"Transportation Network for Williams Technologies, Inc."

By: Erik Wikstrom and Jeff Cate

CSE 4395: SENIOR DESIGN

Instructor: Dr. Richard S. Barr

Date: May 9, 1996

TABLE OF CONTENTS

1. Project Summary

1.1. Description of the Problem

1.2. Method of Analysis

1.3. Results of the Analysis

2. Problem Background and Description

2.1. Problem Recognition

2.2. Problem Status

2.3. Project Objectives

3. Analysis of the Situation

3.1. Modeling Considerations

3.2. Assumptions Made

3.3. Cost Determination

3.4. Model Description

3.5. Illustrative Example of the Model

4. Technical Description of the Model

4.1. Cost Calculations

4.1.1. Distance Computations

4.1.2. Determination of Air and Trucking Costs

4.1.3. Determination of Mode of Shipment and Route Unit Cost

4.1.4. Determination of Fixed and Variable Cost of DC

4.2. Model Description

4.2.1. Model Formulation

4.2.2. Design of the Network model

4.2.3. GAMS I/O and Execution

5. Analysis and Managerial Interpretation

6. Conclusions and Critique

Thanks

APPENDICES

1. PROJECT SUMMARY

This section includes an overview of the transportation project we completed for Williams Technologies Incorporated. It provides brief descriptions of the problem, method of analysis, and results of the analysis.

1.1. Description of the Problem

Williams Technologies Incorporated (WTI), intends to increase customer satisfaction by decreasing time-to-market of its products, namely re-manufactured transmissions. WTI believes this goal can be accomplished by developing a more efficient shipping system, while minimizing the cost-to-market. This new system may be developed in-house or out-sourced. Therefore, WTI needs an in-house solution that can be compared to those submitted by outside sources.

1.2. Method of Analysis

A transportation model that includes all primary markets, secondary markets, distribution centers, the production plant, and all combinations of connecting routes provides the basic tool used in the analysis. The demands and costs used in the construction of the model are based on projections from the prior year. More constraints and/or assumptions may be added as needed to fine tune the model. This model provides the shipping route and distribution center combination that yields the lowest total cost, while achieving WTI's objective. The model can be modified to reflect changes in market demands, warehouse costs, and shipping costs.

1.3. Results of the Analysis

The model indicates that a single distribution center that serves all markets should be located in Charlotte, NC. This is a surprising result, which reflects the high fixed cost associated with establishing a distribution center. The fixed cost were determined through a subjective method, which might not accurately reflect actual fixed cost. If better information about fixed cost is entered into the model, the outcome might be substantially different.

2. PROBLEM BACKGROUND AND DESCRIPTION

This section includes a further development of the problem. It provides a description of the problem recognition, problem status, and the project objectives.

2.1. Problem Recognition

The present shipping system at WTI, a re-manufacturer of automobile transmissions, routes transmissions from WTI to the automobile manufacturers, which ship the transmissions to the automobile dealerships. WTI recognizes an opportunity to decrease product-to-market time by shipping its products directly to the automobile dealerships. An efficient shipping system also represents an opportunity to lower consumer prices based on a reduction of shipping cost.

2.2. Problem Status

WTI is accepting bids on a project that meets certain time-to-market requirements it has made available to interested parties. WTI has also provided these parties with product demand, weight, size, package, and other information relevant to the project. The bidding parties use this information to develop solutions that will fulfill WTI's needs, while enabling the bidding parties to make a profit on the service . In an effort to reach an optimal solution, WTI has elected to develop their own model in conjunction with our team from Southern Methodist University.

2.3. Project Objectives

The main objective is to provide maximum customer service while minimizing cost. In doing this, the model answers several logistic and cost questions. It decides in which cities to locate distribution centers. It establishes which distribution center(s) serve each market. The distance between the distribution center and market pairs determines shipment by air or truck. The model determines the cost of all active routes, distribution centers, and entire project. The model remains flexible, so changes can be made as conditions dictate.

3. Analysis of the Situation.

In this section we will describe our general approach to the problem. This includes discussion of: (1) modeling considerations, (2) assumptions, (3) cost determination, (4) model description, and (5) an illustrative example.

3.1. Modeling Considerations.

After completing initial discussions with WTI, we felt that what needed to be determined was the optimal number of distribution centers, where they should be positioned, and what markets would be served by each distribution center. The way that we chose to solve this problem was to model it using a mixed integer network. Because of the problem's network characteristics, it's solution is more easily obtained than from other modeling techniques. Binary variables were necessary in order to account for the fixed costs of setting up distribution centers, while regular network flow arcs were used to account for the flow of transmissions and the transportation costs incurred.

The first thing that we did in modeling the problem was to number all of the markets that are served by WTI. This was done by sorting the markets alphabetically and then assigning each market its own number in order. This was done to reduce the amount of data entry and to aid in spreadsheet manipulation. The markets were divided by WTI into 54 primary markets and 153 secondary markets. Primary markets represent markets with a large demand, and must be served within one day of a request for product. Secondary markets represent markets with smaller demand and must be served within two days of a request for product.

3.2. Assumptions Made

Some assumptions were made as to what markets were to be considered for distribution center sites. First, all secondary markets were eliminated because of the very small demand at each market and the relaxed time constraint of these cities. The next step was to eliminate some of the primary markets as candidates to reduce the number of variables in the problem. In the case that there were primary markets within 20 miles of each other, one of the markets was chosen at random to represent that position. If a market of this type was to make it into the optimal solution, the market with the smallest cost (real estate, utilities, etc.) of the two would be chosen. The smallest of the primary markets were eliminated due to the need for access to a major airport for facilitating air transport. After these assumptions, the set of candidates for distribution center location was reduced to 28 sites.

