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ABSTRACT
In recent years, Graph Convolutional Networks (GCNs) have been

applied to benefit spatiotemporal predictions. The current shell for

spatiotemporal predictions often relies heavily on the quality of

handcraft, fixed graphical structures, however, we argue that such a

paradigm could be expensive and sub-optimal in many applications.

To raise the bar, this paper proposes to jointly mine the spatial

dependencies and model temporal patterns in a coupled framework,

i.e., to make spatiotemporal-coupled predictions. We come up with

a novel Reciprocal SpatioTemporal (REST) framework, which intro-

duces Edge Inference Networks (EINs) to couple with GCNs. From

the temporal side to the spatial side, EINs infer spatial dependen-

cies among time series vertices and generate multi-modal directed

weighted graphs to serve GCNs. And from the temporal side to

the spatial side, GCNs utilize these spatial dependencies to make

predictions and then introduce feedback to optimize EINs. The

REST framework is incrementally trained for higher performance

of spatiotemporal prediction, powered by the reciprocity between

its comprised two components from such an iterative joint learning

process. Additionally, to maximize the power of the REST frame-

work, we design a phased heuristic approach, which effectively

stabilizes training procedure and prevents early-stop. Extensive

experiments on two real-world datasets have demonstrated that

the proposed REST framework significantly outperforms baselines,

and can learn meaningful spatial dependencies beyond predefined

graphical structures.

CCS CONCEPTS
• Information systems → Spatial-temporal systems; • Com-
puting methodologies → Neural networks; Learning from im-
plicit feedback.
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1 INTRODUCTION
Time series prediction has remained an enduring research topic

for both academia and industry for decades. By understanding past

observations, such technologies predict the future trend in a certain

horizon, which has been benefiting many real-world applications,

including weather forecasting [21], Web service invocation predic-

tions [17], environmental analysis [10], and so on. Early research on

this topic mainly concentrates on studying individual time series;

while, in recent years, researchers have started to investigate how

to utilize the interactions among multiple time series to promote

prediction accuracy [16, 30]. As an example, the traffic flow of a cer-

tain road is determined by the inflow of its upstream intersections,

whose traffic flows are in turn determined by other intersections.

Therefore, taking into consideration of the temporal information

of the roads spatially close by may significantly enhance the per-

formance of transportation predictions. In such a context, Graph

Convolutional Networks (GCNs) [6, 9, 14, 29] have been success-

fully applied to make spatiotemporal predictions [16, 28, 34], where

different time series and their interrelated relationships are seen as

vertices and edges, respectively.

The precondition of GCN-based spatiotemporal prediction mod-

els is a well defined graph. In many real-world applications, how-

ever, it is not always easy to obtain high-quality spatial information.

Let us take Web traffic prediction
1
as an example to illustrate how

to identify spatial dependencies, namely edges, among entries. One

may define that an edge refers to a hyperlink from one Wikipedia

entry to another. Nevertheless, it may be difficult to further quantify

the weights of such edges (e.g., the transition probability contained

in a hyperlink), especially when considering the contents (including

hyperlinks) of Wikipedia entries are frequently edited and changed.

1
https://www.kaggle.com/c/web-traffic-time-series-forecasting
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Apart from explicit hyperlinks, implicit authorship or similarities in

the content could also be exploited to construct an isomeric graph,

thus yielding multi-modal spatial dependencies. In such situations,

profound domain knowledge is required to construct an accurate

graph; however, human involvement may become not only costly

but also sub-optimal. To this end, we argue that jointly mining the

spatial dependencies and modeling temporal patterns in a coupled

framework may largely benefit spatiotemporal predictions, which

lead to our targeted goal, i.e., spatiotemporal-coupled prediction.

Three challenges exist regarding spatiotemporal-coupled predic-

tions. Firstly, from the data property aspect, there lacks existing
edge labels to learn the spatial dependencies in a supervised manner.

Moreover, the information of time series (i.e., historical observa-

tions with different timestamps) may be limited and noisy, making

it difficult to find the distance (i.e., correlation or causation) among

time series and cluster them as a graph [1]. Secondly, from the
learning aspect, without effective inductive bias, a model is easy

to overfit the noises and the learning procedure may become un-

stable. Since the spatial and temporal dependencies among vertices

couple compactly, the changes of spatial dependencies may make

learning temporal patterns more strenuous, and vice versa, espe-

cially when both sides are initialized from random states. Thirdly,

from the practicality aspect, mining potential links between two

arbitrary time series pairs also brings significant computational

burden, as the possible links are in n2 order, if we assume n time

series exist. Existing research concerning spatiotemporal predic-

tion is either based on predefined graph structure [16, 30] or can

only infer potential links with strong domain knowledge [11] or in

rather small graphs, e.g., with less than 400 vertices [28].

