SMU FOOTBALL TRAFFIC SIMULA* SENIOR DESIGN
MAY 9, 1991
Allen Pitts
John Edleman

Allen Pitts John Edleman

SMU FOOTBALL TRAFFIC SIMULATION SENIOR DESIGN MAY 9, 1991

Allen Pitts
John Edleman

Table of Contents

INTRODUCTION 1
PROJECT OUTLINE 3
STATISTICS 5
SYSTEM BOUNDARIES 7
TRAFFIC FLOW 8
DISTRIBUTION OF ARRIVING TRAFFIC 9
DATA GATHERING 9
PRESENT CONFIGURATION 10
PROGRAMMING ASSUMPTIONS 11
ARRIVAL RATES 12
PROGRAMMING 12
INTERSECTIONS 13
Stop Signs 13
Traffic Lights 13
PARKING QUEUES 14
ANALYSIS 14
CONCLUSIONS 16
APPENDICES 18

INTRODUCTION

Southern Methodist University, nationally known and referred to as SMU, has had a resurgence in it's football program since the programs reinstatement in 1989. SMU's football program was given the " DEATH PENALTY " by the National College Athletic Association (NCAA) in 1986 which banned SMU's football team from competing for 1 year and playing a limited, away games only, schedule in its second year of probation. SMU officials elected instead to not compete at all in the second year of the " DEATH PENALTY " probation and put its efforts into restructuring its student-athlete code and putting an end to the quasi-professional nature of athletics that were so relevant at SMU.

SMU officials decided that in order to give athletics at SMU a more amateurish affect, the first step was to have a football team that played its college football games at a college football stadium. This was the topic of much conversation because SMU hadn't played football on campus since 1947. In 1948 SMU started playing its games in the Cotton Bowl at Fair Park. The increased capacity was the reason for the move. Then in 1978, citing lack of attendance and increased recruiting value by the fact that players would be playing in the same stadium as the Dallas Cowboys, so sentimently referred to as " America's Team ", SMU once again changed their playing venue, this time, to Texas Stadium in Irving. However, even before the NCAA handed down its probation to SMU, SMU's football team had gone downhill in success from its \#1 national ranking in 1981 to one of the worst teams in the Southwest Conference.

This decline in the teams success directly correlated to a decline in attendance. The decline was easily explained by those knowledgeable in college athletics; people don't go to watch a losing team play, especially when they can see the game on television for free. This attitude was prevalent not only with the average fan, but also with SMU students who found that getting to Texas Stadium was a problem. A combination of these and other factors led to talk of possibly returning football to the SMU campus even before the NCAA's 1986 action.

The return of Mustang Madness to the Hilltop, to which SMU is commonly referred, created logistic questions in the minds of SMU officials. The first being, " Do we renovate the existing structure, Ownby Stadium, or do we tear it down and build a new stadium?" There was a lot of thought put into this question as well as conceptual blueprints. However, after checking with the city of University Park on zoning regulations, the only alternative was to renovate Ownby Stadium to meet the standards set by the NCAA regarding capacity of Division 1 stadiums. This lead to discussion between SMU and the NCAA regarding renovation constraints. The first being zoning and the second being cost. After reviewing the situation, the NCAA gave SMU a temporary injunction allowing the stadium to be smaller than standards specified. The standard set by the NCAA is 32,000 seats and they allowed SMU to only have 24,000 seats. This is however a temporary situation and the NCAA has given SMU until the 1994 season to comply with their standards for Division 1 football stadiums.

The second question that SMU officials had to address was " Where do we park all the cars and how do we get them around campus?". That question has yet to have been answered to the satisfaction of SMU officials. The procedure drawn up was done by the SMU Department of Public Safety (DPS) with respect to certain guidelines they had set up to deal with other campus activities. That action along with a Senior Design project similar to what we are doing here helped the SMU DPS create an initial routing of traffic to available parking areas on the SMU campus. In the 2 years since the implementation of this system, the SMU DPS has continuously refined their system to maximize the systems efficiency by minimizing the amount of time it takes the average car coming to a football game at SMU to find a parking space. The goal of this project is to assist the SMU DPS by resimulating the flow of traffic around the general vicinity of the SMU campus and make new suggestions as to where problems may occur and give recommendations on alleviating the problems. The success of this project hinges on our ability to change the assumptions made in the first simulation into supportable facts by using data obtained by the SMU DPS over the past two years.

PROJECT OUTLINE

The first half of this semester was devoted to finding a project to work on that would incorporate our ability to apply the education we have received in the field of Engineering Management as well as other areas of study to a real life situation that we may be presented with when we are in the working world. The project
was intended to not only test our mechanical abilities, but to accustom us to presenting material to a group of people. We decided to do a simulation of traffic flow after talking to Dr. Barr and Don McClure, a former student who had done the original simulation. We first had to read through the original report to understand what would be involved. Secondly we made an outline of what needed to be done before we could do the simulation. This part of the project was a focal point because without a solid direction the project would not be done in a professional manner.

After setting the goals and deadlines for our project we needed to re-read the original simulation to acquire any relevant information and document it for our own simulation. We also had to acquire new information from SMU officials and any other related sources. The bulk of this process was done over a period of two weeks. The main sources of new information were Grady Newton, head of the SMU DPS, and Roland Rainey, Assistant Athletic Director in charge of operations. These men are the two people responsible for traffic flow and parking for SMU football games.

The next step of the project was to make an initial plan of action for our simulation. This included calculating how many cars would need to park, which streets would be rerouted from two-way to one-way, where to station DPS officers to override the traffic signals and other logistic problems. After we figured that out, we outlined and programmed in our initial configuration. Next we had to debug the program to make sure it was in working order.

After all of the previous steps were taken, we were ready to run our initial configuration. This was done and we analyzed the
data produced by the simulation. We then took into account the problem areas that were highlighted by the simulation and made adjustments to the system. These adjustments were made until we felt we had sufficiently maximized our system.

When all the adjustments were made, we analyzed all of the data produced by the simulations and put our conclusions down on paper. After having organized these conclusions, we will present them later in this paper as our recommendations for implementation.

STATISTICS

The most important statistic for this simulation is the number of cars that are expected to come to an SMU football game. In order to come up with this number we need to know the number of people who attend SMU football games, the number of people that will be walking to the games, and the average number of people that will arrive per car to the games.

Ownby stadium has a capacity of 24,000 seats at this time. This capacity is going to have to be increased to 32,000 by 1994 in order for SMU to continue to play it's game at Ownby stadium. However, for the purposes of our simulation, we are only modeling a simulation for a proposed 24,000 people coming to a game. This is done for specific purposes. First, SMU does not have the parking spaces available for more cars. As it is, some people that wish to park in our system aren't able to due to lack of available parking. Second, the simulation language that we used, SLAM 2, is not powerful enough to handle any more entities than it is in our
simulation. For future consideration, these constraints will be easily eliminated by an increase in available parking as well as a more powerful version the present simulation language.

The number of people who walk to the on-campus football games is a product of many different factors. First we have the SMU students who live on campus and attend the football games at Ownby stadium. This number includes all of the students living in the dormatories as well as the fraternity and sorority houses. This number is approximately 3,500 students. Second we have the students who live in the surrounding area of SMU and would walk instead of drive to the football games. This number is approximately 1,500 . There will also be people who will decide to park on their own on the University Park and Highland Park streets surrounding the SMU campus. These people will be approximately 3,000 in number. Adding all of these people together, we come up with 8,000 people walking to SMU football games from campus and surrounding areas.

The number of people that arrive per car on average has been estimated by the SMU DPS at 2.5. This number was also suggested by Roland Rainey in the athletic department. This number was different than the 3.5 persons per car attending SMU football games at Texas stadium and the Cotton Bowl. However, since those two stadiums are quite a bit further away and people are not able to walk, it is understandable that more people would arrive, per car, to the football games. The difference in these two estimates cause an 1,800 car difference. We chose to assume that 2.5 people would
arrive per car and that would then leave room for error if this estimate is low.

Given the number of people that attend an SMU football game, the number of people who walk to the games, and the number of people that arrive per car, we come up with the number of cars that we expect to enter our traffic flow and parking system. The total number of cars, 6,400 , is the total number of people coming to a game, 24,000 , minus the 8,000 people who do not enter the traffic flow or parking system, and we come up 16,000 people arriving by car. When we divide the 16,000 people arriving by car by 2.5 people per car, we come up with 6,400 cars that will enter into our traffic flow and parking system.

SYSTEM BOUNDARIES

The system boundaries for our simulation were chosen with three main concerns. First, we had to decide where the cars would be coming from by direction and actual street location. Through interviews with the SMU DPS to determine where most of the traffic problems have occurred in the past as well as where they feel most of the cars come from, we decided to make our initial configuration of streets from our outer boundaries and move into the middle of our system from there. Our second concern was to include all available and simulatable parking areas. This included parking lots on the north end of campus as well as parking structures on the other side of North Central Expressway (see Appendix A). Our third concern was to make the simulation as realistic as possible. Therefore our
outer boundaries are; on the west, Hillcrest, on the south, Mockingbird, on the north we use a combination of Daniels, McFarlin, and Yale, and on the east we have the Central Expressway north bound access road as our boundary. Using these boundaries and a subset of all of the streets within the systems boundaries, we have been able to do a realistic simulation of the traffic flow arriving at SMU football games played at Ownby stadium.