3.3. Cost Determination

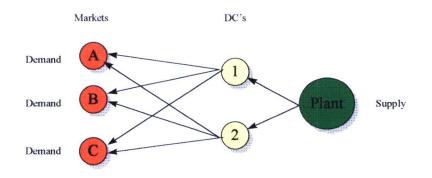
Once we determined the set of candidates, our next step was to ascertain the costs involved in the proposed distribution system. Transportation costs for the transmissions are a function of distance, mode of transport and weight, so these data were needed. Market demands were provided by WTI, based on projections from historical data. Because of the extremely large number of possible routes(28*207=5796), we decided on using straight line distance rather than road miles. These distances were calculated by obtaining the latitude and longitude of each city, then using geometry to determine distance (see calculations in next section.) Whether a city was to be served by truck or air freight was computed by using its distance from the distribution center and whether it required one-day service or two (see calc.) The cost of transportation over each route was derived from the cost of shipping one unit one mile and then multiplying by the length of the route (see calc.)

The cost of shipping transmissions from the plant in Charleston, SC to each of the distribution centers was calculated in the same manner as the other route costs. An assumption was made that the demand in Charleston would be supplied directly from the plant. For this reason Charleston's demand was set to zero in the model, effectively eliminating this demand from consideration.

Fixed and variable costs of placing a distribution center in a candidate market were difficult to obtain because of the lack of historical data. These costs were ascertained by

computing total costs for setting up a central distribution center that could handle all 24,000 units and the total costs for opening a minimal distribution center. The cost for a minimal distribution center was used as the fixed cost and then the difference between that cost and the central distribution center's cost was spread out over the 24,000 units to obtain the unit variable cost (see calc.) These fixed and variable costs were determined using costs in Dallas, TX. The costs were then adjusted using a cost of living index published by the Chamber of Commerce Association.

3.4. Model Description


The model includes three sets of variables, X(DC,M), S(DC), and Y(DC). X(DC,M)represents the amount of flow from distribution center candidate DC to market M. Variable S(DC) represents the flow from the plant in Charleston, SC to distribution center candidate DC. The variables Y(DC) are binary (0,1) variables that are equal to 1 if a distribution center is to be placed in candidate DC and equal to 0 otherwise.

The costs that are included in the model are accounted for by the parameters COST(DC,M), F(DC), and DCCOST(DC). COST(DC,M) are the costs associated with moving one transmission from distribution center DC to market M. The parameters F(DC) are the fixed costs of placing a distribution center in candidate DC, and the parameters DCCOST(DC) include both the transportation cost to and the variable cost at distribution center DC.

The focus of the model was to minimize the total costs. These were determined to be the sum of: the fixed costs, the variable costs at each distribution center, and the transportation costs. Our constraints were that: the demand at each market is met and is met within the prescribed time frame, the supply at each distribution center is equal to the demand that it is serving, and a distribution center cannot serve any demand unless a fixed cost is incurred. The formulation for the model is included in the next section.

3.5. Illustrative Example of the Model

Following is an example of a comparable model on a smaller scale:

NETWORK FLOW DIAGRAM

In this example there are two possible distribution center sites serving three markets. The fixed cost of establishing a distribution center at each location is \$1,000. The costs associated with transportation and the demands of each of the markets are included in the following tables:

Table 3.5.a Transportation Costs Per Unit

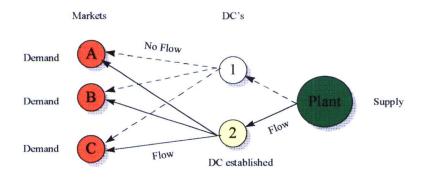

		DC's				
			1		2	
	A	\$	4.50	\$	9.00	
Markets	В	\$	7.50	\$	4.00	
	С	\$	9.50	\$	2.50	

Table 3.5.b Demand

Market	Demand
A	50
В	30
С	60

When this model is solved, the optimal solution establishes only one distribution center at site two, which serves all three markets. The solution network is shown below:

NETWORK FLOW DIAGRAM

4. Technical Description of the Model

This section includes the technical information regarding the model formulation and calculations that we made. This information is divided into: (1) a breakdown of cost calculations, and (2) a model description.

4.1. Cost Calculations

4.1.1. Distance Computations

To calculate the large number of route distances, we went online to find the latitude and longitude of each market city. These figures were available at *http://www.mit.edu:8001/geo*. We placed the latitude and longitude figures into a

Microsoft Excel spreadsheet and derived the following geometric formulae to convert them to Cartesian coordinates:

. .

$$X = \cos(Lat)*\cos(Long)$$

$$Y = \sin(Lat)$$

$$Z = \cos(Lat)*\sin(Long)$$

From the Cartesian coordinates the straight-line distances between the cities were computed by the distance formula:

$$d = ((X_2 - X_1)^2 + (Y_2 - Y_1)^2 + (Z_2 - Z_1)^2)^{1/2}$$

Once this distance was obtained it was converted to the distance along the surface of the earth by the conversion shown below:

Mean Earth Radius = 3958.832412

$$D = 2 * \tan^{-1} (d/2/(1 - (d/2)^2)^{1/2}) * 3958.832412$$

These distances were verified by checking the computed values against values obtained from an air mileage table for several of the routes. The computed values were within 2-3 miles of the tabulated values, which confirms our confidence in the use of these numbers.

4.1.2. Determination of Air and Trucking Costs

The unit costs per mile for shipment by air and by truck were calculated from a random sample of historical data as is shown in the table below:

Table 4.1.2.a Air and Truck Transportation Costs/Unit/Mile

AIR	Units	Miles	Unit Cost	unit*Miles	unit cost/mile
	214	470	232.05	100580	0.002307119
	93	512	. 192.78	47616	0.004048639
	218	566	192.78	123388	0.001562389
	628	603	84.81	378684	0.00022396
	861	644	192.78	554484	0.000347675
	464	781	278.46	362384	0.000768411
	501	783	278.46	392283	0.000709845
	39	820	239.19	31980	0.007479362
	130	905	278.46	117650	0.002366851
	6	905	239.19	5430	0.044049724
	18	913	239.19	16434	0.014554582
	16	961	239.19	15376	0.015556061
	115	971	278.46	111665	0.002493709
	31	990	239.19	30690	0.007793744

