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Cain N, Barreiro AK, Shadlen M, Shea-Brown E. Neural inte-
grators for decision making: a favorable tradeoff between robustness
and sensitivity. J Neurophysiol 109: 2542–2559, 2013. First published
February 27, 2013; doi:10.1152/jn.00976.2012.—A key step in many
perceptual decision tasks is the integration of sensory inputs over
time, but a fundamental questions remain about how this is accom-
plished in neural circuits. One possibility is to balance decay modes of
membranes and synapses with recurrent excitation. To allow integra-
tion over long timescales, however, this balance must be exceedingly
precise. The need for fine tuning can be overcome via a “robust
integrator” mechanism in which momentary inputs must be above a
preset limit to be registered by the circuit. The degree of this limiting
embodies a tradeoff between sensitivity to the input stream and
robustness against parameter mistuning. Here, we analyze the conse-
quences of this tradeoff for decision-making performance. For con-
creteness, we focus on the well-studied random dot motion discrim-
ination task and constrain stimulus parameters by experimental data.
We show that mistuning feedback in an integrator circuit decreases
decision performance but that the robust integrator mechanism can
limit this loss. Intriguingly, even for perfectly tuned circuits with no
immediate need for a robustness mechanism, including one often does
not impose a substantial penalty for decision-making performance.
The implication is that robust integrators may be well suited to
subserve the basic function of evidence integration in many cognitive
tasks. We develop these ideas using simulations of coupled neural
units and the mathematics of sequential analysis.

decision making; neural integrator

MANY DECISIONS ARE BASED ON the balance of evidence that
arrives at different points in time. This process is quantified via
simple perceptual discrimination tasks in which the momentary
value of a sensory signal carries negligible evidence, but cor-
rect responses arise from summation of this signal over the
duration of a trial. At the core of such decision making must lie
neural mechanisms that integrate signals over time (Gold and
Shadlen 2007; Wang 2008; Bogacz et al. 2006). The function
of these mechanisms is intriguing, because perceptual deci-
sions develop over hundreds of milliseconds to seconds, while
individual neuronal and synaptic activity often decays on
timescales of several to tens of milliseconds, a difference of at
least an order of magnitude. A mechanism that bridges this gap
is feedback connectivity tuned to balance, and hence cancel,
inherent voltage leak and synaptic decay (Cannon and Robin-
son 1983; Usher and McClelland 2001).

The tuning required for a circuit-based or cellular mecha-
nism to achieve this balance presents a challenge (Seung 1996;

Seung et al. 2000), illustrated in Fig. 1A, top, via motion of a
ball on a smooth energy surface. Here, the ball position E(t)
represents the total activity of a circuit (relative to a baseline
marked 0); momentary sensory input perturbs E(t) to increase
or decrease. If decay dominates (Fig. 1A, top right), then E(t)
always has a tendency to “roll back” to baseline values, thus
forgetting accumulated sensory input. Conversely, if feedback
connections are in excess, then activity will grow away from
the baseline value (Fig. 1A, top center). If balance is perfectly
achieved via fine tuning (Fig. 1A, top left), then temporal
integration can occur. That is, inputs can then smoothly perturb
network activity back and forth, so that the network state at any
given time represents the time integral of past inputs.

Koulakov et al. (2002) proposed an alternative, circuit-based
model, equivalent to movement along a scalloped energy
surface made up of neighboring “energy wells” (Fig. 1A,
bottom) (Pouget and Latham 2002; Goldman et al. 2009;
Fransén et al. 2006). Importantly, even without finely tuned
connectivity, network states can hold prior values without
decay or growth, allowing integration of inputs over time. Thus
this mechanism is called a robust integrator. However, the
energy wells imply a minimum input strength to transition
between adjacent states, with inputs below this limit effectively
ignored. Intriguingly, this loss of sensitivity is shared by a
mechanism of integration that was discovered at the level of
single cells. Egorov et al. (2002) observed integration and
graded steady states in layer V cells of entorhinal cortex, and
movement among these states was only driven by stimuli
stronger than a certain limit [as modeled in Fransén et al.
(2006); Loewenstein and Sompolinsky (2003)].

These studies point to a general issue affecting integrator
mechanisms: a loss of sensitivity to weak inputs. As made
explicit in Koulakov et al. (2002) and Goldman et al. (2003),
this may arise in a tradeoff in which robustness to parameter
mistuning is gained. Here, we abstract the underlying mecha-
nisms and present a general theoretical analysis of the tradeoff
between sensitivity and robustness for decisions based on
integrated evidence. We find that the tradeoff is favorable:
decision speed and accuracy are lost when the integrator circuit
is mistuned, but this loss is partially recovered by making the
network dynamics robust. Thus, although the robust integrator
discards the weakest portions of the evidence stream, enough
evidence is retained to produce decisions that are faster and
more accurate than would occur with unchecked over- or
under-tuning of feedback (Fig. 1B). The implication is that
cellular or circuit-based robust integrators may be remarkably
well suited to subserve a variety of decision-making computa-
tions.
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MATERIALS AND METHODS

Model and Task Overview

To explore the consequences of the robust integrator mechanism
for decision performance, we begin by constructing a two-alternative
decision-making model similar to that proposed by Mazurek et al.
(2003). For concreteness, we concentrate on the forced choice motion
discrimination task (Roitman and Shadlen 2002; Mazurek et al. 2003;
Gold and Shadlen 2007; Churchland et al. 2008; Shadlen and New-
some 1996, 2001). Here, subjects are presented with a field of random
dots, of which a subset move coherently in one direction; the remain-
der are relocated randomly in each frame. The task is to correctly
choose the direction of coherent motion from two alternatives (i.e.,
left vs. right).