The one parking spot that was not an actual parking lot was the parking on Bishop Blvd. However, due to the limited access to Bishop Blvd., we were able to simulate those 250 parking spots as a parking structure instead of random curbside parking which we have left out of our model due to the complexity of modeling it.

TRAFFIC FLOW

Due to time constraints we were only able to simulate the flow of traffic arriving at SMU football games at Ownby stadium. This however did not keep us from considering the problem of traffic flow after the game is over and all of the people that we have helped park have to leave the SMU campus and surrounding areas. In an interview with Grady Newton, Captain of the SMU DPS, Captain Newton stated they are not as concerned with the flow of traffic after the game is over. Captain Newton mentioned that their initial responsibility is to get people safely to the game, then get people safely off the SMU campus. Captain Newton also mention the fact that while they are getting people on campus they are also directing
them toward limited parking areas whereas when the game is over, they are directing people to exits which have no capacity.

DISTRIBUTION OF ARRIVING TRAFFIC

After deciding the boundaries of the system and the estimates of the general direction that the traffic was coming into our system, we had to decide the actual entry points into our traffic flow.

Noting that approximately 50% of the traffic comes from the north, 30% comes from the east, 20% comes from the south, we were left with 0% coming from the west. This however was justified by the fact that traffic coming from the west would enter the system at one of two points; the intersection of Hillcrest and Daniels or the intersection of Bishop and Mockingbird. Therefore, our other entry points are at the intersection of University and Airline Extension as well as two points of entry at the intersection of Central Expressway and Yale Blvd. One of the two intersections is for traffic coming from the north down Central Expressway and the other is for traffic coming across Central Expressway at that same point. The latter is considered traffic coming from the east (see Appendix B).

DATA GATHERING

The most important part of creating a realistic simulation is coming up with realistic results that can be used to analyze a situation. In order to do this, we had to have the best possible
information regarding our system of traffic flow and parking. This included knowing where traffic signals such as stop signs and traffic lights are, what the cycle time of the each traffic light is, how long it takes to travel, uninhibited, from one traffic signal to another and a distribution of which way people tended to proceed from a traffic signal. Some of this information was gathered from a previous simulation. The information gathered from the previous simulation was the cycle times for the stop lights in the simulation. All other data was gathered from interviews or actual observation. One example is travel time between traffic signals. There was one general assumption made; when there was a question to the percentage of people travelling but not parking, we used what we call a 70:30 rule. This means that 70% of the time people would avoid congested areas and 30% of the time people would head into congested areas.

PRESENT CONFIGURATION

With regard to the boundaries of the system being used in our traffic flow and parking system stated on page 7, the following streets and direction are blocked off to the general flow of traffic by either a barricade, a DPS officer or by a parking attendant. All of the streets inside of the boundaries set by Hillcrest on the west, Mockingbird on the south, Airline and Airline Extension on the east and Daniel on the north (see Appendix C). This means that there will be no random traffic flow inside of the campus. This allows the SMU DPS to devote more of their attention to events surrounding the game instead of having to keep such a close eye on campus. In
addition to these people, There will also be parking staff at the Parking garage, the W-5 lot which is directly across Airline from Ownby stadium as well as parking staff at all 3 parking structures on the east side of North Central Expressway.

According to Captain Newton, the configuration of streets on campus has not been a focal point for his department in assisting traffic flow. This is one area we hope to exploit in our simulation. One problem Captain Newton addressed was his departments uncertainty in how to manage traffic with regards to traffic officers. He was committed to using traffic officers where ever it would expedite the flow of traffic however, that had not yet been one of their top priorities.

PROGRAMMING ASSUMPTIONS

In order to create a functional model it was necessary to make several assumptions during the programing phase. These assumptions include the following:

1. 10% of the traffic present in the system will not park.
2. Individuals who do not park will choose to avoid heavy traffic 70% of the time and will enter the flow of heavy traffic the remaining 30% of the time.
3. Cars will park in the first available space. It would be beyond the scope of this simulation to model the decision making process of each individual.
4. Motorists will be informed when lots are full and re-routed to the next available parking lot that is not full.
5. Cars not finding a place to park will be stored in a queue to monitor how many people do not find parking.
6. 10% of the traffic present in the system has special parking privileges and will attempt to park in special areas before parking in other lots.

Abstract

ARRIVAL RATES Using the five entries into the system, described earlier, we used past records and information from the previous simulation to establish the arrival rates for the cars. These rates were developed to reflect a slow arrival rate before the games begins, peak arrival rates immediately before the game, followed by slowing arrival rates for laggards that arrive after the start of the game.

PROGRAMMING

Using the previous simulation as a base, we programmed in the current system of roads and intersections. The new simulation simplified many of the intersections with a combination of one way streets and use of barricades. While simultaneously simplifying the curent number of intersections we also supplemented the program by adding more intersections to increase the scope of of model boundaries and more accurately portray the system. These added intersections are illustrated in Appendix D.

INTERSECTIONS

Using constructs from the first simulation we modeled the current system using updated information. The addition of one way streets and police officers once again reduced the complexity of many of the intersections. The two intersection possibilities were either a stop sign or traffic light. The combination of these intersection routes all traffic through the system.

Stop Signs

Stop signs allow for several entities to arrive at approximately the same time and wait for their turn. In the SLAM II model this is accomplished by selecting entities at the intersection using designated parameters. For our purpose we choose the parameter that chooses the entity who has waited longest at the queue to go first, second, etc. This parameter specifications aligns with our goal to minimize time before parking by minimizing the time an entity waits at each stop sign. Once the entity has been selected it is routed through the intersection using a combination of both conditional and probabalistic branching.

Traffic Lights

Traffic lights are treated slightly differently that stop signs. Lights are turned "green" and "red" in SLAM II by using gates. A gate can be opened and closed to allow entities to flow through or be blocked. The gates are standardized throughout the program so that
east-west lights turn green for 30 seconds followed by a 4 second delay, and then turn green for north and south lights and then this loop repeats itself. The Slam graphical representation of this system is shown in Appendix E. Traffic lights allow 20 entities to pass through the light during its green stage, and will back up entities at a red light. Once the entities pass through the light they are subject to both conditional and probabalistic branching as with stop signs.

PARKING QUEUES

All parking is routed to parking lots that are represented as queues in the SLAM II language. Each queue has a capacity that represents a specific parking lot, and once the capacity is exceeded it will not allow any more entities to park. These queues can be monitored to detect which fill up quickest and which ones fill up last.

ANALYSIS

In order to determine the most successful street configuration that minimizes the total time to park, we began our analysis of the system assuming all intersections were fully functional with no one way streets or police officers. Using the previous simulation we were able to look closely at the relationships between certain intersections and the flow of traffic. By analyzing the combination of wait times at stop signs and inability to fill parking queues quickly, we concluded that several steps are needed to create a flow
of traffic that will both move quickly and smoothly through the network of streets.

Updating the model to include DPS current operational procedures, we discovered that while long waits seemed to be less likely there were still some congestion causing time delays filing each of the parking queues. This led us to question what was happening in the system that allowed smooth flow at intersections, yet did not fill parking areas effectively. The simulation targeted possible intersections where, although moderate wait times existed, the flow of traffic was not under control. The simulation identified that certain intersections, by allowing multiple choices slowed down the travel time to the parking lots. The specific intersections were located at: Yale and Dublin, University and Airline, and Airline and Dyer.

With the problem areas identified we explored different configurations centered around these intersections that would help the flow of traffic. The intersection of Airline and University created problems because the intersection was not regulated. With major sources of incoming traffic attempting to head toward the parking areas via Airline, large inefficient flows were developing at this intersection. We examined several avenues around this problem. Alternatives to this situation included rerouting traffic southbound on Airlne Ext. to the McFarlin and Airline intersection. This would split up entrances into the system and allow for better flow. Another possibility was to attempt to simulate a traffic light at this intersection to increase efficiency.

The next intersection we examined was Yale and Dublin. Currently this intersection includes three possible choices for a car to travel. The multiple choices cause short waits but are inefficient at getting people to the parking areas. There were several choices we could make to solve this problem. We could model the intersection as a traffic light. Alternatively we could also define Dublin as one way from Mockingbird to Yale. This solution would eliminate one decision from the intersection and generate a more uniform flow.

The last intersection we analyzed was the intersection of Airline and Dyer for southbound traffic. This intersection is not extremely complicated but currently contains no parking instruction to expedite the flow of traffic toward available parking areas. This can be solved by simply providing more information to the drivers on were to go in order to find parking. In the SLAM II this can be modeled by forcing all cars desiring parking to continue southbound only.