14 998 239.19 13972 0.017119238 11 1085 239.19 11935 0.020041056 25 1086 239.19 27150 0.008809945 14 1099 239.19 15386 0.015545951 17 1125 239.19 19125 0.012506667 21 1163 239.19 24423 0.009793637 AVG Cost/unit/mil 78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 54005 0.014464385 70 120 76.2 8400 0.0087924 65 194 7.81 12610 0.006199841 46 200 77.87 200 0.00846413 10 201							
25 1086 239.19 27150 0.008809945 14 1099 239.19 15386 0.015545951 17 1125 239.19 19125 0.00236667 21 1163 239.19 24423 0.009793637 AVG Cost/unit/mil 78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 22330 0.0035145917 52 176 79.89 9152 0.00679924 65 194 78.18 12610 0.00619841 46 200 77.87 9200 0.00846413 10 201		14	998	239.19	13972	0.017119238]
14 1099 239.19 15386 0.015545951 17 1125 239.19 19125 0.012506667 21 1163 239.19 24423 0.009793637 AVG Cost/unit/mil 78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 22330 0.003516794 9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.00846413 10 201 79.89 2010 0.008745269 52 211		11	1085	239.19	11935	0.020041056	5
17 1125 239.19 19125 0.012506667 21 1163 239.19 24423 0.009793637 AVG Cost/unit/mil 78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 22330 0.003516794 9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.008199841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 477 230		25	1086	239.19	27150	0.008809945	
21 1163 239.19 24423 0.009793637 AVG Cost/unit/mil 78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 2230 0.003516794 9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.006199841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 17 232 <td< td=""><td></td><td>14</td><td>1099</td><td>239.19</td><td>15386</td><td>0.015545951</td><td>1</td></td<>		14	1099	239.19	15386	0.015545951	1
78 1289 239.19 100542 0.002379006 0.0090694 TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 22330 0.003516794 9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.00819841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 100 237 75.54 23700		17	1125	239.19	19125	0.012506667	7
TRUCK Units Miles Unit Cost unit*Miles unit cost/mile 19 77 76.53 1463 0.052310321 33 111 77.87 3663 0.021258531 47 115 78.18 5405 0.014464385 70 120 76.2 8400 0.009071429 154 145 78.53 22330 0.003516794 9 166 76.8 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.006199841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 17 232 85.64 3944 0.021713996 100 237 75.54 23700 0.003187342 <		21	1163	239.19	24423	0.009793637	AVG Cost/unit/mile
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		78	1289	239.19	100542	0.002379006	0.009069408
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	TRUCK	Units	Miles	Unit Cost	unit*Miles	unit cost/mile	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		19	77	76.53	1463	0.052310321]
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		33	111	77.87	3663	0.021258531	1
154 145 78.53 22330 0.003516794 9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.006199841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 17 232 85.64 3944 0.021713996 100 237 75.54 23700 0.003187342 154 243 192.78 37422 0.005151515 29 243 74.55 7047 0.01057897 39 254 85.34 9906 0.008614981 18 256 78.12 4608 0.016953125 51 278 74.55 14178 0.005258146		47	115	78.18	5405	0.014464385	
9 166 76.88 1494 0.05145917 52 176 79.89 9152 0.00872924 65 194 78.18 12610 0.006199841 46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 17 232 85.64 3944 0.021713996 100 237 75.54 23700 0.003187342 154 243 192.78 37422 0.005151515 29 243 74.55 7047 0.01057897 39 254 85.34 9906 0.008614981 18 256 78.12 4608 0.016953125 51 278 74.55 14178 0.005258146		70	120	76.2	8400	0.009071429	
5217679.8991520.008729246519478.18126100.0061998414620077.8792000.008464131020179.8920100.0397462695221174.55109720.0067945684723079.22108100.00732841723285.6439440.02171399610023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		154	145	78.53	22330	0.003516794	
6519478.18126100.0061998414620077.8792000.008464131020179.8920100.0397462695221174.55109720.0067945684723079.22108100.00732841723285.6439440.02171399610023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		9	166	76.88	1494	0.05145917	
46 200 77.87 9200 0.00846413 10 201 79.89 2010 0.039746269 52 211 74.55 10972 0.006794568 47 230 79.22 10810 0.0073284 17 232 85.64 3944 0.021713996 100 237 75.54 23700 0.003187342 154 243 192.78 37422 0.005151515 29 243 74.55 7047 0.01057897 39 254 85.34 9906 0.008614981 18 256 78.12 4608 0.016953125 51 278 74.55 14178 0.005258146		52	176	79.89	9152	0.00872924	1
1020179.8920100.0397462695221174.55109720.0067945684723079.22108100.00732841723285.6439440.02171399610023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		65	194	7.8.18	12610	0.006199841	1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		46	200	77.87	9200	0.00846413	
4723079.22108100.00732841723285.6439440.02171399610023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		10	201	79.89	2010	0.039746269	
1723285.6439440.02171399610023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		52	211	74.55	10972	0.006794568	
10023775.54237000.003187342154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		47	230	79.22	10810	0.0073284]
154243192.78374220.0051515152924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		17	232	85.64	3944	0.021713996].
2924374.5570470.010578973925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		100	237	75.54	23700	0.003187342]
3925485.3499060.0086149811825678.1246080.0169531255127874.55141780.005258146		154	243	192.78	37422	0.005151515	
18 256 78.12 4608 0.016953125 51 278 74.55 14178 0.005258146		29	243	74.55	7047	0.01057897	
51 278 74.55 14178 0.005258146		39	254	85.34	9906	0.008614981	
		18	256	78.12	4608	0.016953125	
16 635 207.06 10160 0.020379921				74.55	14178	0.005258146	
			635	207.06	10160	0.020379921	
5 664 70.43 3320 0.021213855			664	70.43	3320	0.021213855	
197 691 207.06 136127 0.00152108 AVG Cost/unit/mile		197	691	207.06	136127	0.00152108	AVG Cost/unit/mile
4 697 207.06 2788 0.074268293 0.01818192		4	697	207.06	2788	0.074268293	0.018181926

4.1.3. Determination of Mode of Shipment and Route Unit Cost

Per the requirements of WTI, primary markets within 400 miles and secondary markets within 750 miles of a distribution center are to be serviced by truck. All markets beyond these respective ranges are to be serviced by air. These requirements ensure that market demand is met within an acceptable time frame. We used a nested IF statement to evaluate whether a market was primary or secondary and then to assign the proper mode of shipment based upon the route distance. The route distance was then multiplied by the appropriate unit cost/mile to determine the route cost per unit. A section of the Excel spreadsheet is included.

