in Y ,

b = the number of pairs of elements that are in di↵erent

clusters in X and in di↵erent clusters in Y ,

c = the number of pairs of elements that are in the same

cluster in X and in di↵erent clusters in Y ,

d = the number of pairs of elements that are in di↵erent

clusters in X and in the same cluster in Y

Similar to precision and recall, the Rand index can also exhibit bias [21]. For this

reason, the adjusted Rand index [20] was created, which serves as a version of the

original Rand index that corrects for randomness in the data. In other words, two

random partitions will result in a constant score.

For the remainder of this paper, both F1 and the adjusted Rand index will be

used to evaluate the accuracy by which di↵erent algorithms are able to cluster data

generated by the streamMovingGenerator extension. These are by no means the

only evaluation measures available in stream. Other examples include: chi squared

coe�cient [16], Fowlkes-Mallows index [8], Mirkin metric [15] and the Jaccard index

[12].
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2.3. MOA

To run evaluation tests, one first needs test data with a ground truth. At the

time of writing this, MOA, which stands for Massive On-line Analysis [5], contains

one of the only data stream generators publicly available for researchers. Written

in Java, it comes with its own GUI that allows users to easily create experiments

based on di↵erent machine learning algorithms. MOA also has strong connections

with WEKA [10], allowing users to use any WEKA algorithm within the context of

MOA.

Figure 2.1. Screenshot of the MOA Stream Clustering GUI

For this paper, I will only investigate the various stream generators that come

packaged within MOA. The exhaustive list of generators includes the following:

• Agrawal [3]

• Hyperplane
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• LED

• Random Radial Basis Function

• Random Tree

• SEA Concept Function [18]

• STAGGER Concept Functions [17]

• Waveform

Together, these data stream generators can create a wide range of benchmarks that

can be altered using several di↵erent parameters, including the number of clusters,

the number of attributes and the amount of noise. This allows users to test both the

algorithms introduced by MOA and those found within WEKA.

The generators within MOA do have their shortcomings, however. For one, most

of the included streams use functions that are purely random. While a user can create

repeatable experiments by providing a seed to MOA, it is impossible to dictate exactly

how each model should behave. Instead, a user must repeat an experiment with

di↵erent seeds until the desired behavior is achieved. This process is both cumbersome

and time consuming. Secondly, with the exception of the random radial basis function

data stream, which is also available via stream, none of the generators are able

to model evolutionary characteristics like branching and merging. Both of these

characteristics are crucial in determining the robustness of a particular algorithm

because they are common behaviors found within real data streams.
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Chapter 3

streamMovingGenerator

Within the stream package there exist two main components from which all

other classes extend from, data stream data and data stream tasks. Data stream data

(DSD) is responsible for the generation and the presentation of data while data stream

tasks (DSTs) are used to perform various actions on the DSDs, such as clustering

and evaluation. Because streamMovingGenerator is primarily concerned with

the artificial generation of evolving datasets, it exclusively extends the DSD class.

In addition, streamMovingGenerator introduces the concept of moving generator

clusters (MGCs) that can belong to di↵erent DSDs. MGCs are objects that can

encapsulate all of the necessary behaviors of a single cluster. It is then up to a

moving generator DSD (DSD MG), or a similar DSD, to coordinate the behaviors of

the individual clusters to generate a single stream. This allows for wildly di↵erent

behavior between di↵erent clusters within the same DSD object.

DSD_MG

MGC *

Figure 3.1. UML Diagram of the Relationship between Moving Generator and Moving

Generator Clusters

Figure 3.1 shows a high level view of the relationship between a DSD MG and a

set of MGCs. A user merely creates his or her own MGC object(s) and then assigns

9



them to a DSD MG. Together, each object works to create a data stream. The

DSD MG can then be manipulated and used by a DST from the stream framework

to accomplish any task already defined in stream.