CONCLUSIONS

While analyzing these different street configurations, we tested different options using varying traffic loads and creation times. We choose to implement the street configuration that minimized the total time to park in all situations. While some configurations were superior to others our optimal solution was
adaptable to many different situations. Our final choice for implementation provides for the following suggestions:

1. Make Dublin, from Mockingbird to Yale, a OneWay Street.
2. Guide drivers through campus by providing constant information concerning the best routes to parking areas .
3. Create a main thoroughfare from Daniels and Airline Ext. to McFarlin and Airline.
4. Use traffic officers to monitor the traffic and ensure proper flow.

Using these suggestions we minimized the total time to park in a variety of different situations. We therefore conclude that the above configuration would alleviate many of SMU's current traffic problems (see Appendix F).

This implementation is not without flaw. As with any implementation of a new concept certain human elements must not be overlooked. This system does provide for large flows of traffic that minimize time to park, yet at the same time limits the drivers ability to choose. The disconcern that drivers will feel from the use of one-way streets and barricades is definitely a factor to consider upon implementing this system, even when the overall effect will be positive.

APPENDIX A

DANIELS

MOCKINGBIRD

Percentage of Total Parking Per Lot

DANIELS

MOCKINGBIRD

$$
\text { Entrance to System }=0
$$

APPENDIX C

DANIELS

MOCKINGBIRD

DANIELS

MOCKINGBIRD
Added Intersections and Streets $=$

DANIELS

MOCKINGBIRD

26 INIT,O,5400;
27 INTLC, $X X(1)=2$;
28 SEEDS,0947665(1)/YES;
29 LIMITS,50, 3, 8002;
30 NETWORK;
31
32
33
34
35
36
37
38
39

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
;
;
;
;

```
;
; ***************************
; ****************************
CREATE,, 1,,1;
LITE OPEN,LTEW;
ACT, 30;
    CLOSE,LTEW;
        ACT,4;
    OPEN,LTNS;
        ACT, 30;
        CLOSE,LTNS;
        ACT,4,,LITE;
```

GEN,KDT, SMU TRAFFIC , O4/10/88, 1, Y, N,Y/N,N,Y,72;

GATE/LTEW, CLOSE , 21, 23, 24, 26, 28; GATE/LTNS, CLOSE , 20, 22, 25, 27, 29;

```
68
69
70
71 ;PGAR COLCT(34),INT(1),PARKING GARAGE,10,40,40;
72 PGAR QUEUE(11),.800;
73 ;W5 COLCT(10), INT(1),W5 LOT ARRIVALS,10,40,40;
74 W5 QUEUE(12),,300;
75 OWNBY QUEUE(13),, 200;
76 BISH QUEUE(14),,200;
77 EBKP QUEUE(15),,80;
78 WBKP QUEUE(16),,170;
79 ARPK QUEUE(17),,42;
80 UAPK QUEUE(18),,200;
81 AEPK QUEUE(19),,250;
; **************************
; **** CREATE SECTION ****
; ***************************
    CREATE, XX(1),1,1,8000,1;
        ACT,,TNOW .LE. 1200 .OR. TNOW .GT.4500,A2;
        ACT,,TNOW .GT. 1200 .AND. TNOW .LT. 2400,A1;
        ACT,,TNOW .GE. 2400 .AND. TNOW .LE. 3600,AO5;
        ACT,,TNOW .GT. 3600 .AND. TNOW .LE. 4500,A1;
    A2 ASSIGN,XX(1)=2;
        ACT,,,CRTE;
A1 ASSIGN,XX(1)=1;
            ACT, , ,CRTE;
AO5 ASSIGN,XX(1)=.5;
CRTE TERM;
    CREATE, XX(1),1,1,8000,1;
    GOON, 1;
        ACT, . 85,PARK;
        ACT, ,. 15,TRAV;
    PARK ASSIGN,ATRIB(2)=1;
        COLCT(49),TNOW,CARS PARKING;
            ACT, ,,GASN;
        TRAV ASSIGN,ATRIB(2)=2;
            COLCT(50),TNOW,CARS TRAVELLING;
        ACT, ,,GASN;
        ;GASN COLCT(48),TNOW,TOTAL CBEATES;
        GASN GOON,1;
            ACT, ,. 35,MAGQ;
            ACT,.,25,YDGQ;
            ACT ,., 20,MBGQ;
            ACT, . 10,AEGQ;
            ACT, . 10,UAGQ;
MAGQ COLCT(10), INT(1),CARS TO MAQ2;
            ACT, ,,MAQ2 ;
        COLCT(34), INT(1),CARS TO YDQ2;
            ACT, ,,YDQ2;
        MBGQ COLCT(48), INT(1),CARS TO MBQ4;
            ACT, ,,MBQ4;
AEGQ COLCT(49), INT(1),CARS TO AEQ1;
            ACT , , , AEQ1 ;
```

```
UAGQ COLCT(50), INT(1), CARS TO UAQ2; ACT, , ,UAQ2;
```

```
; **** COLLECT NODE SECTION ****
*****LECT NODE SECTION
*****************************
CEAS COLCT(45),INT(1),EAST THRU CARS,10,10,10;
                                ACT, ,,TRM;
CSOU COLCT(46), INT(1),SOUTH THRU CARS;10,10,10;
                                ACT, ,,TRM;
CWES COLCT(47), INT(1),WEST THRU CARS;10,10,10;
```

```
; ******************************************
```

; **
; **** STOP SIGN AT YALE AND AIRLINE ****
; **** STOP SIGN AT YALE AND AIRLINE ****
YAQ1 ASSIGN, ATRIB(3)=1;
YAQ1 ASSIGN, ATRIB(3)=1;
YQ1 QUEUE (1),,20,BLOCK,YALE;
YQ1 QUEUE (1),,20,BLOCK,YALE;
YAQ2 ASSIGN,ATRIB(3)=2;
YAQ2 ASSIGN,ATRIB(3)=2;
YQ2 QUEUE (2),,20,BLOCK, YALE;
YQ2 QUEUE (2),,20,BLOCK, YALE;
YAQ3 ASSIGN,ATRIB(3)=3;
YAQ3 ASSIGN,ATRIB(3)=3;
YQ3 QUEUE (3),,20,BLOCK,YALE;
YQ3 QUEUE (3),,20,BLOCK,YALE;
YAQ4 ASSIGN,ATRIB(3)=4;
YAQ4 ASSIGN,ATRIB(3)=4;
YQ4 QUEUE (4),,20,BLOCK,YALE;
YQ4 QUEUE (4),,20,BLOCK,YALE;
YALE SELECT, LWF , BLOCK, YQ1, YQ2, YQ3, YQ4;
YALE SELECT, LWF , BLOCK, YQ1, YQ2, YQ3, YQ4;
ACT,4;
ACT,4;
GOON,1;
GOON,1;
ACT,,ATRIB(3).EQ.1,GYA1;
ACT,,ATRIB(3).EQ.1,GYA1;
ACT,,ATRIB(3).EQ.2,GYA2;
ACT,,ATRIB(3).EQ.2,GYA2;
ACT,,ATR!B(3).EQ.3,GYA3;
ACT,,ATR!B(3).EQ.3,GYA3;
ACT,,ATRIB(3).EQ.4,GYA4;
ACT,,ATRIB(3).EQ.4,GYA4;
GOON,1;
GOON,1;
ACT,,ATRIB(2).EQ.1.AND.NNQ(11).LT. 800,PGAR;
ACT,,ATRIB(2).EQ.1.AND.NNQ(11).LT. 800,PGAR;
ACT, 12,,BAQ1;
ACT, 12,,BAQ1;
GYA2 GOON, 1;
GYA2 GOON, 1;
ACT, 12,.7,BAQ 1;
ACT, 12,.7,BAQ 1;
ACT, 12,.3,DAQ3;
ACT, 12,.3,DAQ3;
GYA3 GOON, 1;
GYA3 GOON, 1;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(11).LT.800,PGAR;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(11).LT.800,PGAR;
ACT, 15,.3,YDQ4;
ACT, 15,.3,YDQ4;
GYA4 GOON,12,.7,BAQ1;
GYA4 GOON,12,.7,BAQ1;
GYA4 GOON, 1;
GYA4 GOON, 1;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(11).LT.800,PGAR;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(11).LT.800,PGAR;
ACT, 12,.5,BAQ1;
ACT, 12,.5,BAQ1;
ACT , 15,.2,YDQ4;

```
        ACT , 15,.2,YDQ4;
```

176
177
178
179
180
181
182
183
184 185 186 187 188 189 190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210

```
ACT, 10,.3,DAQ3;
```