In this paper, we propose a novel Reciprocal Spatiotemporal

(REST) framework to address the aforementioned three challenges

synergistically. As illustrated in Figure 1 (details to be explained

in Section 4), the REST framework consists of two integral parts:

our introduced Edge Inference Networks (EINs) for mining spa-

tial dependencies among time series; and integrated GCNs, e.g.,

DCRNNs [16], for making spatiotemporal prediction. The spatial

dependencies inferred by EINs promote GCNs to make more accu-

rate prediction, while supervisedly trained GCNs help EINs learn

better distance measurement. To address the data property chal-

lenge, EINs project time series from time domain to frequency

domain, and thus fertilize the original time series data and quantify

the multi-modal spatial dependencies among them. To address the

practicality challenge, EINs firstly sample a fixed number of pos-

sible time series neighbors for all the central time series vertices

of interest before each training epoch, and then during the train-

ing procedure, EINs try to learn a more accurate distance function

with the help of the GCN part. Through such manner, the REST

framework can theoretically explore all possible linkages from the

whole dataset, while remain the sparsity of graph as
kn
n2

for training,

where k refers to predefined number of neighbor candidates and

k ≪ n. To address the learning challenge, we propose a phased

heuristic approach as a warm-up to drive the REST framework. As

a consequence, such an iterative learning cycles within the REST

framework shall incrementally enhance the spatiotemporal-coupled

prediction over time.

Our main contributions are three-fold:

Dataset EINs GCNs
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Figure 1: The overview of the proposed REST framework.
Inside REST, EINs and GCNs cooperate with each other
through the orange lines. From the temporal side to the spa-
tial side, EINs first infer pairwise vertices distance through
the frequency features of time series and construct multi-
modal graphs G1,G2, . . . ,GM for GCNs. From the spatial
side to the temporal side, GCNs receive deduced spatial de-
pendencies and regress prediction results. From inputs to
outputs, EINs provide spatial information for GCNs; while
from outputs to inputs, GCNs propagate feedback to EINs
for spatial distance learning, and thus reciprocity is devel-
oped. Outside REST framework, through the turquoise lines,
EINs explore whole time series datasets and sample poten-
tial neighbors, i.e., purple circles, for central vertex, i.e., yel-
low circle, before each training epoch.

• We have proposed a REST framework for spatiotemporal pre-

dictions, when structural information is incomplete or under

frequent changes. In particular, our introduced EINs com-

ponent is able to infer multi-modal, directed and weighted

spatial dependencies.

• We have developed a phased heuristic strategy and spa-

tiotemporal coupled learning paradigm, which help to stabi-

lize the training procedure of REST framework, whilemaking

it possible to explore unsuspected linkages in the full domain

without introducing unaffordable computational training

burden.

• We have designed and conducted a collection of experiments

on two real-world datasets. Our empirical studies show that

REST outperforms state-of-the-art spatiotemporal prediction

algorithms in terms of prediction accuracy, and demonstrate

its capability of finding meaningful linkages between time

series vertices.

The remainder of this paper is organized as follows. Section 2

reviews related work. Section 3 gives notations and mathematically

restates the spatiotemporal-coupled prediction problem. Section 4

introduces the proposed model, and Section 5 describes the training

details. Section 6 reports our experimental results. Finally, Section 7

draws conclusions.

3137



REST: Reciprocal Framework for Spatiotemporal-coupled Predictions WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

2 RELATEDWORK
In this section, we review important related work in the literature

in two categories, time series predictions and graph convolutional

networks, and compare our work with them.

2.1 Time Series Predictions
Time series prediction is a long-standing problem. At the beginning,

researchers concentrated on studying the pattern of an individual

time series and making predictions. For instance, Auto-Regressive

Integrated Moving Average model (ARIMA) [4] and Support Vec-

tor Regression (SVR) [23] study the linearity and non-linearity of

time series. There are also some attempts to investigate the inter-

actions among time series, where the representatives are Vector

Auto-Regressive model (VAR) [18] and multiple-output SVR [26]. In

recent years, with the advancement of deep learning, the accuracy

of time series prediction has achieved noticeable progress. On the

one hand, in Recurrent Neural Networks (RNNs), Long-Short Term

Memories (LSTMs) [13] and Gated Recurrent Units (GRUs) [7] show

significant advantages in capturing long-term dependencies of time

series. Specially, RNNs based on LSTMs with fully connected layers

(FC-LSTM) are one of the most representative models for sequence

prediction [25]. On the other hand, in Convolutional Neural Net-

works (CNNs), dilated causal convolution [31] together with gated

mechanism [8] is also able to accumulate sequential information

within a large receptive field, with WaveNet as a successful appli-

cation [27].

The above earlier approaches do not (or poorly) consider the

spatial structure of time series. However, the interactions among

time series could provide helpful information for models to enhance

prediction accuracy [15]. To this end, researchers have introduced

Graph Convolutional Networks (GCNs) to aggregate irregular spa-

tial dependencies among time series. Two recent representative

works are Diffusion Convolutional Recurrent Neural Networks

(DCRNNs) [16] and Graph WaveNet [28]. DCRNNs substitute mul-

tiplication in GRUs with diffusion convolution operators to utilize

the spatial dependencies. Graph WaveNet [28] replace 1D convolu-

tion in the residual block of WaveNet with diffusion convolution,

enabling it to make spatiotemporal predictions.