The streamMovingGenerator’s DSD MG is able to tap into the functions al-

ready defined in the stream framework because stream uses the S4 class system

within R to provide an inheritance hierarchy for the various classes within the frame-

work. By adopting this method of inheritance, streamMovingGenerator is easily

able to extend the existing classes. For example, S4 allows for the new DSD MG

class to be identified as any of the following: DSD; the abstract base class of all

DSDs; DSD R, defines the interface for all DSDs implemented directly in R; and

DSD MG, its specific class implementation. This allows for the new class to use the

generic functions already implemented in the stream framework while also allowing

it to seamlessly interact with other stream objects through the use of polymorphism.

Figure 3.2 shows how the newly developed DSD relates to the other DSDs currently

existing within the stream framework.

<<abstract>>
DSD

<<abstract>>
DSD_R

<<abstract>>
DSD_MOA

DSD_MG ...DSD_Target DSD_RandomRBF

Figure 3.2. UML Diagram of the DSD Inheritance Hierarchy

Not all of the new classes developed for streamMovingGenerator are exten-

sions of classes within stream, however. Because MGCs are a novel addition to the

10



framework, they were added as a new class independent of both the DSDs and DSTs

found within stream. Nevertheless, the MGCs introduced also took advantage of

the S4 class system, allowing us to create a similar hierarchical inheritance system to

create several di↵erent types of MGCs with a common ancestor. By taking advantage

of inheritance within the S4 class system, the DSD MG class was able to call the same

generic functions shared by all of the MGCs.

The next several sections provide further details on the di↵erent components of

streamMovingGenerator along with how to use each component.

3.1. Moving Generator Cluster

Traditionally, the first step in using the stream framework would be to begin

initializing a DSD, but because MGCs are components of the new moving generator

DSD, defining MGCs should be the first step in one’s workflow. As mentioned previ-

ously, all MGC classes extend from the same abstract base class, MGC. The currently

available MGC classes include the following: MGC Linear, an MGC that is defined

by a set of keyframes; MGC Function, an MGC controlled by a set of defined func-

tions; MGC Noise, an MGC that generates noise; and MGC Random, an MGC that

creates randomly generated behavior. Figure 3.3 shows the various di↵erent types of

MGCs and how they all inherit from the same core MGC class.

MGC_Linear

<<abstract>>
MOA

MGC_Function MGC_Random MGC_Noise

Figure 3.3. UML Diagram of Moving Generator Cluster Inheritance
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Each MGC has a unique constructor that is used to determine the core aspects

of each cluster, such as the variance, density, and center. The density is the num-

ber of points generated at each time step. Examples of each of the constructors is

demonstrated below.

First, there is MGC Function, that requires a list of all of the functions that should

define the cluster’s behavior.

> mgc_function <- MGC_Function(variance = function(t){sin(t/5)},

+ density = function(t){25},

+ center = list(function(t){t},

+ function(t){t}))

> mgc_function

Functional Moving Generator Cluster (MGC_Function, MGC)

In 2 dimensions

Secondly is MGC Random, which requires a starting point and how much it should

move in one time interval with the randomness parameter.

> mgc_random <- MGC_Random(variance = 1, density = 20,

+ center = c(50, 50), randomness = .25)

> mgc_random

Random Moving Generator Cluster (MGC_Random, MGC)

In 2 dimensions

Thirdly, there is MGC Noise, which requires the area in which noise should be

present.

> mgc_noise <- MGC_Noise(density = 1,

+ range = rbind(c(-20,120),c(-20,120)))

> mgc_noise

12



Noise Moving Generator Cluster (MGC_Noise, MGC)

In 2 dimensions

And then lastly, there is MGC Linear.

> mgc_linear <- MGC_Linear()

> mgc_linear

Linear Moving Generator Cluster (MGC_Linear, MGC)

With 0 keyframes in ? dimensions

For MGC Function, MGC Noise and MGC Random, the constructor is enough

to provide all of the necessary information required to have it appropriately function

within a DSD MG. You may have noticed, however, that MGC Linear’s constructor

is fairly sparse. Unlike the other MGCs, MGC Linear stores all of its attributes within

keyframes.

Similar to keyframes in animation software like Adobe’s Flash, the keyframes in

an MGC Linear define the starting and ending points of a smooth transition. Given

a set of keyframes, an MGC Linear will attempt to make a linear transition from one

keyframe to the next until all of the keyframes have been exhausted.