;
;
; **** LIGHT AT MOCKINGBIRD/AIRLINE, W5 LOT AND OWNBY PARKING $* * *$
; **** OFF OF MOCKINGBIRD

;
GMW5 GOON, 1;
ACT, , ATRIB(2).EQ. 1.AND.NNQ (12).LT. 300, W5;
MAQ1 AWAIT(20/20),LTNS, , 1;
GOON, 1 ;
ACT, , ATRIB(2).EQ. 1.AND.NNQ (12).LT. 300,W5;
ACT, 10, .8, OWMB;
ACT, , 1, CEAS;
ACT, .. 1, CSOU;
OWMB GOON, 1;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(13).LT. 200,OWNBY;
ACT, 10, ,MBQ2;
MAQ2 AWAIT(21/20),LTEW, , 1;
GOON, 1 ;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(12).LT. 300,W5;
ACT, . . 2, CSOU;
ACT, 30, 1, BAQ3;
ACT, ,.7,CEAS;
MAQ3 AWAIT(22/20),LTNS, 1;
GOON, 1 ;
ACT, , ATRIB(2).EQ.1.AND.NNQ(12).LT. 300,W5;
ACT, 10, 8 , OWMB;
ACT, , 2, CEAS;
MAQ4 AWAIT(23/20),LTEW, ,1;
GOON, 1 ;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(12).LT. 300,W5;
ACT, 30,.1, BAQ3;
ACT, , $2, \mathrm{CSOU} ;$
ACT, , 7, CEAS ;
;
; **** TRAFFIC LIGHT AT BISH***********************
; **
MBQ2 AWAIT(24/20),LTEW, ,1;
GOON, 1 ;
ACT, ATRIB(2).EQ.1.AND.NNQ (14).LT. 200, BISH;
ACT, , . $2, C S O U ;$
ACT, ,.8,CWES;
MBQ3 AWAIT(25/20),LTNS, ,1;
GOON, 1 ;
ACT, ATRIB(2).EQ.1.AND.NNQ (14).LT. 200, BISH;
ACT, ATRIB(2).EQ.1.AND.NNQ (13).LT. 200, OWNBY;
ACT, 16, .9,MAQ4;
ACT, ,.1,CSOU;

MBQ4 AWAIT(26/20),LTEW, , 1 ;
GOON, 1 ;
ACT, ATRIB(2).EQ.1.AND.NNQ(14).LT. 200, B।SH;
ACT, 16,. 9, MAQ4;
ACT, ,. $1, C S O U ;$
;
; **
; **** STOP SIGN AT BINKLEY AND AIRLINE A $^{*} * * *$
; $* *$
BAQ1 ASSIGN, ATRIB(3)=1;
B1 QUEUE (5),,20, BINK;
BAQ3 ASSIGN,ATRIB(3)=3;
B3 QUEUE (6), ,20,, BINK;
BAQ4 ASSIGN, ATRIB(3)=4;
B4 QUEUE (7), , 20, BINK;
BINK SELECT,LWF,,BLOCK,B1,B3,B4;
ACT, 4;
GOON, 1;
$A C T$, , ATRIB(3).EQ. $1, G B A 1$;
ACT, , ATRIB(3).EQ.3, GBA3;
ACT, , ATRIB(3).EQ.4, GBA4;
GBA 1 GOON, 1 ;
ACT, , ATRIB(2).EQ.1.AND.NNQ(15).LT. 80, EBKP ;
ACT, , $2, W B K P$;
ACT , 16, . 8 , GMW5;
GBA3 GOON, 1 ;
ACT, , ATRIB(2).EQ. 1 . AND.NNQ (15).LT. 80 , EBKP ;
ACT,,. $1, W B K P ;$
ACT , 12, . 9, YAQ3;
GBA4 GOON, 1 ;
ACT, , ATRIBG2).EQ. 1.AND. NNQ (15).LT. 80, EBKP;
ACT , 12, . 5, YAQ3;
ACT, 16,.5,GMW5;
;
;
;
$* *$
; **** TRAFFIC LIGHT AT CORNER OF DYER AND AIRLINE ****
;
DAQ1 AWAIT(27/20),LTNS,,1;
GOON, 1 ;
ACT, 12, ATRIB(2).EQ. $1, \mathrm{YAQ} 1$;
ACT, 12,. 3, YAQ1;
ACT, 20,.6,DDQ4;
ACT, ,. 1,CEAS;
DAQ2 AWAIT(28/20),LTEW, , 1;
GOON, 1 ;
ACT, 12, ATRIB(2).EQ. 1, YAQ1;
ACT, 10,.5, QMA3;
ACT, , 1, CEAS;
ACT, 12,.4, YAQ1;
DAQ3 AWAIT(29/20),LTNS,,1;

```
    GOON, 1;
    ACT, 10,ATRIB(2).EQ.1,QMA3;
    ACT, 10,.5,QMA3;
    ACT, 15,.4,DDQ4;
    ACT,,.1,CEAS;
    DAQ4 GOON,1;
    ACT, 12,ATRIB(2).EQ.1,YAQ1;
    ACT, 10,.4,QMA3;
    ACT, 12,.4,YAQ1;
    ACT, 15,.2,DDQ4;
    ;
    ; **********************************************
    STOP SIGN MCFARLIN AND AIRLINE
QMA1 ASSIGN,ATRIB(3)=1;
MQ1 QUEUE (30),,20,,MCFN;
QMA2 ASSIGN,ATRIB(3)=2;
MQ2 QUEUE (31), ,20, ,MCFN;
QMA3 ASSIGN,ATRIB(3)=3;
MQ3 QUEUE (32),,20,,MCFN;
QMA4 ASSIGN,ATRIB(3)=4;
MQ4 QUEUE(33),,20,,MCFN;
MCFN SELECT,LWF, , MQ1,MQ2,MQ3,MQ4;
    ACT,4;
    GOON, 1;
    ACT, ,ATRIB(3).EQ. 1,GMQ1;
    ACT,,ATRIB(3).EQ.2,GMQ2;
    ACT, ,ATRIB(3).EQ.3,GMQ3;
    ACT, ,ATRIB(3).EQ.4,GMQ4;
GMQ1 GOON,1;
        ACT,10,ATRIB(2).EQ.1,DAQ1;
        ACT,,.5,CEAS;
        ACT, 12,.5,DAQ1;
    ;
GMQ2 GOON, 1;
    ACT, ,ATRIB(2).EQ. 1,GMP 1;
    ACT, 15,.5,UAQ3;
    ACT,10,.5,DAQ1;
GMP 1 GOON,1;
    ACT, 10,.8,DAQ1;
    ACT,,.2,GMP2;
GMP2 GOON, 1;
    ACT, NNQ(17).LT.42,ARPK;
    ACT, 15, ,UAQ3;
GMQ3 GOON, 1;
    ACT, ,ATRIB(2).EQ.1,GMP3;
    ACT, 15,.5,UAQ3;
    ACT, . 5,CEAS;
GMP3 GOON,1;
        ACT, NNQ(17).LT.42,ARPK;
        ACT, 15, ,UAQ3;
GMQ4 GOON,1;
```

338
339
340
341
342
343
344
345
346
347
348
349
350
35
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366 367 368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
;
ACT, ,ATRIB(2).EQ. 1, DAQ1;
ACT, ,. 3,CEAS;
ACT, 15, 5, UAQ3;
ACT, 10, . 2, DAQ 1 ;
;
;
UAQ2 ASSIGN, ATRIB(3)=2;
UQ2 QUEUE (35),,20,, UNIV;
UAQ3 ASSIGN, ATRIB(3)=3;
UQ3 QUEUE (36),,20,, UNIV:
UAQ4 ASSIGN, ATRIB(3)=4;
UQ4 QUEUE (37), 20, UNIV;
UNIV SELECT,LWF, , UQ2, UQ3, UQ4;
ACT, 4;
GOON, 1 ;
ACT, , ATRIB(3).EQ. 2, GUA2;
ACT, , ATRIB(3).EQ.3, GUA3;
ACT, ,ATRIB(3).EQ.4,GUA4;
GUA2 GOON, 1 ;
ACT, , ATRIB(2).EQ. 1 , GU21;
ACT, ,.5,CWES;
ACT, 15, .5, QMA 1 ;
GU21 GOON, 1 ;
ACT, ,NNQ (18).LT. 200, UAPK;
ACT, ,NNQ (17).LT. 42,ARPK;
$A C T, 15, .8, Q M A 1$;
$A C T, 8, .2, A E Q 2$;
GUA3 GOON, 1;
ACT, , ATRIB(2).EQ. 1 , GU3 1 ;
ACT, . 5, CWES;
ACT, , 5, CEAS;
GU31 GOON, 1 ;
ACT, ,NNQ (18).LT. 200, UAPK;
ACT, , $A E Q 2$;
GUA4 GOON, 1;
ACT, , ATRIB(2).EQ. 1, GU4 1 ;
ACT, , 7,CEAS;
ACT, 15, . 3, QMA 1 ;
GU4 1 GOON, 1 ;
ACT, ,NNQ (18).LT. 200, UAPK;
ACT, ,NNQ (17). LT . 42, ARPK;
ACT, 15, , QMA 1 ;

```
AEQ1 QUEUE (8),,,BLOCK;
    ACT,1;
    GOON, 1 ;
        ACT,,ATRIB(2).EQ.1,GAE1;
        ACT, 20, . 3,QMA4;
        ACT,10,.7,UAQ4;
    GAE1 GOON,1;
        ACT, ,NNQ(19).LT. 250,AEPK;
        ACT, 8, . 8,QMA4;
        ACT,5,.2,UAQ4;
AEQ2 QUEUE (9),,,BLOCK;
        ACT, 1;
        GOON,1;
        ACT,.ATRIB(2).EQ.1,GAE2;
        ACT, , 8,CWES;
        ACT, 10, . 2,QMA4;
    GAE2 GOON, 1;
        ACT, ,NNQ(19).LT . 250,AEPK;
        ACT, 10,.9,QMA4;
        ACT,,.1,CWES;
;
;
********************************************
    INTERSECTION OF DYER AND DUBLIN ****
;
DDQ2 ASSIGN,ATRIB(3)=2;
DQ2 QUEUE(38),,,,DYER;
DDQ3 ASSIGN,ATRIB(3)=3;
DQ3 QUEUE(39),.,,DYER;
DDQ4 ASSIGN,ATRIB(3)=4;
DQ4 QUEUE(40),,,,DYER;
DYER SELECT,LWF,,,DQ2,DQ3,DQ4;
    GOON, 1;
        ACT, ,ATRIB(3).EQ.2,GDD2;
        ACT,,ATRIB(3).EQ.3,GDD3;
            ACT,,ATRIB(3).EQ.4,GDD4;
GDD2 GOON, 1;
        ACT, 15,.3,DAQ2;
        ACT, 10,.7,YDQ1;
GDD3 GOON, 1;
        ACT, 15,.5,DAQ2;
        ACT, ,.5,CEAS;
GDD4 GOON, 1;
        ACT , . 3,CEAS;
        ACT,10,.7,YDQ1;
;
**********************************************
***********RTERSETION AT YALE AND DUBLIN ****
; *********************************************
YDQ1 ASSIGN,ATRIB(3)=1;
Q1Y QUEUE(41),,20,,YDUB;
```