Origin City	St	Market #	Dest. City	St	distance	Day Requirement	Truck	Air	Route Unit Cost
Albany	NY	1	Abilene	TX	1572.9	2	0	1	28.59846085
Albany	NY	2	Albany	NY	0	1	1	0	0
Albany	NY	3	Albany	GA	954.8496	2	0	· 1	17.3610758
Albany	NY	4	Albuquerque	NM	1832.527	1	0	1	33.3190001
Albany	NY	5	Alexandria	LA	1290.645	2	0	1	23.46650081
Albany	NY	6	Alpena	MI	509.0317	2	1	0	4.616408647
Albany	NY	· 7	Amarillo	TX	1584.847	2	0	1	28.81569607
Albany	NY	8	Anchorage	AK	3265.89	2	0	1	59.38041797
Albany	NY	9	Ardmore	ОК	1388.995	2	0	1	25.25470033

Table 4.1.3.a Mode Shipment Determination and Route Unit Cost

4.1.4. Determination of Fixed and Variable Cost of DC

Table 4.1.4.a Fixed and Variable Costs of DC

COST/SQ FT	3
COST PERSON	25000

MINIMAL WAREHOUSE INFO

Fixed Costs	QTY	COST	
OFFICE SPACE	1000		3000
WAREHOUSE SPACE	5000		15000
PERSONNEL	5		125000
INSURANCE	12 mos.		6000
EQUIPT (forklift, computers, etc.)	12 mos.		15000
UTILITIES	12 mos.		6000
			170000

MAXIMUM WAREHOUSE INFO

OFFICE SPACE	5000	15000
WAREHOUSE SPACE	20000	60000
PERSONNEL	15	375000
INSURANCE	12 mos.	27500
EQUIPT (forklift, computers, etc.)	12.mos.	30000
UTILITIES	12 mos.	12000
		519500

Variable Costs

OFFICE SPACE	0.17	0.51
WAREHOUSE SPACE	0.625	1.875
PERSONNEL	0.00042	10.5
INSURANCE	12 mos.	0.899
EQUIPT (forklift, computers, etc.)	12 mos.	0.625
UTILITIES	12 mos.	0.25
· · · · · · · · · · · · · · · · · · ·		14.659

4.2. Model Description

4.2.1. Model Formulation

The model formulation is as follows:

Parameters

COST(DC,M)	:	cost of transporting one unit from distribution center DC to
		market m
DCCOST(DC)	:	unit cost at distribution center DC including transportation
		to distribution center DC
D(M)	:	demand at market M
F(DC)	:	fixed cost of placing a distribution center at site DC
TD = 24007	:	total demand
Variables		

Variables

I

ľ

X(DC,M)	:	flow from distribution center DC to market M
S(DC)	:	flow from plant in Charleston to distribution center DC

Y(DC) :	0,1 variable; 1 if a distribution center is placed at site DC
---------	---

Equations

minimize	SUM((DC,M),COST(DC,M)*X(DC,M)) +	SUM(DC,DCCOST(DC)*S(DC))
	+ SUM(DC,F(DC)*Y(DC)	[objective function]

subject to

SUM(DC,X(DC,M)) = D(M)	for all M	[demand constraint]
S(DC) = SUM(M,X(DC,M))	for all DC	[supply constraint]
$S(DC) \leq TD*Y(DC)$	for all DC	[fixed costs turned on/off]
$X(DC,M), S(DC) \ge 0$	for DC, M	[non-negativity]

4.2.2 Design of the Network Model

The problem can be represented by a mixed integer network, with 5,824 flow arcs, 28 binary (1,0) arcs, and 236 nodes. See appendix B for illustration of the network.

4.2.3 GAMS I/O and Execution

The model that is described above was loaded onto titan cis.smu.edu and run using GAMS, a high level language for formulating models with algebraic statements. GAMS is an interface for a variety of algorithmic solvers. For this mixed integer program, GAMS used CPLEX to solve for an optimal solution. The input files and GAMS formulation can be found in appendix C.

5. Analysis and Managerial Interpretation

The model's solution indicates that a single distribution center should be established in Charlotte, North Carolina. This distribution center will serve all markets in the model. Output from GAMS shows all flow going from the plant to a distribution center in Charlotte, and from there out to all markets. The only binary variable with a value of one is Y(36), the fixed cost variable associated with Charlotte. Refer to Appendix D for GAMS output.

6. Conclusions and Critique

After close examination of the results of the model output, we feel that the fixed cost data that was used might not accurately reflect true costs. While most of the other data that was used could be verified, our fixed cost data was quite subjective. Another possible source for error in the model is that transportation cost from the plant to the distribution centers did not account for the fact that bulk shipments would have a lower unit transportation cost. We feel that if more accurate data were available, an alternate solution would probably be found to be optimal. We therefore recommend that management pursue accurate, verifiable cost data. This data could easily be entered into the model and the model resolved.

We would like to thank the following people for their help throughout the duration of this project:

Dr. Richard S. Barr, Southern Methodist University Chris Emery, Director of Marketing, Williams Technologies, INC. Mike Champion, Return Products Management David Welch, Systems Support, Southern Methodist University Mike McWhorter, Bolanz & Miller Realtors, INC. John Fargo, Lone Star Fork Lift