Although these models have shown attractive abilities to exploit

spatial dependencies among time series, their performance mainly

relies on the quality of the graph underneath. To date, few existing

work studies to voluntarily learn spatial dependencies for temporal

prediction. We argue that such a manner is important to further

increase the degree of freedom of spatiotemporal models, without

depending on many handcraft features, and enhance prediction

accuracy. Related to this idea, an adaptive adjacent matrix proposed

in [28] provides a partial solution. Such a method, however, is diffi-

cult to be applied to graphs with large sizes, because it requires to

compare all pairwise similarities during training procedure, which

makes the graph dense and introduces enormous computational

burden. By comparison, in our REST framework, input time series

(i.e., central vertices and several adjacent vertices) are sampled be-

fore each training epoch, and thus the sparsity is restricted by
kn
n2

,

remaining computational complexity acceptable.

2.2 Graph Convolutional Networks
Most spatiotemporal prediction models are based on spectral graph

convolution, which has shown big potential in aggregating non-

euclidean spatial dependencies among time series vertices. Spectral-

based Graph Convolutional Networks (GCNs) were first introduced

by Bruna et al. [6], which incorporate spectral graph theory into

deep learning models. To efficiently apply spectral graph theory,

Defferrard et al. [9] proposed ChebNet, in which spectral graph

convolution is approximated through Chebyshev polynomial and

gain localized features. Kipf and Welling [14] further enhanced

the efficiency of GCNs by restricting graph convolution within

one-step adjacency and stacking linear GCNs to expand receptive

fields. To model undirected graphs, ChebNet and linear GCNs [14]

have shown potentials. For directed graphs, Atwood and Towsley

[2] proposed diffusion convolution. These graph convolution fil-

ters have been successfully applied in spatiotemporal models, e.g.,

DCRNNs and Graph WaveNet, to improve prediction accuracy.

There is an important branch of GCNs studying link prediction in

graphs, which seems similar to our spatial distance inference task.

For example, Weisfeiler-Lehman Neural Machine (WLNM) [32],

SEAL [33], and Graph Agreement Models (GAM) [24] have been

used to predict links in citation networks. However, these models

are based on vertex features and categorical labels to learn the

similarities among vertices. In our spatiotemporal prediction task,

the features of time series vertex are limited and noisy, meanwhile

there is no obvious labels to represent the similarities between

vertices. As a result, existing models cannot solve our problem.

3 PRELIMINARIES
To begin with, we define some important notations, and then math-

ematically restate the spatiotemporal-coupled prediction problem.

Definition 1 (Observation records). Given one time series,
we denote observation records by xi , where xi can be broken down
to xi = {x0i ,x

1

i , . . . ,x
p
i } for time series i in the past p time steps. In

the problem that we consider, we further write X = {x1;x2; . . . ;xn }
to denote the whole N time series.

Definition 2 (Prediction trend). The prediction trend of
one time series is denoted by ŷi = {ŷ

p+1
i , ŷ

p+2
i , . . . , ŷ

p+q
i }, where

ŷti (t ∈ (p,p + q])) refers to the prediction value of time series i in the
next t-th time step. Likewise, Ŷ = {ŷ1; ŷ2; . . . ; ŷn } denotes the trend
of all time series.

Definition 3 (Spatial dependencies). We construct a graph
G = (V, E,W) to represent spatial dependencies among time
series, withV as vertex set, E as edge set, andW as corresponding
weights for each edge. We treat each time series as a vertex, so |

V |= N . In particular, within a mini-batch, we call the vertices
of interest as the central vertices, and the other vertices that can
reach the central vertices within K steps as the adjacent vertices. In
our problem, we consider multi-modal, weighted and directed spatial
dependencies, i.e., W = {wm ,m = 0, 1, . . . ,M}, which can start
from a handcraft graph, i.e., spatial dependencies, G0, or be inferred
by our REST framework. In particular, weight wm

ij ∈ W refers to
spatial dependency from time series i to j under modalitym.

3138



WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Haozhe Lin, Yushun Fan, Jia Zhang, and Bing Bai

Based on these definitions, our targeted problem is formally

introduced as follows.

Problem (Spatiotemporal coupled prediction). GivenN time
series, our goal is to jointly learn f (·) and д(·) to predict the trend of
time seriesY , as well as to infer their underline spatial dependencies G,
based on observation records xi = {x0i ,x

1

i , . . . ,x
p
i } for all i and their

predefined or randomly initialized spatial dependencies G, which can
be described in Equation (1).

[X 1,X 2, . . . ,Xp ,G0]
f (X )
====⇒
д(G)

[Ŷp+1, . . . , Ŷp+q ,G1, . . . ,GM ] (1)

As for other frequently used notations, the readers could refer

to Table 4 in Appendix A for details.

4 MODEL ARCHITECTURE
The overall structure and mechanism of action of the REST frame-

work are depicted in Figure 1. We will sequentially discuss its two

comprised building blocks (EINs and GCNs), and then show how

they support each other.