To create a keyframe, a user evokes the add_keyframe() function with the nec-

essary parameters.

> add_keyframe(mgc_linear, time = 1, variance = 10,

+ density = 10, center = c(0, 0), cluster=1)

> add_keyframe(mgc_linear, time = 50, variance = 10,

+ density = 10, center = c(50, 50), cluster=1)

> add_keyframe(mgc_linear, time = 100, variance = 10,

+ density = 10, center = c(75, 50), cluster=1)

> mgc_linear

13



Linear Moving Generator Cluster (MGC_Linear, MGC)

With 3 keyframes in 2 dimensions

Likewise, to remove a keyframe, a user calls the remove_keyframe() function with

the timestamp of the keyframe he or she wants to remove.

> remove_keyframe(mgc_linear, 50)

> mgc_linear

Linear Moving Generator Cluster (MGC_Linear, MGC)

With 2 keyframes in 2 dimensions

Lastly, to get a list of all keyframes the user calls the get_keyframes() function.

> get_keyframes(mgc_linear)

time variance density cluster centers reset

1 1 10 10 1 0, 0 FALSE

3 100 10 10 1 75, 50 FALSE

As of right now, MGC Function and MGC Linear can only create Gaussian clus-

ters.

3.2. Data Stream Data Moving Generator

The data stream moving generator (DSD MG) is the real workhorse of the stream-

MovingGenerator package. As the conductor for all MGCs, the DSD MG class is

responsible for keeping track of the current time relative to the data stream, requesting

the attributes from the MGCs and using the extracted attributes to create a stream

that is understandable to the other components within the stream framework.

The DSD MG’s constructor is primarily used to set up the initial set of MGCs.

While it may be common to only use one type of MGC within a DSD MG, a DSD MG

14



can accommodate any mixture of MGCs. A common combination is to include an

MGC Noise object to a set of other MGCs so that a layer of noise can be added to the

entire stream. Below is an example of creating a new DSD MG with MGCs created

in the previous section.

> dsd_mg <- DSD_MG(dimension = 2, mgc_linear, mgc_function)

If one forgets to add an MGC to a DSD MG or if one ends up creating a new

MGC, one could add it after initializing an DSD MG object through the use of the

add_cluster() function.

> add_cluster(dsd_mg, mgc_random)

> dsd_mg

Moving Data Generator (DSD_MG, DSD_R, DSD)

With 3 clusters in 2 dimensions

Similarly, one can remove a cluster by calling the remove_cluster() function

with the cluster index as the second parameter.

> remove_cluster(dsd_mg, 3)

> dsd_mg

Moving Data Generator (DSD_MG, DSD_R, DSD)

With 2 clusters in 2 dimensions

Lastly, one can get all of the clusters by using the get_clusters() function.

> get_clusters(dsd_mg)

15



[[1]]

Linear Moving Generator Cluster (MGC_Linear, MGC)

With 2 keyframes in 2 dimensions

[[2]]

Functional Moving Generator Cluster (MGC_Function, MGC)

In 2 dimensions

The remainder of the functions for DSD MG are inherited from both DSD R

and DSD. To gain a further grasp on these functions, either refer to the stream

documentation or follow the examples provided during the analysis portion of this

paper.
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Chapter 4

Analysis with Data Moving Generator

The following section of the paper is dedicated to using the streamMovingGen-

erator extension to test and analyze tNN [9], CluStream [2], ClusTree [13] and Den-

Stream [7] on various behaviors that a data stream may exhibit over a period of

time.

4.1. Splitting Clusters

The most rudimentary evolutionary behavior that a data stream may display is

the splitting or branching of two clusters. This occurs when a single cluster becomes

two distinct clusters, such as in Figure 4.1. An ideal algorithm should be able to

readily detect separations as soon as they occur and react accordingly.

1 50 100

Figure 4.1. Splitting of a Cluster

4.1.1. Initializing Data Stream

The split behavior can be recreated using the streamMovingGenerator package

by first creating two di↵erent MGC Linear objects.

17



> c1 <- MGC_Linear()

> c2 <- MGC_Linear()

Afterwards, set the keyframes for each individual cluster. At the beginning, both

clusters will belong to the same cluster. To achieve this e↵ect, each cluster o↵ in

the same location and assign each cluster the same cluster label with the cluster

attribute.