446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
4.93 ;

494
495 FIN;
;
;

YDQ2 ASSIGN, ATRIB(3)=2;
Q2Y QUEUE (42), ,, YDUB;
YDQ3 ASSIGN, ATRIB(3)=3;
Q3Y QUEUE (43), ,20, YDUB;
YDQ4 ASSIGN, ATRIB(3)=4;
Q4Y QUEUE (44), ,20, , YDUB;
YDUB SELECT,LWF,, QQ1Y,Q2Y,Q3Y,Q4Y; ACT, 4;
GOON, 1 ;
$A C T$, , ATRIB(3).EQ. 1 , GYD 1 ;
ACT, ,ATRIB(3).EQ.2,GYD2;
ACT, , ATRIB(3).EQ.3, GYD3;
ACT, , ATRIB(3).EQ.4, GYD4;
GYD 1 GOON, 1;
ACT, ,. 6, GY12;
ACT, ..4, GY13;
GY 12 GOON, 1;
ACT, , ATRIB(2).EQ.1.AND.NNQ (12).LT. 300,W5;
ACT, , , CSOU;
GY13 GOON, 1;
ACT, , ATRIB(2).EQ. 1.AND.NNQ (11).LT. 800, PGAR; ACT, 22, , YAQ2;
GYD2 GOON, 1; ACT, ,ATRIB(2).EQ.1,GY21; ACT,22,.6,YAQ2; ACT, , 3, CSOU; ACT, 10,. 1, DDQ3;
GY21 GOON, 1 ;
ACT, ,NNQ (11).LT. 800 , PGAR; ACT, ,NNQ (12).LT. 300, W5; ACT, , , CSOU;
GYD3 GOON,1; ACT, , ATRIB(2).EQ. 1, GY31; ACT, 22, . 3, YAQ2; ACT, ,. 5, CEAS; ACT, 10,.2,DDQ3;
GY31 GOON, 1 ; ACT, ,NNQ (11).LT. 800, PGAR; ACT, 10, ,DDQ3;
GYD4 GOON, 1 ; ACT, , ATRIB(2).EQ. 1, GY41; ACT, , $7, C E A S$; ACT, . $3, C S O U ;$
GY41 GOON, 1; ACT, ,NNQ (12).LT. 300 ,W5; ACT, , , CSOU;

ENDNE TWORK ;

FILE STATISTICS

FILE NUMBER	ASSOC NODE LABEL / TYPE	
1	YQ1	QUEUE
2	YQ2	QUEUE
3	YQ3	QUEUE
4	YQ4	QUEUE
5	B 1	QUEUE
6	B3	QUEUE
7	B4	QUEUE
8	AEQ 1	QUEUE
9	AEQ2	QUEUE
10		
11	PGAR	QUEUE
12	W5	QUEUE
13	OWNB	QUEUE
14	BISH	QUEUE
15	EBKP	QUEUE
16	WBKP	QUEUE
17	ARPK	QUEUE
18	UAPK	QUEUE
19	AEPK	QUEUE
20	MAQ1	AWAIT
21	MAQ2	AWAIT
22	MAQ3	AWAIT
23	MAQ4	AWAIT
24	MBQ2	AWAIT
25	MBQ3	AWA : T
26	MBQ4	AWAIT
27	DAQ1	AWAIT
28	DAQ2	AWAIT
29	DAQ3	AWAIT
30	MQ 1	QUEUE
31	MQ2	QUEUE
32	MQ3	QUEUE
33	MQ4	QUEUE

| AVERAGE | STANDARD | MAXIMUM | CURRENT AVERAGE |
| :--- | :--- | :--- | :--- | :--- |
| LENGTH | DEVIATION | LENGTH | LENGTH WAIT TIME |

0.538	1.511	10	0	14.300
0.000	0.000	0	0	0.000
0.409	1. 132	6	0	15.426
0.000	0.000	0	0	0.000
0.005	0.072	1	0	0.718
0.152	0.571	6	0	3.435
0.000	0.000	0	0	0.000
226.790	189.555	511	511	2183.009
0.000	0.000	0	0	0.000
0.000	0.000	0	0	0.000
118.203	113.989	332	332	1922.575
249.861	89.035	300	300	4497.500
0.000	0.000	0	0	0.000
161.933	63.028	200	200	4372.180
44.921	36.536	80	80	3032.134
6.669	6.435	19	19	1895.445
20.350	20.683	42	42	2616.390
138.645	73.411	200	200	3743.416
53.312	19.698	82	82	3510.815
0.080	0.301	2	0	12.000
3.687	5.245	20	0	10.784
0.000	0.000	0	0	0.000
0.983	1.872	11	0	6.622
0.074	0.298	2	0	12.839
0.000	0.000	0	0	0.000
2.223	3.344	20	0	10.964
0.419	1.190	9	0	10.240
0.000	0.000	0	0	0.000
0.000	0.000	0	0	0.000
0.000	0.000	1	0	0.000
0.000	0.000	0	0	0.000
0.000	0.000	0	0	0.000
0.000	0.000	0	0	0.000
0.000	0.000	0	0	0.000

35	UQ2	QUEUE	0.369	0.976	7	0	3.574
36	UQ3	QUEUE	0.000	0.000	0	0	0.000
37	UQ4	QUEUE	0.001	0.024	1	0	1.000
38	DQ2	QUEUE	0.000	0.000	0	0	0.000
39	DQ3	QUEUE	0.932	0.252	1	1	5032.996
40	DQ4	QUEUE	4.708	5.541	13	13	1588.999
41	Q1Y	QUEUE	0.000	0.000	0	0	0.000
42	Q2Y	QUEUE	622.521	481.606	1335	1335	2443.031
43	Q3Y	QUEUE	0.000	0.000	0	0	0.000
44	Q4Y	QUEUE	4.281	3.626	11	11	2101.407
45			0.000	0.000	0	0	0.000
46			0.000	0.000	0	0	0.000
47			0.000	0.000	0	0	0.000
48			0.000	0.000	0	0	0.000
49			0.000	0.000	0	0	0.000
50			10.165	7.128	62	0	0.000
51		CALENDAR				0	0.967

SERVICE ACTIVITY STATISTICS

ACT ACT LABEL OR
NUM START NODE
SER AVERAGE CAP UTIL
STD CUR AVERAGE MAX IDL MAX BSY DEV UTIL BLOCK TME/SER TME/SER
\qquad

0	YALE	SELECT	1	0.260	0.44	0	0.00	320.00
0	BINK	SELECT	1	0.206	0.40	0	0.00	272.00
0	MCFN	SELECT	1	0.181	0.38	0	0.00	482.00
0	UNIV	SELECT	1	0.416	0.49			
0	AEQ2	QUEUE	1	0.006	0.00	0	0.00	86.00
0	YDUB	SELECT	1	1.899	0.40	0	0.00	2937.00