4.1 Spatial Inference
In REST framework, we introduce Edge Inference Networks (EINs)

to discover and quantify spatial dependencies among time series

vertices, whose internal procedure is illustrated in Figure 1. As men-

tioned in Section 1, the information of time series observations may

be limited and noisy, which makes it difficult to precisely measure

the dependencies (e.g., distance) between two time series. There-

fore, inside EINs, our idea is to project the observations from time

domain to frequency domain. Here we adopt the Mel-Frequency

Cepstrum Coefficients (MFCCs) [5, 19], as effective features. Pre-

senting the envelope of the frequency spectrum of sound signals,

MFCCs are widely used in audio compressing and speech recogni-

tion. Here we use this frequency warping to represent time series.

We calculate MFCCs through Equation (2):

X [k] = fft(x[n])

Y [c] = log

©«
fc+1∑

k=fc−1

| X [k] |2 Bc [k]
ª®¬

cx [n] =
1

C

C∑
c=1

Y [c] cos

(
πn(c − 1

2
)

C

)
,

(2)

where x[n] refers to the time series observations; fft(·) refers to

fast Fourier transform; Bc [k] refers to filter banks; C refers to the

number of MFCCs to retain; and cx [n], also denoted by cx , refers
to MFCCs of time series x . As for the choice of MFCCs, we consider

the observations of time series in the frequency domain are usually

more meaningful in practice. Moreover, MFCCs, presenting the

envelope of the frequency feature from Fourier transform, could

generally be smoother features for neural networks. The readers

could refer to [20] for the details of MFCCs.

Taking MFCCs as effective features, EINs then estimate the spa-

tial dependencies between two time series through Equation (3)

using a sigmoid function:

ai j = σ
(
W ⊤

concat([ci ,ci − c j ]) + b
)
, (3)

where ai j ∈ RM
refers to inferred asymmetric distance from time

series i to j underM considered modalities; ci ∈ RC
, namely cx [n],

refers to MFCCs of time series i;W ∈ R2C×M
and b ∈ RM

refer

to learnable parameters for time series distance inference. Note

that, in Equation (3), ci is concatenated with ci − c j , which models

the directed spatial dependencies, while to consider undirected

(or symmetric) relationship between time series i and j, ci should
be concatenated with c j . We thus built a fully connected layer to

measure the time series distance. We will conduct more in-depth

study about time series metrics learning in our future work.

Based on their capability of inferring spatial dependencies among

time series, EINs play two important roles in REST framework: sam-

pling and inferring. Figure 1 illustrates the two functions initiated

by turquoise line and orange line, respectively. To begin with, dur-

ing data preparation phase, EINs go through the entire dataset to

select possible adjacent candidates, i.e., purple vertices in Figure 1,

for the central vertices of interest, i.e., yellow vertex. Afterwards,

given these sampled vertices as input, EINs infer and quantify their

spatial dependencies underM modalities for GCNs. In this section,

we have shown how EINs generate spatial dependencies for GCNs,

and we will discuss how it learns from GCNs for optimization in

Section 4.3.

4.2 Temporal Prediction
Receiving inferred spatial dependencies from EINs (triggered by

the orange line), REST framework can integrate a GCN-based spa-

tiotemporal prediction model, e.g., DCRNN [16] or Graph WaveNet

[28], as backends to make predictions. Generally speaking, by defin-

ing different Laplacian matrix, e.g., normalized Laplacian and ran-

dom walk Laplacian, the (un)directed spatial dependencies can

be aggregated through different graph convolution operators, e.g.,

Chebyshev convolution [9] and diffusion convolution [2]. In this

paper, we will mainly discuss the directed spatial dependencies and

consider diffusion convolution on random walk Laplacian. When

considering only one modality, the random walk Laplacian is de-

fined as Lrw = I − D−1A, with Lrw relating to transition matrix,

based on which the bidirectional diffusion convolution can be for-

mulated in Equation (4):

Z ⋆G дθ ≈

K−1∑
k=0

(
θk,0

(
D−1
I A

)k
+ θk,1

(
D−1
O A⊤

)k )
Z , (4)

where Z refers to inputs of graph convolution filter; дθ refers to

diffusion convolution filter with θ ∈ RK×2
as trainable parameters;

A refers to adjacent matrix and DI and DO refer to input and

output degree matrix, respectively. A diffusion convolution can be

truncated by a predefined graph convolution depth K , which is

empirically not more than 3 [12]. Note that due to the sparsity of

most graph, the complexity of recursively calculating Equation (4)

is O(K |E |) ≪ O(N 2).

In this paper, we consider that the spatial dependencies, namely

edge features, deduced by EINs are multi-modal. Therefore, an

enhanced diffusion convolution is formulated by Equation (5):

hs = ReLU

(M−1∑
m=0

K−1∑
k=0

Z ⋆Gm дΘ

)
, (5)
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wherehs ∈ RN×do
refers to spatial hidden states, namely output of

diffusion convolution operators;M refers to predefined number of

modality, and specifically, forward adjacent matrixA and backward

one A⊤
in bidirectional random walk are deemed as one modality;

then Θ ∈ RM×K×di×do
, extension of θ , refer to multi-modal, high-

order graph convolution parameters.