> add_keyframe(c1, time = 1, variance = 10, density = 10,

+ center = c(0, 50), cluster = 1)

> add_keyframe(c2, time = 1, variance = 10, density = 10,

+ center = c(0, 50), cluster = 1)

Next, define the point where the two clusters diverge. One can accomplish this

by changing the class label of one of the MGCs at the midway point.

> add_keyframe(c1, time = 50, variance = 10, density = 10,

+ center = c(50, 50), cluster = 1)

> add_keyframe(c2, time = 50, variance = 10, density = 10,

+ center = c(50, 50), cluster = 2)

Lastly, define the final keyframe for each cluster and add each of the clusters to a

DSD MG.

> add_keyframe(c1, time = 100, variance = 10, density = 10,

+ center = c(100, 100), cluster = 1)

> add_keyframe(c2, time = 100, variance = 10, density = 10,

+ center = c(100, 0), cluster = 2)

> dsd <- DSD_MG(dimension = 2, c1, c2)

18



By creating a DSD MG object one can perform various tasks defined within

stream, such as previewing an animated version of the data with the animate_data()

function shown below.

> animate_data(dsd, 2500, xlim=c(-20,120), ylim=c(-20,120))

-20 0 20 40 60 80 120

-2
0

20
60

10
0

X1

X2

Figure 4.2. Plot Generated by animate_data()

4.1.2. Clustering and Evaluation

The next logical step one would take once one has created his or her own data

stream model is to run one or many clustering algorithms to determine how each

algorithm behaves.

There are several di↵erent ways of clustering DSD objects in the stream pack-

age, such as the cluster() and animate_cluster() functions. I will use the an-

imate_cluster() function for the remainder of the paper because it provides a vi-

sualization of the clustering process over time and an accompanying graph of the
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evaluation score over time, both of which are useful in determining the behavior of

each algorithm during the span of the data stream’s life. The evaluation process is

described in detail within stream [6].

For the first example of clustering, I will use the tNN algorithm found within the

stream package. The results should be similar to those found in Figure 4.3.

> reset_stream(dsd)

> dsc <- DSC_tNN(r=10, lambda=.1, shared_density=TRUE, alpha=.1)

> animate_cluster(dsc, dsd, n=2500, interval=.1,

+ evaluationMethod="f1", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="shared")

It is clear from Figure 4.3, that tNN is extremely e↵ective at finding the clusters

before and after the cluster splits apart. While the score dips during the actual

separation process, tNN is able to quickly realize the existence of two individual

clusters and is able to recover fairly quickly, revealing that the tNN algorithm is quite

adept at modeling separations in the data stream. The tNN algorithm achieves this

by aging older clusters with the lambda parameter until they disapear.

Running DenStream produces similar results. CluStream and ClusTree, however,

reveal a di↵erent outcome. Because they rely on a reclustering algorithm like k-means

or hierarchical clustering, they are unable to detect a variable number of clusters

throughout the clustering process. In other words, they can either look for one cluster

and miss the separation, or search for two clusters and attempt to find separations at

the beginning where none exists.

Figure 4.4 shows the F1 scores for all of the algorithms. Notice that scores for

CluStream and ClusTree initially start lower. This is due to the fact that both

algorithms are searching for two clusters where there are none.
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Figure 4.3. F1 Score from tNN using the Splitting Data Stream
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Figure 4.4. F1 Score for Splitting Data Stream

4.2. Merging Clusters

The converse of splitting a cluster would be merging two or more together. A de-

piction of two clusters merging together can be seen in Figure 4.5. An ideal algorithm

would be able to quickly combine separate clusters as soon as they came into contact

with each other. To increase the di�culty of modeling this data stream, noise will

also be introduced.1 50 100

1 50 100

Figure 4.5. Merging of Clusters
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4.2.1. Initializing Data Stream

To create the desired merging e↵ect, I will once again use a pair of MGC Linears

as I did in the splitting example. Only this time I will reverse the keyframes so that

the opposite behavior is achieved. I will also add an MGC Noise to the DSD MG to

provide background noise for the data stream.