GATE STATISTICS

GATE NUMBER GATE
LABEL
1 LTEW LTNS
OPEN
0.4439
CLOSED
0.4389
CURRENT PCT. OF STATUS TIME OPEN
-
EAST THRU CARS

GEN,JOHN AND ALLEN,SRDES,4/3/1991,1,Y,N,Y/N,N,Y,72;
INITIALIZE, 6000, Y;
INTLC, XX (1) $=2$;
SEEDS, $0947665(1) / Y E S ;$
LIMITS,50,3,3650;
NETWORK;
;
;
;
;
GATE/LTEW, CLOSE, 21,23,24,26,28,30,32,34;
GATE/LTNS, CLOSE, 20,22,25,27,29,31,33,35;
;
; *********TRAFFIC LIGHTS**********
;**********************************
CREATE, 1,1 ;
LITE OPEN,LTEW;
ACT, 30 ;
CLOSE,LTEW;
ACT, 4;
OPEN,LTNS; ACT, 30 ;
CLOSE,LTNS; ACT, 4, ,LITE;
;
;***********PARKING QUEUES**********
;***********************************
;PGAR COLCT(34),INT(1),PARKING GARAGE,10,40,40;
PGAR QUEUE(11),,822;
;W5 COLCT(10),INT(1),W5 LOT ARRIVALS,10,40,40;
W5 QUEUE(12),,683;
BISH QUEUE(14),,250;
C QUEUE (15), ,150;
BANK QUEUE(16),,422;
TWIN QUEUE(17),,680;
TOWR QUEUE(18),,250;
A QUEUE(19),,62;
SPEC QUEUE(13),,300;
OUT QUEUE(37),,,;
;***********CREATE SECTION***********
;************************************
CREATE, XX (1) , 1, 1, 8000, 1;
ACT, ,TNOW .LE. 1200 .OR. TNOW .GT. 4500, A2; ACT, ,TNOW .GT. 1200 .AND. TNOW .LT. 2400, A1; ACT, ,TNOW .GE. 2400 .AND. TNOW .LE. 3600, A05;
ACT, ,TNOW .GT. 3600 .AND. TNOW .LE. 4500, A1;
A2 ASSIGN, XX(1)=2; ACT, , , CRTE;
A1 ASSIGN,XX(1)=1; ACT, , , CRTE;
A05 ASSIGN, XX (1) =.5;
CRTE TERM;

```
i
```

```
CREATE,XX(1),1,1,8000,1;
```

CREATE,XX(1),1,1,8000,1;
GOON,1;
GOON,1;
ACT, ,. 80,PARK;
ACT, ,. 80,PARK;
ACT,,.10,TRAV;
ACT,,.10,TRAV;
ACT,,.10,SPEL;
ACT,,.10,SPEL;
PARK ASSIGN,ATRIB(2)=1;
PARK ASSIGN,ATRIB(2)=1;
; COLCT(49),TNOW,CARS PARKING;
; COLCT(49),TNOW,CARS PARKING;
ACT, , ,GASN;
ACT, , ,GASN;
TRAV ASSIGN,ATRIB(2)=2;
TRAV ASSIGN,ATRIB(2)=2;
; COLCT(50),TNOW,CARS TRAVELING;
; COLCT(50),TNOW,CARS TRAVELING;
ACT, , ,GASN;
ACT, , ,GASN;
SPEL ASSIGN,ATRIB(2)=3;
SPEL ASSIGN,ATRIB(2)=3;
ACT, , ,GASN;
ACT, , ,GASN;
;GASN COLCT(48),TNOW,TOTAL CREATES;
;GASN COLCT(48),TNOW,TOTAL CREATES;
GASN GOON,1;
GASN GOON,1;
ACT, , 4,DHGQ;
ACT, , 4,DHGQ;
ACT,,.15,CEQE;
ACT,,.15,CEQE;
ACT, ,.1,CEQN;
ACT, ,.1,CEQN;
ACT, ,.2,MBGQ;
ACT, ,.2,MBGQ;
ACT,,.15,UAGQ;
ACT,,.15,UAGQ;
DHGQ COLCT(10),INT(1),CARS TO DHQ2;
DHGQ COLCT(10),INT(1),CARS TO DHQ2;
ACT, , ,DHQ2;
ACT, , ,DHQ2;
CEQE COLCT(38),INT(1),CARS TO CEE1;
CEQE COLCT(38),INT(1),CARS TO CEE1;
ACT, , CEE1;
ACT, , CEE1;
CEQN COLCT(48),INT(1),CARS TO CEN1;
CEQN COLCT(48),INT(1),CARS TO CEN1;
ACT, , CEN1;
ACT, , CEN1;
MBGQ COLCT(49),INT(1),CARS TO MBQ3;
MBGQ COLCT(49),INT(1),CARS TO MBQ3;
ACT, , MBQ3;
ACT, , MBQ3;
UAGQ COLCT(50),INT(1),CARS TO UAQ3;
UAGQ COLCT(50),INT(1),CARS TO UAQ3;
ACT, , ,UAQ3;
ACT, , ,UAQ3;
;
;
;***************COLLCET NODE SECTION*********
;***************COLLCET NODE SECTION*********
;**
;**
;
;
CEAS COLCT(45),INT(1),EAST THRU CARS;10,10,10;
CEAS COLCT(45),INT(1),EAST THRU CARS;10,10,10;
ACT,,,TRM;
ACT,,,TRM;
CSOU COLCT(46),INT(1),SOUTH THRU CARS;10,10,10;
CSOU COLCT(46),INT(1),SOUTH THRU CARS;10,10,10;
ACT, ,TRM;
ACT, ,TRM;
CWES COLCT(47),INT(1),WEST THRU CARS;10,10,10;
CWES COLCT(47),INT(1),WEST THRU CARS;10,10,10;
TRM TERM;
TRM TERM;
;*********STOP SIGN AT YALE AND AIRLINE******************
;*********STOP SIGN AT YALE AND AIRLINE******************
;**
;**
YAQ1 ASSIGN,ATRIB(3)=1;
YAQ1 ASSIGN,ATRIB(3)=1;
YQ1 QUEUE(1),,20,BLOCK,YALE;
YQ1 QUEUE(1),,20,BLOCK,YALE;
YAQ2 ASSIGN,ATRIB(3)=2;
YAQ2 ASSIGN,ATRIB(3)=2;
YQ2 QUEUE(2),,20,BLOCK,YALE;
YQ2 QUEUE(2),,20,BLOCK,YALE;
YALE SELECT,LWF,,BLOCK,YQ1,YQ2;
YALE SELECT,LWF,,BLOCK,YQ1,YQ2;
ACT,4;
ACT,4;
GOON,1;
GOON,1;
ACT, ,ATRIB (3).EQ.1,GYA1;
ACT, ,ATRIB (3).EQ.1,GYA1;
ACT, ,ATRIB (3).EQ.2,GYA2;

```
        ACT, ,ATRIB (3).EQ.2,GYA2;
```

```
GYA1 GOON,1;
    ACT, ,ATRIB(2).EQ.1.AND.NNQ(11).LT. 822,PGAR;
    ACT, 4,ATRIB(2).EQ.1.AND.NNQ (12).LT.683,BAQ1;
    ACT, 4,ATRIB (2).EQ.3.AND.NNQ (13).LT.150,BAQ1;
    ACT,12,ATRIB(2).EQ.1,YDQ2;
    ACT, 12,ATRIB (2).EQ.3,YDQ2;
    ACT,4,.2,BAQ1;
    ACT,12,.8,YDQ2;
GYA2 GOON,1;
    ACT, ,ATRIB(2).EQ.1.AND.NNQ (11).IT. 822,PGAR;
    ACT, 4,ATRIB (2).EQ.3,BAQ1;
    ACT , 4,ATRIB (2).EQ.1, BAQ1;
    ACT,4,. 2,BAQ1;
    ACT, 12,.8,ADQ1;
;
;*****************************************************************
;**** LIGHT AT MOCKINGBIRD /AIRLINE, W5 LOT AND OWNBY PARKING ***
;**** OFF OF MOCKINGBIRD ***
;******************************************************************
;
;
MAQ3 AWAIT(20/20),LTNS, ,1;
    GOON,1;
        ACT,5,ATRIB (2).EQ.1,DMGQ;
        ACT,5,ATRIB (2).EQ.3,DMGQ;
        ACT,, . 2,DMGQ;
        ACT, , 8,MBQ2;
MAQ4 AWAIT(21/20),LTEW,,1;
        GOON,1;
        ACT,5, ,DMGQ;
;
;****************************************************
;**** TRAFFIC LIGHT AT BISHOP AND MOCKINGBIRD ****
;****************************************************
;
MBQ2 AWAIT(23/20),LTEW, ,1;
    GOON, 1;
        ACT, , 5,CSOU;
        ACT,4,.5,MHQ1;
MBQ3 AWAIT(22/20),LTNS, 1;
    GOON,1;
        ACT, ,ATRIB (2 ) .EQ. 3.AND.NNQ (13).LT.150, SPEC;
        ACT, ,ATRIB(2).EQ.1.AND.NNQ(14).LT. 250,BISH;
        ACT,5,ATRIB (2).EQ.1,MAQ4;
        ACT,5,ATRIB (2).EQ.3,MAQ4;
        ACT,5,.3,MAQ4;
        ACT,5,.7,MHQ1;
MBQ4 AWAIT(24/20),LTEW, ,1;
    GOON,1;
        ACT, ,ATRIB(2).EQ.3.AND.NNQ(13).LT.150,SPEC;
        ACT, ,ATRIB(2).EQ.1.AND.NNQ(14).LT. 250,BISH;
        ACT,5,ATRIB (2).EQ.1,MAQ4;
        ACT,5,ATRIB(2).EQ.3,MAQ4;
        ACT,16,.9,MAQ4;
        ACT, ,.1,CSOU;
```

```
i
;*********************************************
;**** STOP SIGN AT BINKLEY AND AIRLINE ****
;********************************************
;
BAQ1 GOON,1;
                                    ACT, ,ATRIB (2).EQ.1.AND.NNQ (12).LT.683,W5;
                                    ACT, ,ATRIB (2).EQ.3.AND.NNQ (13).LT.150,SPEC;
                                    ACT, ,ATRIB(2).EQ.3.AND.NNQ(12).LT.683,W5;
                                    ACT,5, ,MAQ3;
;
;
;
;*******************************************************
;**** TRAFFIC LIGHT AT CORNER OF DYER AND AIRLINE ****
;*******************************************************
;
ADQ2 AWAIT(25/20),LTNS,,1;
        GOON,1;
            ACT, 4,ATRIB(2).EQ.1,YAQ1;
            ACT,4,ATRIB (2).EQ.3,YAQ1;
            ACT,.7, ,CEAS;
            ACT,.3,,YAQ1;
ADQ1 AWAIT(27/20),LTNS,,1;
        GOON,1;
        ACT,.3,,QMA4;
        ACT,.7,,CEAS;
;
;********************************************
;**** STOP SIGN AT MCFARLIN AND AIRLINE ****
;********************************************
;
QMA1 ASSIGN,ATRIB (3)=1;
MQ1 QUEUE (3),,20,,MCFN;
QMA2 ASSIGN,ATRIB (3)=2;
MQ2 QUEUE(4), ,20,,MCFN;
QMA4 ASSIGN,ATRIB (3)=4;
MQ4 QUEUE (5),,20,,MCFN;
MCFN SELECT,LWF, , ,MQ1,MQ2,MQ4;
        ACT,4;
        GOON,1;
        ACT , ATRIB (3) . EQ. 1, GMQ1;
        ACT, ,ATRIB (3).EQ.2 ,GMQ2;
        ACT, ,ATRIB (3) .EQ.4,GMQ4;
GMQ1 GOON,1;
        ACT, 4,ATRIB (2 ).EQ.1,ADQ2;
        ACT, 4,ATRIB(2).EQ.3,ADQ2;
        ACT,4,.5,ADQ2;
        ACT , 8, .5,GUA4;
;
;
GMQ2 GOON,1;
```