Given enhanced diffusion convolution filters to aggregate spa-

tial information, existing approaches typically adopt either RNNs

(e.g., DCRNNs [16]) or CNNs (e.g., Graph WaveNet [28]) to capture

temporal dependencies of time series. Without losing generality,

we adopt DCRNNs as a prototype backend to show how REST

framework incorporates it to generate predictions. To capture tem-

poral dependencies, DCGRUs replace multiplication in GRUs with

diffusion convolution, as shown in Equation (6):

r t = σ (fr ⋆Gm [X t ,H t−1] + br )

ut = σ (fu ⋆Gm [X t ,H t−1] + bu )

Ct = tanh(fC ⋆Gm [X t , (r t ⊙ H t−1)] + bC )

H t = ut ⊙ H t−1 + (1 − ut ) ⊙ Ct ,

(6)

where X t
refer to the observations of all included vertices, i.e., all

colored vertices in Figure 1; H t−1
refer to temporal hidden states

generate by last DCGRUs; ⋆Gm refers to diffusion convolution

operator given graph Gm
, where, particularly, Gm

is inferred by

EINs; r t andut refer to the output of reset and update gates at time

t ; fr , fu , and fC refer to graph convolutional filters with different

trainable parameters; finally, H t
refer to temporal hidden states. In

DCRNNs, DCGRUs are stacked to construct encoders and decoders,

and based on the temporal hidden states H t
from decoders, a fully

connected layer then generate predictions:

ˆY t+1 =W ⊤H t + b . (7)

whereW and b are trainable parameters.

4.3 Reciprocity
REST framework enables reciprocity between its comprising EINs

and GCNs, as shown in Figure 1. On the one hand, EINs could help

generate better spatial structures than prior knowledge. Thus in

forward propagation, EINs will promote GCNs to make more accu-

rate predictions. On the other hand, limited by the data property, it

is difficult for EINs to learn the spatial dependencies in a supervised

manner. However, in the REST framework, EINs can get optimized

through temporal labels from GCNs in backward propagation. In

other words, GCNs help EINs to learn better distance measure-

ment. To this end, the reciprocity of REST framework is established

through such an iterative learning process. Note that warm-started

EINs can further be used to explore the full dataset and sample

possible unknown linkages before each training epoch. Assuming

there are n time series in total, since the EINs only sample at most

k adjacent vertices for the central vertices, the sparsity is restricted

within
kn
n2
,k ≪ n.

However, if EINs and GCNs do not perform normally, REST

framework may not work as expected. It might pose a problem

that both sides could hamper each other, which we may encounter

especially in an initialization phase. We will discuss how to solve

the parameter initialization issue in Section 5.2.

5 LEARNING DETAILS
In this section, we discuss parameter tuning and optimization for

REST framework.

5.1 Loss Function
We choose mean absolute error (MAE) as loss function to supervise

the training process under REST framework, which is formulated

by Equation (8):

L =
1

n

∑
i,t

��yti − ŷti
�� , (8)

where n refers to the number of observations of all time series in

a batch; yi,t and ŷi,t refer to the ground truth and predictions of

time series i at time t . Note that for applications where the orders
of magnitude of time series significantly differ from each other, we

evaluate loss under logarithmic scale.

5.2 Phased Heuristics
Well trained EINs and GCNs can benefit each other. However, at the

beginning stage, since both sides are initialized with random states,

EINs and GCNs may hamper each other, making it more difficult

to train. To bolster training process, we have developed a phased

heuristics strategy to enable a warm start. As the training process

going, information closed loop is formed, meaning that REST only

relies on information within the framework rather than depending

on prior knowledge.

Stage 1 Stage 2 Stage 3 loss

Figure 2: Heuristics. There are three stages to drive REST
framework. According to inverse sigmoid decay, stage 1 be-
gins with the whole training process, and ends when the de-
cay factor ϵ reduces to 0.1. In stage 1, only GCNs are trained
and gradually become stable. Likewise, stage 2 begins with
the ending of stage 1, and last before decay factorγ reduce to
0.1. In stage 2, GCNs hinge on spatial dependencies from ei-
ther EINs or prior knowledge, and steadily rely more on the
former ones. In this stage, EINs get trained. Stage 3 starts
when stage 2 ends. In this stage, EINs begin to explore pos-
sible links beyond prior graph structure, and REST start to
count to early stop.

We develop a three-stage heuristics to train spatiotemporal mod-

els under REST framework, which is illustrated in Figure 2. In stage

1, we apply the scheduled sampling strategy [3] to learn the param-

eters of graph convolutions. Specifically, the inputs of DCRNNs’
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decoders are either from ground truth or previous predictions. We

set a probability ϵ to control using ground truth or previous predic-

tions, which will gradually decay and make the models entirely rely

on their predictions. We choose inverse sigmoid decay to gradually

reduce ϵ :

ϵ =
k

k + exp( ik )
, (9)

where i refers to the current number of training steps, and k is a

hyper-parameter to control how much steps it will take to reduce

ϵ to 0. Generally, we adjust k to end the first stage within two

epochs. As shown in Figure 2, in stage 1, loss rapidly drops and

then rebounds, because the decoders gradually begin to conduct

self-regression, rather than depending on the ground truth. In this

stage, GCNs begin to learn how to capture temporal dependencies,

while our EINs do not work. When ϵ decays to 0.1, stage 2 starts

and EINs begin to learn how to measure the distance between time

series and construct multi-modal spatial dependencies for GCNs.

