
 
 

  

 
Abstract—The Karhunen-Loève spectrum of a 
discrete function can vary depending on how 
symmetry group objects are mapped to function 
minterms. For completely specified functions with a 
range space smaller than the cardinality of a 
symmetry group, we propose a technique to assign 
the symmetry group don’t cares to maximize the 
number of zero-valued KL spectral coefficients of 
the function. To evaluate these approaches, we 
compare the average number of zero-valued KL 
spectral coefficients with those occurring in the 
Chrestenson spectrum.  
 

Index Terms— Karhunen-Loève Transform, 
Symmetry group.  
 

I. INTRODUCTION 
The Karhunen-Loève (KL) transform of a discrete 

multiple-valued logic function has been studied 
recently in [1] where a new way of computing the 
KL spectrum is described. One important 
observation in [1] is that the spectrum of a Cayley 
graph defined over the symmetry group is 
equivalent to the KL spectrum of a discrete function 
when the Cayley graph is generated using that 
function. It is also observed that the autocorrelation 
of the discrete function using the symmetry group 
operator is equivalent to the adjacency matrix of the 
Cayley graph. Based on the observations described 
above, the KL spectrum of a discrete multiple-
valued logic function can be calculated efficiently. 

 
 

 

The KL transform is developed as a series 
expansion method for continuous random processes 
by Kari Karhunen and Michel Loève [2, 3]. The KL 
transform is heavily utilized for performance 
evaluation of compression algorithms in the digital 
signal processing community since it has been 
proven to be the optimum transform for the 
compression of a sampled sequence in the sense 
that the KL spectrum contains the largest number of 
zero-valued coefficients [4]. Because the basis 
functions of the KL transform are data dependent, 
the KL spectrum is generally used as a benchmark 
to judge the effectiveness of the data compression 
capability of other more easily computed transforms 
[1]. 
 The KL transform is a unitary transform with 
basis functions that are orthogonal eigenvectors of 
the covariance matrix of a data set or measurement 
vector. In this paper, we are interested in discrete 
binary and Multiple-valued Logic (MVL) functions, 
thus the eigenvectors of the autocorrelation matrix 
of the function form the basis. The KL spectrum is 
defined as the set of eigenvalues associated with the 
basis functions. It is the fact that the basis functions 
depend on the actual function to be transformed that 
discourages widespread use of the KL transform as 
compared to other transforms that have a common, 
well-known set of basis functions independent of 
the function to be transformed and often with other 
desirable features such as a recursive construction 
characteristic.  
 Since the KL spectrum contains the maximum 
number of zero-valued coefficients as compared to 
all other transforms, a possible application of this 
work is in the evaluation of different decision 
diagrams.  By representing a function in the KL 
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spectral domain, an extension of the use of zero 
suppressed binary decision diagrams (ZBDDs) [5] 
to the KL spectrum of a multiple-valued function 
will lead to compact representations. ZBDDs are 
very efficient representations for sparse functions 
meaning that a large number of zeros exist in truth 
table of the function.  

 The paper is organized as follows. In Section II, 
we review the computation of the KL spectrum 
based on Cayley graphs which is a condensed 
version of the methods described in [1]. In Section 
III we propose an algorithm to maximize the 
number of zero-valued spectral coefficients by 
efficient mapping and assigning don’t cares. Section 
IV describes experimental results and conclusions 
are presented in Section V. 
  

II. PRELIMINARY INFORMATION 
 The computation of the KL spectrum of a discrete 
MVL function, f ,  is described in [1]. Because the 
KL spectrum is defined as the set of eigenvalues of 
the autocorrelation matrix of a discrete function, 
and by the observation in [1], this matrix is 
equivalent to the adjacency matrix of a Cayley 
graph defined over the symmetric group S using the 
generator given in the following equation.  

( )i je f s s=          (1) 
where ,i js s S∈ with each si, sj uniquely 
corresponding to a minterm of f, and e corresponds 
to the color of an edge in a Cayley graph.. The 
group S consists of n! members with a product 
operator that is denoted as  representing the 
permutation operation.  Thus, the KL spectrum of 
the discrete function f is also the Cayley graph 
spectrum. 

As an example, consider the function as shown in 
Figure 1 where ( , ) , {0,1} and {0,1, 2}g f x y x g y= ∈ ∈ . 