> c1 <- MGC_Linear()

> c2 <- MGC_Linear()

> noise <- MGC_Noise(density = 2,

+ range = rbind(c(-20,120),c(-20,120)))

> add_keyframe(c1, 1, 1, 10, c(50, 0), cluster=1)

> add_keyframe(c1, 50, 1, 10, c(50, 50), cluster=1)

> add_keyframe(c1, 100, 1, 10, c(100, 100), cluster=1)

> add_keyframe(c2, 1, 1, 10, c(0, 50), cluster=2)

> add_keyframe(c2, 50, 1, 10, c(50, 50), cluster=1)

> add_keyframe(c2, 100, 1, 10, c(100, 100), cluster=1)

> dsd <- DSD_MG(2, c1, c2, noise)

4.2.2. Clustering and Evaluation

In this example, I will begin with tNN and DenStream.

> tnn <- DSC_tNN(r=5, lambda=.1, shared_density=TRUE,

+ alpha=.3, noise=.15)

> animate_cluster(tnn, dsd, n=2500, interval=.1,

+ evaluationMethod="f1", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="shared")
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Figure 4.6. F1 Score Over Time for tNN and DenStream for Merging Data Stream

> reset_stream(dsd)

> denstream <- DSC_DenStream(epsilon=5,lambda=.2)

> animate_cluster(denstream, dsd, n=2500, interval=.1,

+ evaluationMethod="f1", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="both")

The resulting F1 scores can be seen in Figure 4.6. Both tNN and Denstream are

easily able to maintain an F1 score above 0.9 for the majority of the time, revealing

they can tolerate a significant amount of noise. The largest drop in score occurs

when the two clusters begin to touch. Even though the two clusters have yet to fully

merge, both algorithms immediately link them together, resulting in a plummeting

score. This reveals that tNN and DenStream are extremely susceptible to prematurely

linking two clusters.

As before, the other two algorithms perform poorly due to their inability to dy-

namically alter the number of clusters they produce. They are able to do somewhat

well because the secondary cluster moves to where the noise is. Additionally, CluS-

tream and ClusTree are significantly impacted by noise, as can be seen in Figure 4.7

by the widely inconsistent scores.
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Figure 4.7. F1 Score Over Time for CluStream and ClusTree for Merging Data Stream

4.3. Passing Clusters

Unlike the other two examples, this simulation preserves the class of each cluster

throughout the entire data stream. Instead of merging when the clusters come into

contact with one another, they merely pass each other’s path as seen in Figure 4.8.

An ideal algorithm would be able to maintain the separate identities of each cluster

even as they overlap one another. Noise will be applied to this situation to make it

more di�cult to cluster.

MGC Linear could be used again, but I will show how to model this behavior with

MGC Function instead.1 50 100

1 50 100

Figure 4.8. Passing of Clusters
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4.3.1. Initializing Data Stream

In this situation I will use two MGC Function objects and an MGC Noise to create

the desired behavior. The following code produces two clusters. The first cluster

sweeps across from left to right while the second moves from bottom to top. They

momentarily meet in the middle before continuing on in their respective directions.

> c1 <- MGC_Function(variance = function(t){1},

+ density = function(t){10},

+ center = list(function(t){t},

+ function(t){50}))

> c2 <- MGC_Function(variance = function(t){1},

+ density = function(t){10},

+ center = list(function(t){50},

+ function(t){t}))

> noise <- MGC_Noise(density = 2,

+ range = rbind(c(-20,120),c(-20,120)))

> dsd <- DSD_MG(2, c1, c2, noise)

4.3.2. Clustering and Evaluation

Because there is a constant number of clusters throughout the data stream, CluS-

tream and ClusTree can each be successfully used to cluster this data stream instead

of just tNN and DenStream. The following code details how to run tests on all four

clustering algorithms. It should be noted that reset_stream() is called between each

clustering algorithm to ensure that the stream always starts at the beginning.