In stage 2, the spatial dependencies come from either prior knowl-

edge or inferred values from EINs. Likewise, We then set another

decay factor γ , which reduces from 1 to 0 with the same speed as ϵ .
In this stage, the spatial dependencies are restricted in predefined

structure, with the weight changing. When γ decays to 0.1, stage

3 starts and the EINs begin to explore possible links among all

pairwise time series. Though the phased heuristics, different part

of REST framework can be sequentially and synergistically trained,

which makes the REST framework easier to achieve local optima.

6 EXPERIMENTS
We have conducted extensive experiments to evaluate the effec-

tiveness and efficiency of our proposed REST framework. In this

section, we first introduce experimental settings, and then analyze

experimental results in detail.

6.1 Experimental Settings
6.1.1 Dataset. We verified our REST framework on two widely

used open datasets: a traffic dataset released by Li et al. [16] and

Wu et al. [28], and a web traffic dataset fromWikiState
2
. The traffic

dataset, called Metr-LA, records four months (from March 1, 2012

to June 30, 2012) of statistics on traffic speed on 207 sensors on

the highways of Los Angeles in five minutes period. We adopted

the same distance measurement, as in [16], to construct the initial

adjacent matrix. The web traffic dataset, named Wiki-EN, consists

of 793 daily (from July 1, 2015 to August 31, 2017) web page views of

4,118 Wikipedia entries randomly sampled from the English Wiki-

project. We crawled the hyperlinks among these Wikipedia entries

to construct their initial spatial dependencies. For both datasets,

we used Z-score normalization to preprocess input data, and for

the Wiki-EN dataset, we further took logarithm to the inputs to

eliminate the potential hazard caused by the huge difference in the

order of magnitude. During the experiments, both datasets were

chronologically split, with the first 70% as training set, the following

10% as validating set, and final 20% as testing set. Table 1 shows the

detailed statistics of the two datasets.

2
https://dumps.wikimedia.org

Table 1: Statistics of Metr-LA and Wiki-EN

Datasets # vertex # edge # observations

Metr-LA 207 1, 515 7, 094, 304

Wiki-EN 4, 118 8, 173 3, 265, 574

6.1.2 Evaluation Scheme. We evaluated REST framework and base-

lines by mean absolute error (MAE), root mean squared error

(RMSE) and mean absolute percentage error (MAPE) for Metr-LA

dataset, which is consistent with [16, 28]. However, considering

huge difference in the order of magnitude of time series in Wiki-EN,

we chose MAE, root mean squared logarithmic error (RMSLE) and

symmetric mean absolute percentage error (SMAPE) to evaluate.

Among these metrics, MAE, RMSE and RMSLE reflect absolute pre-

diction errors, while MAPE and SMAPE reflect relative prediction

errors. Note that the lower value of these metrics represent the

higher prediction accuracy. Detailed formations of these metrics

are summarized in Appendix B.

6.1.3 Baselines. We chose DCRNNs as backend of REST frame-

work in this paper, and compared it with seven representative base-

lines: (i) Auto-Regressive Integrated Moving Average (ARIMA) [4];

(ii) Vector AutoRegressive (VAR) [18]; (iii) Support Vector Regres-

sion (SVR) [23]; (iv) RNN with fully connected LSTM hidden units

(FC-LSTM) [25]; (v) WaveNet [27]; (vi) Diffusion Convolutional Re-

current Neural Network (DCRNN) [16]; and (vii) Graph WaveNet

[28]. Among these approaches, ARIMA and SVR are designed for in-

dividual time series; VAR considers the interactions among multiple

time series; FC-LSTM and WaveNet are RNN- and CNN-based deep

learning models, which show significant capability of modeling

nonlinear and long-term dependencies for individual time series;

DCRNNs and Graph WaveNet introduce graph convolution filter

to exploit spatial dependencies among time series, which are the

state of the arts in this domain. Note that Graph WaveNet can also

infer and quantify the spatial dependencies from time series.

6.1.4 Hyper-parameters and other settings. All of our experiments

were conducted on an Ubuntu server [CPU: Intel(R) Xeon(R) CPU

E5-2680 v4 @ 2.40GHz, GPU: NVIDIA GTX 1080 Ti]. For Metr-LA

dataset, we use the same experimental settings reported in [16, 28].

For the Wiki-EN dataset, the hyper-parameters were tuned for

different models to achieve their best performance. In particular,

we consider one-step adjacent vertices for VAR to predict the trend

of central vertices. We set 128 temporal hidden states for each

recurrent units, for FC-LSTM, DCRNNs and REST. In REST, we

empirically set C = 13 for the number of MFCCs to retain; set

128 spatial hidden states for graph convolution filters. As for the

most sensitive hyper-parameters, i.e., predefined graph convolution

depth K and modality M , we conducted several experiments to

carefully study them and will discuss it in detail in Section 6.2.2.