APPENDICES

Z

Ľ

APPENDIX A: Coordinate Conversion Data

Erik Wikstrom

From: Erik Scott Wikstrom Sent: Friday, May 03, 1996 4:59 AM To: Erik Wikstrom Subject: Lat-longs (fwd) x = (mean radius of the earth)(longitude in radians)y = (mean radius of the earth)(latitude in radians)MEAN EARTH RADIUS = 6370949.0 /* Mean earth radius meters */ MI_TO_M(m) ((m) * 1609.3) /* statute miles to meters */ /*_____ ANGULAR CONSTANTS AND CONVERSIONS */ ------#define Pl 3.14159265358979323846 #define TWOPI 6.28318530717958647692 #define FOURPI 12.56637061435917295384 #define PIOVER2 1.57079632679489661923 #define PIOVER4 0.78539816339744830962 LINEAR DISTANCE CONSTANTS AND CONVERSIONS MI -- STATUTE MILES NMI -- NAUTICAL MILES M -- METERS FT -- FEET **KM -- KILOMETERS** .-*/ #define MI_TO_NMI(m) ((m) * 0.8683973) /* statute miles to nautical miles */ #define NMI_TO_MI(n) ((n) * 1.1515466) /* nautical miles to statute miles */ #define FT TO M(f) ((f) * 0.304800) /* feet to meters */ #define M_TO_FT(m) ((m) * 3.280839) /* meters to feet */ #define MI_TO_KM(m) ((m) * 1.6093) /* statute miles to kilomters */ #define MI_TO_M(m) ((m) * 1609.3) /* statute miles to meters */ #define KM_TO_MI(k) ((k) * 0.6214) /* kilomters to status miles #define M_TO_MI(m) ((m) * 0.0006214) /* meters to nautical miles */ #define NMI_TO_KM(n) ((n) * 1.853184) /* nautical miles to kilometers */ #define NMI_TO_M(n) ((n) * 1853.184) /* nautical miles to meters */ #define KM_TO_NMI(k) ((k) * 0.539622) /* kilometers to nautical miles */ #define M_TO_NMI(m) ((m) * 0.000539622) /* meters to nautical miles */

ANGULAR CONSTANTS AND CONVERSIONS

*/

#define RAD_TO_DEG(r) ((r) * 57.29577951308232300) /*radians to degrees*/ #define DEG_TO_RAD(d) ((d) * 0.017453292519943295) /*degrees to radians*/

/* Degrees CW from north to deg. CCW from east */ #define COMP_TO_GRAPH_DEG(d) (((d)<90.0) ? (-(d) + 90.0):(360.0 - (d) + 90.0))

-*/

/* Degrees CCW from east to deg. CW from north*/ #define GRAPHTOCOMPDEG(d) COMPTOGRAPHDEG(d)

PLANETARY CONSTANTS AND CONVERSIONS

#define POLAR_RADIUS 6356912.0 /* pole to pole distance meters */ #define EARTH_RADIUS 6371220.0 /* equatorial distance meters */ #define MEAN_EARTH_RADIUS 6370949.0 /* Mean earth radius meters */

/* Latitude degrees to arc seconds */

#define DEG_TO_ARCS(I) ((I) * 3600)

/* Meters to latitude degrees

#define M_TO_LAT(m) ((m) * 360.0/(MEAN_EARTH_RADIUS*TWOPI))

/*

*/

Latitude degrees to meters */

#define LAT_TO_M(I) ((I) * (MEAN_EARTH_RADIUS*TWOPI)/360.0)

/*

Meters to longitude degrees at a given latitude

*/ #define M_TO_LNG(m,lat) \

((m) * (360.0/(MEAN_EARTH_RADIUS*cos(DEG_TO_RAD(lat))*TWOPI)))

/*

Longitude deg. to meters at a given latitude

*/ #define LNG_TO_M(Ing,Iat) \ (((Ing) * MEAN_EARTH_RADIUS*cos(DEG_TO_RAD(Iat))*TWOPI)/360.0)