 
 
 
 
 
 
 
 
 

x1  x2 X Mapping g
0   0 0 0 0
0   1 1 1 1
0   2 2 2 1
1   0 3 3 0
1   1 4 4 1
1   2 5 5 0

 
Figure 1: Example Function 

 
The members of the group S3 may be considered 

to represent permutation operations of objects 
labeled a, b, and c.  For convenience, these are 
assigned numerical values in an arbitrary manner.  
Consider the following assignment (or mapping): 

 

0 1 2

3 4 5

a b c a b c a b c
a b c a c b b a c

a b c a b c a b c
b c a c a b c b a
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Figure 2: Example Mapping for S3 Elements 

 
For the mapping defined in Figure 2, we use the 

group permutation operation and formulate the 
adjacency matrix of the Cayley graph with Equation 
(1).  For this mapping, matrix A is given in general 
as: 

   
(0) (1) (2) (3) (4) (5)
(1) (0) (3) (2) (5) (4)
(2) (4) (0) (5) (1) (3)
(3) (5) (1) (4) (0) (2)
(4) (2) (5) (0) (3) (1)
(5) (3) (4) (1) (2) (0)

f f f f f f
f f f f f f
f f f f f f

A
f f f f f f
f f f f f f
f f f f f f

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Figure 3: General Cayley Graph Adjacency 

Matrix 
 

Using the example function in Figure 1, and the 
group object mapping in Figure 2, the Cayley graph 
adjacency matrix becomes: 
 



 
 

0 1 1 0 1 0
1 0 0 1 0 1
1 1 0 0 1 0
0 0 1 1 0 1
1 1 0 0 0 1
0 0 1 1 1 0

g
A

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Solving for the roots of the characteristic equation 

of Ag yields the KL spectrum of g: 
 

Λ=(0,0,0,-1,-1,3) 

III. GROUP OBJECT MAPPING 
As indicated in [1], the assignment of an object of 

a symmetry group to each minterm of a function is 
referred to as mapping. There are many different 
mappings available, (n!)!, and different mappings 
will produce different KL spectra. Here we 
investigate the relationship between alternative 
mappings and the resultant KL spectra.  Next, we 
investigate the algorithm to maximize number of 
zero coefficients in the resultant spectrum. 

For the function shown in Figure 1, there are 6 
minterms for the function and therefore the 3-
element symmetry group, S3, is appropriate for 
mapping purposes. The 3-element symmetry group 
contains 3! 6= members. In this case, the number of 
minterms is equal to the number of members in 
symmetry group, we refer to this case as fully-
specified mapping. Alternatively, if the number of 
minterms is less than the number of members in 
symmetry group, it is referred to as incompletely-
specified mapping.   

For the 3-element symmetry group with 6 objects, 
the number of possible mapping is: 

 
6! 720P = =  

 
Of interest is the fact that, for all 720 possible 

mappings for the example function, there are only 3 
equivalence classes of differing KL spectra.  These 
are (0,0,0,±3,±3),   (0,0,±1,±2,±3), and 
(0,0,±1,±1,±3). Table 1 shows the distribution of 
the spectra over different mappings for the function 
g. 

 

Table 1: Distribution of Spectra of g over All 
Possible Mappings 

Spectrum Percentage 
{0,0,0, 3, 3}± ±  10% 

{0,0, 1, 2, 3}± ± ±  30% 
{0,0, 1, 1, 3}± ± ±  60% 

 
For incompletely-specified mappings, it is 

important to address don’t care assignments. 
An example function is shown in Figure 4, 

( , ) with , {0,1} and {0,1}h f x y x y g= ∈ ∈ .  
 

1x 2x X Mapping h
0  0 0 0 0 
0  1 1 1 1 
1  0 2 2 1 
1  1 3 3 0 

 
Figure 4: Function with Incompletely-

Specified Mapping 
 
There are a total of 4 minterms for the fully-

specified function and therefore the 3-element 
symmetry group S3 is sufficient for mapping 
purposes. The 3-element symmetry group contains 
3! 6= group elements. Possible mappings number 

3!
4! 360

4
⎛ ⎞

=⎜ ⎟
⎝ ⎠

. Using the arbitrary mapping shown in 

Figure 4, the adjacency matrix Ah as shown in 
Figure 5 results. 
 

0 1 1 0(0) (1) (2) (3)
1 0 0 1(1) (0) (3) (2)
1 0(2) (4) (0) (5) 4 5
0 1(3) (5) (1) (4) 5 4

h

f f f f
f f f f

A
d df f f f
d df f f f

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥= =
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
Figure 5: Matrix for Function h 

 
Notice that in the above matrix, we do not have 

specified values for (4) and  (5)f f . These can be 
interpreted as don’t cares for the sake of the spectral 
computation. We point out that although these are 
don’t cares for the KL spectral computation, the 
function being transformed is fully specified.  We 



 
 

compare the two adjacency matrices with different 
don’t care assignments, a) 4 5= 0d d =  and b) 

4 5=0 and  1d d =  
 

0 1 1 0
1 0 0 1
1 0 0 0
0 0 1 0

haA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

     

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

hbA

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Figure 6: Two Possible Adjacency Matrices 

 
The corresponding KL spectra for each matrix 

are:  
[1.554, 1.554,0.644 , 0.644 ]a j jΛ = − −  

[2, 2,0,0]bΛ = −  
From the above example, we note the importance 

of adjacency matrix don’t care assignment for 
maximizing the number of zero-valued KL spectral 
coefficients. The following lemma provides useful 
guidelines for formulating a method for don’t care 
assignment. 