> tnn <- DSC_tNN(r=5, lambda=.1, shared_density=TRUE,

+ alpha=.3, noise=.15)
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> animate_cluster(tnn, dsd, n=2500, interval=.1,

+ evaluationMethod="cRand", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="shared")

> reset_stream(dsd)

> kmeans <- DSC_Kmeans(2)

> clustream <- DSC_CluStream(k=10,t=5,horizon=10)

> animate_cluster(clustream, dsd, n=2500, interval=.1,

+ evaluationMethod="cRand", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="both", macro=kmeans)

> reset_stream(dsd)

> clustree <- DSC_ClusTree(maxHeight=8,horizon=10)

> animate_cluster(clustree, dsd, n=2500, interval=.1,

+ evaluationMethod="cRand", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="both", macro=kmeans)

> reset_stream(dsd)

> denstream <- DSC_DenStream(epsilon=5,lambda=.1)

> animate_cluster(denstream, dsd, n=2500, interval=.1,

+ evaluationMethod="cRand", evaluationType="macro",

+ xlim = c(-20, 120), ylim = c(-20, 120),

+ type="both")

As seen in Figure 4.9, both CluStream and CluStree perform fairly poorly due

to the introduction of noise. Both tNN and DenStream, on the other hand, are

significantly more stable, highlighting their ability to e↵ectively ignore noise.
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Figure 4.9. Adjusted Rand Index for Passing Data Stream
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Chapter 5

Conclusion and Future Work

The streamMovingGenerator extension provides a robust method of creating

evolving data streams, a process that would normally be an expensive and arduous

task due to the complicated nature of non-static datasets. By harnessing the power

of artificial data streams, structured tests can be carried out to measure the quality

of existing and future data stream clustering algorithms.

Additionally, in the spirit of the original stream package, streamMovingGen-

erator is capable of being extended to accomodate a multitude of use cases. Most

notably, it is capable of allowing for custom MGCs that can be used in conjunction

with the defined DSD MG class to develop even more complicated streams, such as

streams with non-gaussian clusters or looping behavior.

Using the streamMovingGenerator extension can be used to evaluate and test

existing clustering algorithms to help clearly identify the strengths of weaknesses of

the field today so that more robust algorithms can be developed in the coming years.
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Appendix A

stream Contributions

• Refactored significant portions of the code base

• Developed the ability to recluster models

• Added support for macro clustering algorithms

• Helped extensivley develope tNN

• Created tNN fast, a version of tNN written primarily in C

• Developed the evaluation functions

• Provided means to animate data streams and clustering algorithms
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(1901), 547–579.

[13] Kranen, P., Assent, I., Baldauf, C., and Seidl, T. The clustree: In-
dexing micro-clusters for anytime stream mining. In Knowledge and Information
Systems Journal (Springer KAIS), Volume 29, Issue 2 (London, 2011), Springer,
pp. 249–272.

[14] Leisch, F., and Dimitriadou, E. mlbench: Machine Learning Benchmark
Problems, 2010. R package version 2.1-1.

[15] Levin, M. B. Mirkin, mathematical classification and clustering. Journal of
Global Optimization 12, 1 (1998), 105–108.

[16] Mirkin, B. Eleven ways to look at the chi-squared coe�cient for contingency
tables. The American Statistician 55 (2001), 111–120.

[17] Schlimmer, J. C., and Granger, Jr., R. H. Incremental learning from
noisy data. Mach. Learn. 1, 3 (Mar. 1986), 317–354.

[18] Street, W. N., and Kim, Y. A streaming ensemble algorithm (SEA) for large-
scale classification. In Proceedings of the Seventh ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (New York, NY, USA,
2001), KDD ’01, ACM, pp. 377–382.

[19] Tan, P.-N., Steinbach, M., and Kumar, V. Introduction to Data Mining,
(First Edition). Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2005.

[20] Vinh, N. X., Epps, J., and Bailey, J. Information theoretic measures for
clusterings comparison: Is a correction for chance necessary? In Proceedings of
the 26th Annual International Conference on Machine Learning (New York, NY,
USA, 2009), ICML ’09, ACM, pp. 1073–1080.

[21] Wagner, S., and Wagner, D. Comparing Clusterings – An Overview. Tech.
Rep. 2006-04, Universität Karlsruhe (TH), 2007.

32