Approximation for earth curvature

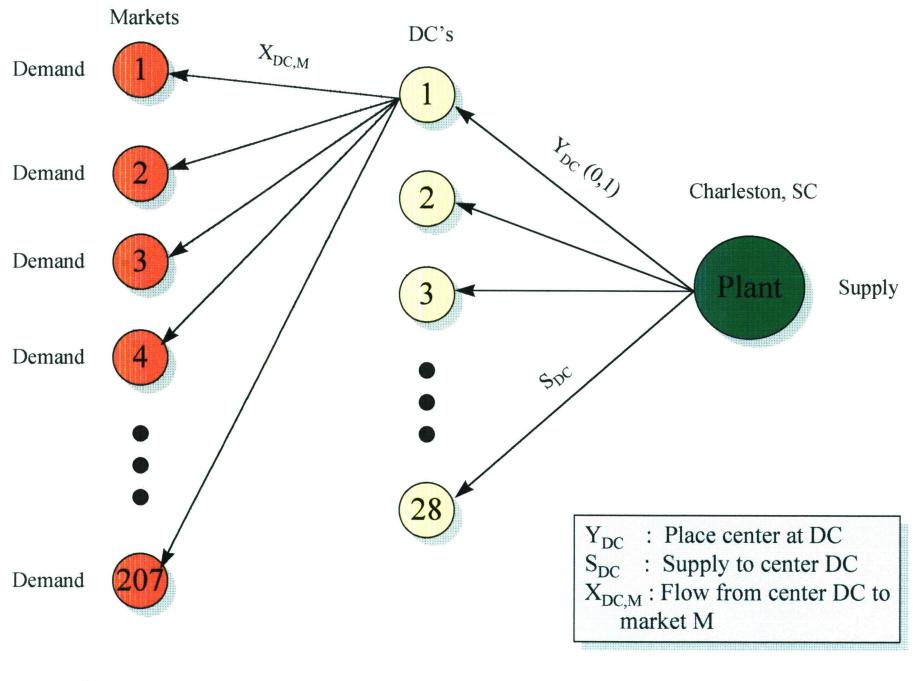
Page 2

Sheet9

Sample From Coordinate Conversion Spreadsheet

Market # Dest. C	ity ST	LAT	SEC	LONG	SEC	DEC. LAT	DEC. LON	RAD LAT.	RAD LONC	Х	Y
1 Abiline	ТХ	32	36	ģ	9 43	32.600	99.71667	0.568977	1.740384	-0.14219	0.538771
2 Albany	NY	42	39	. 7	3 45	42.650	73.75	0.744383	1.28718	0.205816	0.677518
3 Albany	GA	31	34	8	49	31.567	84.15	0.550942	1.468695	0.086843	0.52349
4 Albuqu	erqı NM	35	5	10	6 39	35.083	106.65	0.61232	1.861394	-0.23447	0.574767
5 Alexan	dria LA	31	18	ç	2 26	31.300	92.43333	0.546288	1.613266	-0.03628	0.519519
6 Alpena	MI	45	3	8	3 25	45.050	83.41667	0.786271	1.455895	0.080998	0.707724
7 Amarill	o TX	35	13	10	1 49	35.217	101.8167	0.614647	1.777036	-0.1673	0.57667
8 Anchor	age AK	61	13	14	9 54	61.217	149.9	1.068432	2.616249	-0.41657	0.876447
9 Ardmoi	e OK	34	10	ę	78	34.167	97.13333	0.596321	1.695296	-0.10275	0.561602
10 Atlanta	GA	33	44	3	4 23	33.733	84.38333	0.588758	1.472767	0.081394	0.555328
11 August	a ME	44	18	e	9 46	44.300	69.76667	0.773181	1.217658	0.247518	0.698415
12 Austin	ТΧ	30	16	ç	7 44	30.267	97.73333	0.528253	1.705768	-0.11622	0.504025
13 Bakers	fielc CA	35	22	11	91	35.367	119.0167	0.617265	2.077233	-0.39555	0.578807
14 Baltimo		39	17	7	6 36	39.283	76.6	0.685624	1.336922	0.179379	0.633156
15 Bangor	ME	44	48	e	8 46	44.800	68.76667	0.781908	1.200205	0.256983	0.704634
16 Baton F	RoultA	30	27	ç	19	30.450	91.15	0.531453	1.590868	-0.0173	0.506786
17 Beaum	ont TX	30	5	ę	4 6	30.083	94.1	0.525053	1.642355	-0.06187	0.501259
18 Bend	OR	44	3	12	1 18 🔪	44.050	121.3	0.768818	2.117084	-0.3734	0.695286
19 Billings	MT	45	47	10	8 30	45.783	108.5			-0.22128	0.716708

Page 1


Sheet9

.-

Ζ 0.830367 0.706123 0.847594 0.784007 0.853688 0.701831 0.799664 0.241477 0.821003 0.827639 0.671529 0.855834 0.713106 0.752952 0.6614 0.861898 0.863083 0.614128 0.661336

APPENDIX B: Network Diagram

NETWORK FLOW DIAGRAM

APPENDIX C: GAMS Data

ſ

Ī

SET M Markets /1*207/ DC(m) Distribution Centers /2, 10, 22, 26, 36, 40, 47, 51, 55, 57, 86, 99 \$INCLUDE "demand.inc" SINCLUDE "dccost.inc" SINCLUDE "fixed.inc" \$INCLUDE "cost.inc" POSITIVE VARIABLES X (DC, M) Flow from DC dc to market m S(DC) Flow from Charleston to DC dc; VARIABLE \mathbf{Z} Total cost; BINARY VARIABLE Y(DC) Place a distribution center in DC dc; EQUATIONS TCOST Total cost for project DEMAND(M) Demand for each market is met DISTCON(DC) Supply at each distribution center FIX(DC) Fixed costs at each distribution center; TCOST .. Z = E = SUM((DC, M), COST(DC, M) * X(DC, M)) + SUM(DC, F(DC) * Y(DC))+ SUM(DC, S(DC) * DCCOST(DC));DEMAND(M) .. SUM(DC, X(DC, M)) = E = D(M); DISTCON(DC) .. S(DC) = E = SUM(M, X(DC, M));FIX(DC) ... S(DC) = L = 1000000 * Y(DC);

MODEL TRANSPORT A transportation network /ALL/; SOLVE TRANSPORT USING MIP MINIMIZING Z;

Parameters	d(m) demand at	t market	m		
/ 1 2	16				
2	140				
3	9				
4	112				
4 5 6	3				
6	1				
- 7	25				
8	73				
9	8				
7 8 9 10	384				
" 11	24				
🛉 12	130				
13	16				
- 14	106				
1 5	23				
16	32				
1 7	18				
	4				
19	11				
20	16				
21	14				
22	154				
23	6				
24	13				
25	42				
26	844				
27	4				
28	18				
29	17				
30	132				
31	68				
32	9				

1	28.59846085
2	0
3	17.3610758
4	33.3190001
5	23.46650081
6	4.616408647
7 8	28.81569607 59.38041797
8 9	25.25470033
10	15.32816083
11	2.085274687
12	28.63822869
13	44.57731674
14	2.503408142
15	2.627481911
16	23.22348445
17	25.82577363
18	42.8638575
19	31.28481743
20 21	21.63540006 1.064068533
22	17.2306553
23	24.6588609
24	4.919751849
25	38.51282956
26	1.261407892
27	14.13636379
28	5.564454299
29	32.19673669
30	2.357924809
31	1.165425639
32 33	29.83596044
34	16.59936295 13.83664032
35	4.619484059
36	11.61448926
37	3.673608814
38	14.78378261
39	28.95191283
40	12.95021632
41	11.14677518
42	3.766451065
43	7.539510051
44	29.78431398
45	6.490119931

Parameters dccost(dc) unit cost of throughput at dc as well as trans to dc

/	2 10	22.77848566 16.95804185
	22	18.26103001
	26	24.7655862
	36	16.22223752
	40	22.845774
_	47	19.45057544
	51	25.14771809
	55	28.59272362
	57	21.63275805
Ĺ	86	22.84521222
	99	22.66225987
-	112	38.52991377
	125	24.69901063
	129	20.18298223
	130	19.96948686
_	131	26.0079526
	136	17.32132465
	142	21.14096315
	143	31.11037199
	144	19.99541739
	146	23.44270125
_	160	39.70245357
	163	30.62585201
	167	45.55771024
	171	40.453325
_	181	20.79733797
	197	18.88223526/;

	Parameter				eđ	cost	of	building	j a	distribution	center		
_	_/2		999.5										
į.	10	161	666.3	311									
i.	22	168:	166.2	2967									
	26	2309	999.4	918									
	36	1653	332.9	696									
	40	2026	666,2	208									
	47	171:	166.2	901									
_	51	1699	999.6	526									
	55	1774	199.6	095									
	57		332.9										
	j 86		332.8										
	99		332.9										
	112	2034	199.5	523									
	125		199.6										
	129		332.9										
	130		L66.3										
	131		332.6										
_	136		566.3										
	142		999.5										
	143		32.9			ı							
	144		332.9										
	146		332.9										
			999.5										
			99.6									•	
			.66.1										
			99.5			-							
			66.3										
_		1749	99.6	15/;									

.