6.2 Experimental Results and Analyses
6.2.1 Main Results. To compare the overall prediction accuracy of

REST framework with those of baselines, we conducted repeated ex-

periments for ten times with different initialization. Table 2 records

the average of MAE, RMSE, RMSLE, MAPE and SMAPE for Metr-LA
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Table 2: Performance comparison of REST framework and other baselines. (a) shows the metrics of Metr-LA dataset, where 15,
30 and 60 minutes refer to 3, 6, 12 steps predictions. (b) shows the metrics of Wiki-EN dataset, where 3, 7, 14 days refer to 3, 7,
14 steps predictions. The lower value reflects the higher prediction accuracy. The bold font highlight the best performance.

(a) Metr-LA

Models 15 min 30 min 60 min

MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

ARIMA [4] 3.99 8.21 9.60% 5.15 10.45 12.70% 6.90 13.23 17.40%

VAR [18] 4.42 7.89 10.20% 5.41 9.13 12.70% 6.52 10.11 15.80%

SVR [23] 3.99 8.45 9.30% 5.05 10.87 12.10% 6.72 13.76 16.70%

FC-LSTM [25] 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%

WaveNet [27] 2.99 5.89 8.04% 3.59 7.28 10.25% 4.45 8.93 13.62%

DCRNN [16] 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.59 10.50%

Graph WaveNet [28] 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%

REST 2.66 4.88 6.78% 2.94 5.63 7.83% 3.35 6.62 9.35%

(b) Wiki-EN

Models 3 days 7 days 14 days

MAE RMSLE SMAPE MAE RMSLE SMAPE MAE RMSLE SMAPE

ARIMA [4] 1646 0.6854 33.11% 1758 0.7293 34.95% 2380 0.6820 36.11%

VAR [18] 2194 0.7636 42.52% 2711 0.8884 47.20% 3390 1.0425 53.58%

SVR [23] 1423 0.5151 30.05% 1526 0.5427 31.43% 1653 0.5773 33.20%

FC-LSTM [25] 827 0.3421 19.20% 878 0.3786 21.25% 952 0.4160 23.71%

WaveNet [27] 755 0.3435 19.11% 830 0.3797 21.03% 917 0.4175 23.41%

DCRNN [16] 765 0.3423 19.01% 827 0.3793 21.03% 903 0.4166 23.39%

Graph WaveNet [28]
†

- - - - - - - - -

REST 743 0.3400 18.63% 816 0.3776 20.70% 897 0.4148 23.07%
†
Graph WaveNet ran out of GPU memory and thus could not work on the Wiki-EN dataset.
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Figure 3: Performance comparison for DCRNNs and REST framework with different graph convolution depth K andmodality
M . In particular, REST-1 and REST-2 refer to 1 and 2 modalities that are concerned. In general, REST framework with K = 2,
M = 2 beats other settings.

andWiki-EN. The results of all baseline methods on Metr-LA are di-

rectly taken from Li et al. [16] and Wu et al. [28], and other results

are based on our experiments. In particular, we chose DCRNNs

as GCNs backend for REST framework in this paper. Examining

the results over both datasets, we notice four consistent phenom-

ena. First, VAR considers the spatial dependencies of time series,

however its prediction error is dramatically higher than that of

ARIMA, which indicates that handcraft spatial dependencies may

carry many noises and thus may not always offer a good base. Sec-

ond, all neural network based models significantly outperform the

previous ones, especially when the prediction horizons become
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Figure 4: Visualization of the spatial dependencies of the last 51 vertices onMetr-LA dataset, where the deeper color represents
the higher correlation. In particular, (a) is defined by road network distance based on expert knowledge; (b) and (c) are two
modalities inferred by EINs; (d) is inferred by GraphWaveNet. Note that the spatial dependencies inferred by GraphWaveNet
are dense and minor. Best viewed in color.

longer. That is because RNN and TCN structures are with great abil-

ities to model the non-linear and long-term temporal dependencies.

Third, spectral graph convolution based approaches, i.e., DCRNNs,

Graph WaveNet and REST framework, gain further improvement,

comparing with other deep learning models without considering

spatial features. It demonstrates that graph convolution is capable

of making use of spatial dependencies. Note that Graph WaveNet,

considering all possible time series pairs during training procedure,

cannot work in dataset with relative large graph size, like Wiki-EN

with 4,118 vertices. Fourth, REST framework made the most accu-

rate predictions among these methods, which should attribute to

the EINs inferring better spatial dependencies than the handcraft

ones.

6.2.2 Important Hyper-parameters Discussion. In REST framework,

the predefined number of graph convolution depth K of GCNs and

the predefined number of modalityM of EINs are two major hyper-

parameters. In this section, we carefully compare the performance

of REST framework with different K andM to study how they cou-

ple with each other in our REST framework. Figure 3 reports the

average and standard deviation of RMSLE and SMAPE of DCRNN

and REST framework, with different hyper-parameters. As shown,

within each graph convolution depth K , REST framework outper-

forms DCRNNs. In particular, REST framework predicts slightly

more accurately than DCRNNs with M = 1. However, with the

increment of predefined modality, REST framework significantly

outperforms DCRNNs withM = 2. This phenomenon indicates that

EINs are able to infer high-quality spatial dependencies for GCNs.