 ACT, 4, ATRIB (2).EQ.1, ADQ2;
 ACT, 4,ATRIB(2).EQ.3,ADQ2;
 ACT,4,.3,ADQ2;
 ACT, , 7, CEAS;
 G
i
i
i
i
i
i
UAQ3 ASSIGN, ATRIB (3) $=3$;
UQ3 QUEUE (6), ,20, ,UNIV;
UAQ4 ASSIGN, ATRIB (3) $=4$;
UQ4 QUEUE(7),,20,,UNIV;
UNIV SELECT,LWF,, ,UQ3,UQ4;
ACT, 4 ;
GOON, 1;
ACT, , ATRIB (3).EQ. 3, GUA3;
ACT, , ATRIB (3).EQ. 4 , GUA4;
GUA3 GOON,1;
ACT, 8, ATRIB (2).EQ.1, QMA2;
ACT, 8, ATRIB (2).EQ.3, QMA2;
ACT, 10, . 7, AEQ2;
ACT, 8,.3, QMA2;
GUA4 GOON, $1 ;$
ACT, , 7, CEAS ;
ACT, 10, .3, AEQ2;
;
;
;**
;**** INTERSECTION OF AIRLINE EXTENSION ****
;**** AND DANIEL AVENUE. ********************
;**
;
;
AEGQ AWAIT (26/20), LTEW, , 1
GOON, 1;
ACT, 10, ATRIB (2).EQ.1, QMA1;
ACT, 10, ATRIB (2).EQ. 3, QMA1;
ACT, 10,. 3, QMA1;
ACT, , 7, CEAS;
AEQ2 AWAIT(29/20),LTNS, ,1
ACT, , CSOU;
;
;**
;**** INTERSECTION AT YALE AND DUBLIN ****
;**
;
YDQ1 ASSIGN, $\operatorname{ATRIB(3)=1;~}$

```
Q1Y QUEUE (8), 20, ,YDUB;
YDQ2 ASSIGN,ATRIB (3)=2;
Q2Y QUEUE(9),, , YDUB;
YDQ3 ASSIGN,ATRIB (3)=3;
Q3Y QUEUE(36),,20,,YDUB;
YDUB SELECT,LWF,, ,Q1Y,Q2Y,Q3Y;
        ACT, 4 ;
    GOON, 1;
        ACT, , ATRIB (3).EQ. 1, GYD1;
        ACT, , ATRIB (3).EQ. 2 ,GYD2;
        ACT, , ATRIB(3).EQ.3,GYD3;
GYD1 GOON,1;
        ACT, 5, ATRIB (2).EQ.1, CE
        ACT, 5, ATRIB (2).EQ. \(3, \mathrm{CE}\)
        ACT,5,.7,CE;
        ACT, 5, .3, YAQ2;
GYD2 GOON,1;
        ACT, 5, , CE;
GYD3 GOON,1;
        ACT,5, YAQ2;
;******************LIGHT AT MOCKINGBIRD***************
```



```
;******************************************************
MHGQ AWAIT(31/20),LTNS, 1;
        GOON, 1 ;
        ACT,5,ATRIB(2).EQ.1, MBQ4;
        ACT,5,ATRIB (2).EQ.3,MBQ4;
        ACT,5,.5,MBQ4;
        ACT, ,.5,CSOU;
MHQ1 AWAIT (28/20),LTEW, , 1;
        ACT, , CWES;
```

```
;********************INTERSECTION OF**********************
```

;********************INTERSECTION OF**********************
;*********************DUBLIN AND MOCKINGBIRD**************
;*********************DUBLIN AND MOCKINGBIRD**************
;
;
DMGQ AWAIT(30/20),LTEW, ,1;
DMGQ AWAIT(30/20),LTEW, ,1;
GOON,1;
GOON,1;
ACT,5,ATRIB(2).EQ.1.AND.NNQ(12).LT.683,W5Q;
ACT,5,ATRIB(2).EQ.1.AND.NNQ(12).LT.683,W5Q;
ACT,10,ATRIB(2).EQ.1.AND.NNQ(11).LT.822,PGQ;
ACT,10,ATRIB(2).EQ.1.AND.NNQ(11).LT.822,PGQ;
ACT,5,ATRIB (2).EQ.3.AND.NNQ (12).LT.683,W5Q;
ACT,5,ATRIB (2).EQ.3.AND.NNQ (12).LT.683,W5Q;
ACT,10,ATRIB(2).EQ.3.AND.NNQ(11).LT.822,PGQ;
ACT,10,ATRIB(2).EQ.3.AND.NNQ(11).LT.822,PGQ;
ACT, ,ATRIB(2).EQ.1,ACRS;
ACT, ,ATRIB(2).EQ.1,ACRS;
ACT, ,ATRIB (2).EQ.3,ACRS;
ACT, ,ATRIB (2).EQ.3,ACRS;
ACT, ,,CEAS;
ACT, ,,CEAS;
W5Q GOON,1;
W5Q GOON,1;
ACT, ,ATRIB (2).EQ.1.AND.NNQ(12).LT.683,W5;
ACT, ,ATRIB (2).EQ.1.AND.NNQ(12).LT.683,W5;
ACT,2,ATRIB(2).EQ.1,PGQ;
ACT,2,ATRIB(2).EQ.1,PGQ;
ACT, ,ATRIB (2).EQ.3.AND.NNQ(12).LT.683,W5;
ACT, ,ATRIB (2).EQ.3.AND.NNQ(12).LT.683,W5;
ACT,2,ATRIB(2).EQ.3,PGQ;
ACT,2,ATRIB(2).EQ.3,PGQ;
ACT, , PGQ;

```
        ACT, , PGQ;
```

PGQ GOON, 1;

ACT, A ATRIB (2).EQ.1.AND.NNQ (12). LT. 822, PGAR; ACT, 2,ATRIB (2).EQ.1,YDQ1; ACT, ,ATRIB (2).EQ.3.AND.NNQ (12). LT. 822, PGAR; ACT, 2, ATRIB (2).EQ.3, YDQ1; ACT, , YDQ1;

```
;*******************ACROSS THE STREET PARKING*****
```



```
;
ACRS GOON,1;
    ACT,10,ATRIB(2).EQ.1.AND.NNQ(16).LT.422,BANK;
    ACT,15,ATRIB(2).EQ.1.AND.NNQ(17).LT.680,TWIN;
    ACT, 20,ATRIB (2).EQ.1.AND.NNQ(18).LT. 250,TOWR;
    ACT,10,ATRIB (2).EQ.3.AND.NNQ(16).LT.422,BANK;
    ACT,15,ATRIB (2).EQ.3.AND.NNQ(17).LT.680,TWIN;
    ACT, 20,ATRIB(2).EQ.3.AND.NNQ(18).LT.250,TOWR;
    ACT, , OUT;
```