APPENDIX D: GAMS Model.lst Output

MODEL STATISTICS

BLOCKS OF EQUATIONS4SINGLE EQUATIONS264BLOCKS OF VARIABLES4SINGLE VARIABLES5853NON ZERO ELEMENTS17501DISCRETE VARIABLES28

Cplex 4.0, GAMS Link 8-6, DEC AXP/OSF Solution satisfies tolerances.

.

MIP Solution : 956498.369383 (6067 iterations, 158 nodes) Final LP : 956498.369383 (0 iterations)

Best integer solution possible : 934461.123924 Relative gap : 0.0235828

---- EQU FIX Fixed costs at each distribution center

LOWER LEVEL UPPER MARGINAL

2	-INF			-8.651
10	-INF		•	-9.899
22	-INF	•		-11.218
26	-INF	•		-7.226
36	-INF	-9.760E	+5	
40	-INF			-10.408
47	-INF	•		-8,810
51	-INF	•		-13.054
55	-INF	•		-17.458
57	-INF			-8 .798
86	-INF		•	-8.446
99	-INF			-14.825
112	-INF			-16.739
125	-INF			-14.172
129	-INF			-8.188
130	-INF	•		-13.046
131	-INF			-4.392
136	-INF			-8.939
142	-INF	•		-8,560
136	-INF			-8 .939
142	-INF			-8.560
143	-INF			-21.038
144	-INF			-8.337
146	-INF	•		-34.331
160	-INF			-17.623
163	-INF		•	-22.784

167	-INF		-12.440
171	-INF		-17.243
181	-INF		-10.721
197	-INF		-9.739

FLOW FROM DC TO MARKET

FLOW	FROM	DUIDI	MARKET	
36.1	•	16.000	+INF	
36.2		140.000	+INF	
36.3		9.000	+INF	
36.4		112.000	+INF	
36.5		3.000	+INF	
36.6		1.000	+INF	
36.7		25.000	+INF	
36.8		73.000	+INF	
36.9		8.000	+INF	
36 .10		384.000	+INF	
36 .11		24.000	+INF	•
36 .12	•	130.000	+INF	
36.13	•	16.000	+INF	
36.14		106.000	+INF	
36.13		16.000	+INF	
36.14	•	106.000	+INF	
36 .15		23.000	+INF	
36.16		32.000	+INF	
36 .17		18.000	+INF	
36.18	•	4.000	+INF	
36.19	•	11.000	+INF	
36 .20		16.000	+INF	
36 .21		14.000	+INF	
36 .22		154.000	+INF	
36 .23		6.000	+INF	
36.24	•	13.000	+INF	
36 .25		42.000	+INF	
36 .26		844.000	+INF	
36.27		4.000	+INF	•
36.28		18.000	+INF	
36 .29		17.000	+INF	
36 .30	•	132.000	+INF	
36 .31		68.000	+INF	
36 .30		132.000	+INF	
36 .31		68.000	+INF	
36.32	•	9.000	+INF	
36.33		30.000	+INF	
36.34		. +	INF 17.	830
36.35		26.000	+INF	•
36.36		100.000	+INF	•
36.37		9.000	+INF	
36.38		47.000	+INF	
36 .39	•	9.000	+INF	
36 .40	· . (659.000	+INF	

36.41		100.000	+INF
36.42		7.000	+INF
36 .43		270.000	
36.44	•	107.000	
36.45	•	52.000	+INF
	•		
36.46	٠	17.000	+INF
36.47	•	167.000	
36 .48	•	33.000	+INF
36.47	•	167.000	+INF
36 .48	•	33.000	+INF
36 .49		16.000	+INF
36.50		31.000	+INF
36.51	•	464.000	
	•		
36.52	•	12.000	+INF
36.53	•	29.000	+INF
36.54	٠	22,000	+INF
36.55	•	644.000	+INF
36.56		22.000	+INF
36.57		174.000	+INF
36.58		46.000	+INF
36.59	•	8.000	+INF
36 .60	•	18.000	+INF
	•		
36.61	·	78.000	+INF
36.62	•	17.000	+INF
36 .63	•	18.000	+INF
36 .64		88.000	+INF
36.65		12.000	+INF
36.66		7.000	+INF
36.67	•	13.000	+INF
36.68	·	25.000	+INF
	•		
36.69	·	10.000	+INF
36.70	•	5.000	+INF
36 .71	•	22.000	+INF
36 .72		56.000	+INF
36.73		20.000	+INF
36.72		56,000	+INF
36.73	•	20.000	+INF
36.75	•		+INF
	•	10.000	
36.75	٠	36.000	+INF
36.76	•	30.000	+INF
36 .77		52.000	+INF
36 .78		8.000	+INF
36.79		23.000	+INF
36.80	•	66.000	+INF
	•		
36.81	•	70.000	+INF
36.82	•	47.000	+INF
36 .83	•	12.000	+INF
36.84		84.000	+INF
36.85		13.000	+INF
36.86		457.000	+INF
36.87	•	11.000	+INF
	•		
36.88	·	16.000	+INF
36.89	•	501.000	+INF
36 .90	•	52.000	+INF