Moreover, with the predefined number of modality being larger,

EINs can learn more abundant spatial representations and promote

GCNs to make more accurate predictions. Besides, given various

predefined modality, RMSLE and SMAPE of both DCRNNs and

REST framework both drop from 1 to 2, and then rebound. Since

K related to the receptive field of graph convolution, we suspect

K = 2 best fit Wiki-EN dataset, which is consistent with common

conclusion in [12].

Table 3: Phased heuristics ablation.

REST framework MAE RMSLE SMAPE

with heuristics 897 ± 9 0.4148 ± 0.0007 23.07% ± 0.05

w/o heuristics 904 ± 12 0.4152 ± 0.0011 23.34% ± 0.13

6.2.3 Heuristics Ablations. To evaluate the effect of the phased

heuristics, we conducted an ablation experiment with ten times for

each configuration. Table 3 reports the RMSLE and SMAPE of REST

framework adopted the phased heuristics or not. Examining the

average and standard deviation of both metrics in Table 3, REST

framework driven by the phased heuristics performs significantly

better than REST without it. Through observing the experimental

results, we find REST framework without the phased heuristics

could also achieve as lower as the prediction errors of REST frame-

work with it. However, without heuristics, REST framework is more

likely to get early stopped, which thus leads to higher prediction

error and standard deviation.

6.2.4 Visualization. Both REST framework and Graph WaveNet

can infer spatial dependencies from time series. Figure 4 visualizes

the spatial dependencies of the last 51 vertices on the Metr-LA

dataset. Based on handcraft spatial dependencies [16, 22] (i.e., Fig-

ure 4 (a)), EINs generated 2 modalities of spatial dependencies (i.e.,

Figure 4 (b) and (c)). Comparing Figure 4 (b) and (c) with (a), we

found EINs can quantify the spatial dependencies from different

points (see the red region). Besides, it can also identify new linkages

(see the magenta region). Examining Figure 4 (d), we found the spa-

tial dependencies inferred by GraphWaveNet are dense and similar,

which is not practical when the size of graph becomes larger.

7 CONCLUSIONS
In this paper, we have presented Reciprocal Spatiotemporal (REST)

framework for spatiotemporal-coupled prediction. In the REST
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framework, on the one hand, our introduced Edge Inference Net-

works (EINs) infer the spatial dependencies between time series ver-

tices and serve GCNs. On the other hand, GCNs integrate state-of-

the-art spatiotemporal prediction models, e.g., DCRNNs, to utilize

EINs inferred spatial dependencies and make more precise time se-

ries prediction, while introduce feedback to optimize EINs. To max-

imize the power of the REST framework, we also designed a phased

heuristics to stabilize training procedure and help it quickly con-

verge to their local optima. Through iterative joint learning process,

the performance of EINs and GCNsmutually benefit each other, and

eventually lead to accurate spatiotemporal predictions. Extensive

experimental results over real-world datasets have demonstrated

the effectiveness and efficiency of our REST framework in terms of

prediction accuracy and spatial dependencies inference, without

introducing unaffordable computational and storage burden.

In the future, we plan to focus on the following three aspects: (1)

to conduct in-depth study of the features of general time series and

upgrade EINs to model the temporal patterns of time series and

exclude their noise; (2) to study how to introduce more feedback

to EINs to facilitate its exploration of possible links; (3) to apply

REST to other domains to verify its generality, such as software

invocation prediction and pandemic prediction.
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A NOTATIONS
B EVALUATION METRICS
Obey our definitions in Section 3, aforementioned metrics are de-

fined as follows, where Ω refers to the indices of observed samples.

Note that missing data are not included in Ω.
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Table 4: Notations

Name Explanations

G Graph, or spatial dependencies.

V , N Vertex set of G, |V| = N
E,W Edge set and corresponding wight set of G.

L Laplacian matrix of G, which refers to random

walk definition in this work.

D, DI , DO Degree matrix, which can break down into input

degree DI , and output degree DO .

A,M Adjacent matrix, which are considered withM
modalities.

дΘ, Θ, K Graph convolutional filter with trainable

parameters Θ. Θ ∈ RM×K×di×do
, withM

modalities, K predefined graph convolution

depth, di and do as input and output dimensions

of graph convolutional filters.

H Hidden states, output of graph convolution

operators, H ∈ RN×do
.

• mean absolute error (MAE):

MAE =
1

Ω

∑
i ∈Ω

| yi − ŷi |

• mean squared error (RMSE):

RMSE =

√
1

Ω

∑
i ∈Ω

(yi − ŷi )2

• root mean squared logarithmic error (RMSLE):

RMSLE =

√
1

Ω

∑
i ∈Ω

[log(yi + 1) − log(ŷi + 1)]

• mean absolute percentage error (MAPE):

MAPE =
1

Ω

∑
i ∈Ω

| yi − ŷi |

yi

• symmetric mean absolute percentage error (SMAPE):

SMAPE =
2

Ω

∑
i ∈Ω

| yi − ŷi |

yi + ŷi
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