;**********************CENTRAL AND YALE*********

CEE1 AWAIT(32/20),LTEW, ,1;
GOON, 1;
ACT,5,ATRIB (2).EQ.1.AND.NNQ (11).LT. 822 , YDQ3;
ACT, 5, ATRIB (2).EQ.1.AND.NNQ (12).LT. 683, YDQ3;
ACT, 5, ATRIB (2).EQ.3.AND.NNQ (11).LT. 822, YDQ3;
ACT, 5, ATRIB (2).EQ.3.AND.NNQ (12).LT. 683, YDQ3;
ACT, , ATRIB (2).EQ.1,ACRS;
ACT, , ATRIB (2).EQ. $3, \mathrm{ACRS}$;
ACT, , , YDQ3;
CEN1 AWAIT (33/20),LTNS, 1;
GOON, 1;
ACT , 5, ATRIB (2).EQ.1.AND.NNQ (11).LT. 822 , YDQ3;
ACT,5,ATRIB (2).EQ.1.AND.NNQ (12).LT. 683, YDQ3;
ACT,5,ATRIB(2).EQ.3.AND.NNQ (11).LT. 822 , YDQ3;
ACT,5,ATRIB(2).EQ.3.AND.NNQ (12).LT. 683, YDQ3;
ACT, ,ATRIB (2).EQ.1,ACRS;
ACT, , ATRIB(2).EQ.3,ACRS;
ACT, , ,YDQ3;
CE AWAIT(34/20),LTEW, , 1;
GOON, 1;
ACT, , ATRIB (2).EQ.1,ACRS;
ACT, ,ATRIB (2).EQ.3,ACRS;
ACT, , ,CSOU;

```
;*****************************LIGHT AT DAINIEL***********
;*************************AND HILLCREST****************
;
;
DHQ2 AWAIT(35/20),LTNS,,1;
    GOON,1;
        ACT,15,ATRIB(2).EQ.3,MHGQ;
        ACT,5,.6,CLOT;
        ACT,5,.4,ALOT;
```

CLOT GOON,1;
ACT, ,ATRIB(2).EQ.1.AND.NNQ(15).LT.150, C;
ACT,5, AEGQ;
ACT, , ATRIB (2).EQ.1.AND.NNQ (19).LT. 62 , A;
ACT, 10,ATRIB (2).EQ.1,MHGQ;
ACT, 10, ,MHGQ;
;
ENDNETWORK;
FIN;
ARRAY STORAGE REPORT
DIMENSION OF NSET/QSET(NNSET): 32000
WORDS ALLOCATED TO FILING SYSTEM: 25550
WORDS ALLOCATED TO VARIABLES: 6388
WORDS AVAILABLE FOR PLOTS/TABLES: 62

SIMULATION PROJECT SRDES
DATE 4/ 3/1991

BY JOHN AND ALLEN
RUN NUMBER 1 OF 1

MEAN	STANDARD	COEFF. OF	MINIMUM	MAXIMUM	NO. OF
VALUE	DEVIATION VARIATION	VALUE	VALUE	OBS	

CARS TO DHQ2 . 000E+00 .000E+00
NO VALUES RECORDED
. 100E+05 . 000E+00
NO VALUES RECORDED
$.000 \mathrm{E}+00.000 \mathrm{E}+00$
. 100E+05
$.000 \mathrm{E}+00.000 \mathrm{E}+00$
931
NO VALUES RECORDED
NO VALUES RECORDED
NO VALUES RECORDED
NO VALUES RECORDED

NO VALUES RECORDED
 NO VALUES RECORDED

| EAST THRU CARS | $.877 \mathrm{E}+02$ | $.950 \mathrm{E}+02$ | $.108 \mathrm{E}+01$ | $.100 \mathrm{E}+02$ | $.461 \mathrm{E}+03$ | 262 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | ---: |
| SOUTH THRU CARS | $.120 \mathrm{E}+03$ | $.137 \mathrm{E}+03$ | $.115 \mathrm{E}+01$ | $.140 \mathrm{E}+02$ | $.507 \mathrm{E}+03$ | 171 |
| WEST THRU CARS | $.499 \mathrm{E}+02$ | $.472 \mathrm{E}+02$ | $.947 \mathrm{E}+00$ | $.600 \mathrm{E}+01$ | $.289 \mathrm{E}+03$ | 82 |
| CARS TO CEN1 | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | $.100 \mathrm{E}+05$ | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | 580 |
| CARS TO MBQ3 | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | $.100 \mathrm{E}+05$ | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | 1129 |
| CARS TO UAQ3 | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | $.100 \mathrm{E}+05$ | $.000 \mathrm{E}+00$ | $.000 \mathrm{E}+00$ | 877 |

FILE STATISTICS

FILE NUMBER

1	YQ1	QUEUE
2	YQ2	QUEUE
3	MQ1	QUEUE
4	MQ2	QUEUE
5	MQ4	QUEUE
6	UQ3	QUEUE
7	UQ4	QUEUE
8	Q1Y	QUEUE
9	Q2Y	QUEUE
10		
11	PGAR	QUEUE
12	W5	QUEUE
13	SPEC	QUEUE
14	BISH QUEUE	
15	C	QUEUE
16	BANK QUEUE	
17	TWIN	QUEUE
18	TOWR	QUEUE
19	A	QUEUE
20	MAQ3 AWAIT	
21	MAQ4	AWAIT
22	MBQ3 AWAIT	
23	MBQ2	AWAIT
24	MBQ4 AWAIT	
25	ADQ2 AWAIT	
26	AEGQ AWAIT	
27	ADQ1 AWAIT	
28	MHQ1 AWAIT	
29	AEQ2 AWAIT	
30	DMGQ AWAIT	
31	MHGQ AWAIT	
32	CEE1 AWAIT	
33	CEN1 AWAIT	
34	CEE	AWAIT
35	DHQ2 AWAIT	
36	Q3Y	QUEUE
37	OUT	QUEUE
38		

AVERAGE LENGTH
10.756
8.480
8.639
9.432
1.376
3.672
.000
.000
.494
.000
530.052 382.279 113.889 205.945 129.199 153.763 156.724 20.299 56.011 .071
3.072
2.101

$$
\text { . } 101
$$

2.363
1.856
2.810
.125
.264
. 198
.127
1.154
1.604
.927
3.986
4.843
1.193 .000 .000 .000 .000 .000 .000 .000 .000 .000

STANDARD DEVIATION

MAXIMUM LENGTH

$$
\begin{array}{r}
7.757 \\
8.920 \\
7.684 \\
8.751 \\
1.870 \\
7.003 \\
.000 \\
.000 \\
1.059 \\
.000
\end{array}
$$

$$
294.292
$$

$$
309.763
$$

$$
52.729
$$

$$
78.152
$$

$$
41.250
$$

$$
196.213
$$

$$
260.425
$$

$$
60.462
$$

$$
14.610
$$

$$
.324
$$

$$
5.548
$$

$$
\begin{array}{r}
3.267 \\
.386
\end{array}
$$

$$
4.402
$$

$$
2.576
$$

$$
5.213
$$

$$
.409
$$

$$
.583
$$

$$
.504
$$

$$
.811
$$

$$
1.795
$$

$$
\begin{aligned}
& 2.613 \\
& 1.650
\end{aligned}
$$

$$
1.858
$$

$$
5.479
$$

$$
\begin{aligned}
& 7.188 \\
& 7.916
\end{aligned}
$$

$$
.000
$$

$$
.000
$$

$$
.000
$$

$$
.000
$$

$$
\begin{aligned}
& .000 \\
& .000
\end{aligned}
$$

$$
.000
$$

$$
\begin{aligned}
& .000 \\
& .000
\end{aligned}
$$

20	1	79.381
20	0	91.842
20	7	102.641
20	0	92.319
9	0	94.866
20	0	26.514
0	0	.000
0	0	.000
7	0	6.357
0	0	.000
822	822	3868.994
683	683	3358.236
150	150	4555.554
250	250	4942.668
150	150	5167.974
422	422	2186.210
680	680	1382.863
250	250	487.172
62	62	5420.387
3	0	7.554
20	0	12.080
20	1	11.186
3	0	30.300
20	0	16.018
9	3	10.255
20	0	17.639
4	0	8.644
4	0	19.348
3	0	10.147
9	0	.488
11	1	7.302
17	0	10.335
12	1	9.590
10	0	9.981
20	5	10.995
20	0	36.502
87	87	82.305
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0	0	.000
0		