,

•

36.89	. 501.000	+INF			
36 .90	. 52.000	+INF	•		
36 .91	. 27.000	+INF			
36 .92	. 91.000	+INF			
36.93	. 6.000	+INF	•		
36.94	. 50.000	+INF			
36.95	. 197.000	+INF			
36.96	. 76.000	+INF			
36.97	. 2.000	+INF			
36.98	. 17.000	+INF	•		
36.99	. 147.000	+INF	•		
36.100	. 65.000	+INF	•		
36.101	. 14.000	+INF	•		
36.102	. 38.000	+INF	•		
36.102	. 2.000	+INF	•		
36.104	. 21.000	+INF	•		
36.105	. 16.000	+INF	•		
36 .105	. 14.000	+INF	•		
36 .107	. 83.000	+INF	•		
36.107	. 14.000	+INF +INF	•		
36.100	. 83.000		•		
		+INF	•		
36.108	. 63.000	+INF	•		
36.109	. 2.000	+INF	•		
36.110	. 26.000	+INF	•		
36.111	. 26.000	+INF	٠		
36.112	. 1880.000	+INF	•		
36.113	. 53.000	+INF	•		
36.114	. 14.000	+INF	•		
36.115	. 19.000	+INF	•		
36.116	. 41.000	+INF	•		
36 .117	. 5.000	+INF	•		
36 .118	. 5.000	+INF	•		
36 .119	. 25.000	+INF	•		
36 .120	. 173.000	+INF	•		
36 .121	. 5.000	+INF	•		
36 .122	. 861.000	+INF			
36 .123	. 21.000	+INF			
36.124	. 95.000	+INF	•		
36 .125	. 279.000	+INF	•		
36.126	. 14.000	+INF			
36.127	. 114.000	+INF			
36.128	. 10.000	+INF			
36.129	. 154.000	+INF			
36.130	. 214.000	+INF			
36.131	. 3387.000	+INF			
36.132	. 65.000	+INF			
36.131	. 3387.000	+INF	•		
36.132	. 65.000	+INF	•		
36.132			185		
36 .134	93,000	+INF			
36.135	62.000	+INF	•.		
36.135	. 249.000	+INF	•		
36.137	. 11.000	+INF	•		
36.138	. 9.000	+INF	•		
50.150	. 7.000	INE.	•		

-

,

-

36 .139	•	17.000	+INF	•		
36 .140	•	4.000	+INF	•		
36 .141		11.000	+INF	•		
36 .142		1207.000	+INF	•		
36 .143		409.000	+INF			
36 .144		200.000	+INF	•		
36 .145		315.000	+INF			
36.146		121.000	+INF			
36 .147		1.000	+INF			
36.148		249.000	+INF			
36 .149		. 4	INF 2	2.239		
36 .150		139.000	+INF			
36.151	•	9.000	+INF			
36 .152		12.000	+INF			
36.153		54.000	+INF			
36 .154		93,000	+INF			
36.155		40.000	+INF			
36.156		89.000	+INF	-		
36.157	•	15.000	+INF	•		
36.158	•	8.000	+INF	•		
36.159	•	4.000	+INF	•		
36 .160	•	174.000	+INF	•		
36.161	•	58.000	+INF	•		
36 .162	•	2.000	+INF	•		
36.163	•	253.000	+INF	•		
36.164	•	11.000	+INF	•		
36.165	•			•		
	•	115.000	+INF	•		
36.166	•	358.000	+INF	•		
36.165	•	115.000	+INF	•		
36.166	•	358.000	+INF	•		
36.167	•	652.000	+INF	•		
36.168	•	28.000	+INF	•		
36.169	•	29.000	+INF	÷		
36.170	•	53.000	+INF	•		
36 .171	•	624.000	+INF	• `		
36.172	•	47.000	+INF	•		
36.173	•	37.000	+INF	•		
36 .174	•	1.000	+INF	•		
36 .173		37.000	+INF	•		
36 .174		1.000	+INF	•		
36 .175	•	25.000	+INF	•		
36 .176		15.000	+INF			
36 .177		69.000	+INF	•		
36.178		106.000	+INF	•		
36.179		28.000	+INF			
36.180		3.000	+INF			
36 .181		103.000	+INF			
36.182		118.000	+INF			
36.183		39.000	+INF			
36.184		389.000	+INF			
36.185	•	4.000	+INF			
36.186	-	28.000	+INF	•		
36.187	•	13.000	+INF	•		
36.188	•	2.000	+INF	•		
50,100	·	<i></i>		•		

,

.

	93.000	+INF	•
	54.000	+INF	
	10.000	+INF	•
	54.000	+INF	
•	10.000	+INF	•
	23.000	+INF	•
	41.000	+INF	
	25.000	+INF	
	6.000	+INF	
	39.000	+INF	•
	628.000	+INF	· ·
	14.000	+INF	
	20.000	+INF	
	218.000	+INF	· .
÷	6.000	+INF	
	29.000	+INF	
•	18.000	+INF	•
	28.000	+INF	
•	16.000	+INF	
•	16.000	+INF	
•	. +	INF	19.234
	· · · · · · · · · · · · · · · · · · ·	. 54.000 . 10.000 . 54.000 . 23.000 . 41.000 . 25.000 . 6.000 . 39.000 . 628.000 . 14.000 . 20.000 . 218.000 . 6.000 . 29.000 . 18.000 . 28.000 . 16.000 . 16.000	54.000 +INF 10.000 +INF 54.000 +INF 54.000 +INF 10.000 +INF 23.000 +INF 41.000 +INF 6.000 +INF 39.000 +INF 628.000 +INF 14.000 +INF 218.000 +INF 29.000 +INF 18.000 +INF 18.000 +INF 16.000 +INF 16.000 +INF

Flow from plant to Distribution Center

DC	L.	Level	U.		
2			+INI	7.	
10			+IN	F.	
22			+IN	F.	
26			+IN	F.	
36		23956	5.000	+INF	
40	•	•	+IN	F.	
47			+IN	F.	
51			+IN	F.	
55			+IN	F.	
57			+IN	F.	
86			+IN	F.	
99			+IN	F.	
112			+IN	F.	
125			+IN	F.	
129		•	+IN	F.	
130		•	+IN	F.	
131			+IN	F.	
136		•	+IN	F.	
142			+IN	F.	
143			+IN	F.	
144			+IN	F.	
146			+IN	F.	
160	•		+IN	F.	
163			+IN	F.	
167	•		+IN	F.	
171			+IN	F.	
181			+IN	F.	
197		• •	+IN	F.	