 
Lemma 1: The number of zero-valued eigenvalues 

is minimally bounded by d-r.  Where d is the 
dimension of the matrix and r is the rank. 

   
Based on above Lemma 1, we formulate a method 

that minimizes the rank of the Cayley graph 
adjacency matrix by assigning don’t care value.  
This method is presented in algorithmic form in 
Figure 7.  

 
 
 
 
 
 
 
 
 
 
 
 
Figure 7: Algorithm for Don’t Care 

Assignment 
 

The algorithm consists of two nested loops. If a 
row contains one or more don’t care values, it will 
be compared with all previous rows to check if it is 
possible to make any two rows equal by assigning 
don’t cares, i.e, for the previous example shown in 
Figure 5, row 3 contains two don’t cares, comparing 
row 3 with row 1, it is impossible to make these two 
rows equal; comparing row 3 with row 1, it is 
possible to make these two rows equal through 
assigning 4 5=0 and  1d d = . 

IV. EXPERIMENTAL RESULTS 
To test our algorithm and also to compare the KL 

spectrum with Chrestenson Spectrum [6], the 
following experiment is performed. We compare 
the average number of zero-valued  spectral 
coefficients for the Chrestenson transform and the 
KL transform for some example functions. The 
results are shown in Table 2. 

The first column shows 5 classes of functions that 
were chosen. The second column contains the 
number of functions for each class.  Column 3 is the 
average number of zero-value Chrestenson Spectral 
coefficients. Columns 4 and 5 are the average 
number of zero-value KL spectral coefficients with 
an arbitrary don’t care assignment and with the 
don’t care assignment method shown in Figure 7 
respectively. An arbitrary don’t care assignment 
here means that all don’t cares are assigned to zero 
as a default value. 

From Table 2, we can see that the KL spectrum 
always has more zero-valued spectral coefficients 
than the corresponding Chrestenson spectra. Also, 
with our don’t care assignment method, we improve 
the number of zero-value spectral coefficients 
except for the second class of functions where our 
results are equal to the arbitrary case. 
 

V. CONCLUSIONS AND FUTURE WORK 
A brief overview of the relationship between the 

KL spectrum and a Cayley graph defined of the 
symmetry group for discrete valued functions was 
given.  The KL spectrum is of interest because it 
provides the theoretical lower bound on the number 
of zero-valued coefficients possible for any 
spectrum.  In this paper, we proposed an algorithm 
for adjacency matrix don’t care assignment to 

dontcare_assignment (matrix[n, n]) { 
   for (j=0; j<n; j++) {          // for each row 
       if(row[j] contains don’t care){ 
            //compare with all previous rows 
            for(i=0; i<j; i++)){ 
               //check if row i and j could equal by  
               //assigning don’t cares  
               possible_equal=check_equal(i, row); 
            } 
            if (possible_equal) 
                 assign_values(); 
         } 
    } 
} 



 
 

maximize the number of zero-valued KL spectral 
coefficients when the function of interest has fewer 
minterms than the corresponding symmetry group 
cardinality. Experimental results show the 
effectiveness of this method.  

In the future, we plan to generalize the don’t care 
assignment method described here to generate 
effective mappings for fully-specified mappings.  
We also plan to develop software to generate 
decision diagrams (DDs) of the KL spectrum of 
functions, and, in particular to develop multiple-
valued decision diagrams that utilize zero-
suppression as described in [5].  Such zero-
suppressed KL-DDs should provide a lower bound 
in the number of DD vertices and could be useful 
for evaluating the effectiveness of other types of 
DDs. 
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Table 2 Number of zeros in average for functions  
 

# of zeros in average 
KL Spectrum 

Function Class # of 
functions Chrestenson 

Spectrum 
arbitrary 

don’t care 
assignment 

with don’t 
care 

assignment 
( , ) , , {0,1} g f x y x y g= ∈  8 1.187 1.375 1.6875 

( , ) , {0,1} and {0,1,2}g f x y x g y= ∈ ∈  64 0.953 2.266 2.266 
( , ) , {0,1} and {0,1,2}g f x y x y g= ∈ ∈  81 0.716 0.741 1.136 
( , ) {0,1} and , {0,1,2}g f x y g x y= ∈ ∈  512 0.877 1.688 1.973 

( , ) , , {0,1,2}g f x y x y g= ∈  19683 0.338 0.748 1.029 
 
 