As in Mazurek et al. (2003) [see also Smith (2010)], we first
simulate a population of neurons that represent the sensory input to be
integrated over time. This population is a rough model of cells in
extrastriate cortex (area MT) that encode momentary information
about motion direction (Britten et al. 1992, 1993; Salzman et al.
1992). We pool spikes from model MT cells that are selective for each
of the two possible directions into separate streams, labeled according
to their preferred “left” and “right” motion selectivity (see Fig. 2).
Two corresponding integrators then accumulate the difference between
these streams, left-less-right or vice versa. Each integrator therefore
accumulates the evidence for one alternative over the other. The dynam-
ics of these integrators embody the tradeoff between robustness and
sensitivity that is the focus of our study (see Neural Integrator Model and
the Robustness-Sensitivity Tradeoff).

Depending on the task paradigm, different criteria may be used to
terminate accumulation and give a decision. In the reaction time task,

accumulation continues until activity crosses a decision threshold: if
the leftward evidence integrator reaches threshold first, a decision that
overall motion favored the leftward alternative is registered. In a
second task paradigm, the controlled duration task, motion viewing
duration is set in advance by the experimenter. A choice is made in
favor of the integrator with greater activity at the end of the stimulus
duration.

Accuracy is defined as the fraction of trials that reach a correct
decision. Speed is measured by the time taken to cross threshold
starting from stimulus onset. Reaction time (RT) is then defined as the
time until threshold (decision time) plus 350 ms of nondecision time,
accounting for other delays that add to the time taken to select an
alternative [e.g., visual latencies, or motor preparation time, cf. Ma-
zurek et al. (2003) and Luce (1986)]. The exact value of this param-
eter was not critical to our results. Task difficulty is determined by the
fraction of coherently moving dots C (Britten et al. 1992; Mazurek et
al. 2003; Roitman and Shadlen 2002). Accuracy and reaction time
across multiple levels of task difficulty define the accuracy and
chronometric functions in the reaction time task and together can be
used to assess model performance. When necessary, these two num-
bers can be collapsed into a single metric, such as the reward per unit
time or reward rate. In the controlled duration task, the only measure
of task performance is the accuracy function.

Sensory Input

We now describe in detail the signals that are accumulated by the
integrators corresponding to the left and right alternatives. First, we
model the pools of leftward or rightward direction-selective sensory
(MT) neurons as 100 weakly correlated [Pearson’s correlation � �

Perfect Over-tuned Under-tuned:
Not Robust:

Robust:
Perfect Over-tuned Under-tuned:

A B

Fig. 1. Schematic of neural integrator models. A: visualizing integration via an energy surface (Pouget and Latham 2002; Goldman et al. 2009). The robust
integrator can “fixate” at a range of discrete values, indicated by a sequence of potential wells, despite mistuning of circuit feedback. These wells can be arbitrarily
“close” in the energy landscape, providing a mechanism for graded persistent activity. Without these wells (the nonrobust case), activity in a mistuned integrator
would either exponentially grow or decay, as at top. Perturbing the robust integrator from one well to the next, however, requires sufficiently strong momentary
input. B: as a consequence, low-amplitude segments in the input signal �I(t), below a robustness limit R, are not accumulated by a robust integrator: only the
high-amplitude segments are. The piecewise definition of Eq. 5 captures this robustness behavior, resulting in the accumulated activity shown, and may be related
to, e.g., a detailed bistable-subpopulation model. A decision is expressed when the accumulated value E(t) crosses the decision threshold �.

Right:

Sensory Neurons:

Left:

Input Signals: Recurrent Integration: Threshold:

Fig. 2. Overview of model. Simulations of sensory neurons and neural recordings are used to define the left and right inputs �Il(t) and �Ir(t) to neural integrators.
These inputs are modeled by Gaussian [Ornstein-Uhlenbeck (OU)] processes, which capture noise in the encoding of the motion strength by each pool of spiking
neurons (see Eqs. 1–3 for definition of input signals). Similar to Mazurek et al. (2003), the activity levels of the left and right integrators El(t) and Er(t) encode
accumulated evidence for each alternative. In the reaction time task, El(t) and Er(t) race to thresholds to determine choice on each trial. In the controlled duration
task, the choice is made in favor of the integrator with higher activity at the end of the stimulus presentation.
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0.11 (Zohary et al. 1994; Bair et al. 2001)] spiking cells (see Fig. 3).
As in Mazurek and Shadlen (2002), neural spikes are modeled via
unbiased random walks to a spiking threshold, which are correlated
for neurons in the same pool. Increasing the variance of each step in
the random walk increases the firing rate of each model neuron; it was
therefore chosen at each coherence value to reproduce the linear
relationship between coherence C and mean firing rate �l,r of the left
and right selective neurons observed in MT recordings:

�l,r(C) � r0 � bl,rC . (1)

Here the parameters r0, bl, and br approximate recordings from MT
(Britten et al. 1993); r0 � 20, and if evidence favors the left alter-
native, bl � 0.4 and br � �0.2; if the right alternative is favored, these
values are exchanged.

Next, the output of each spiking pool was aggregated. Each spike
emitted from a neuron in the pool was convolved with an exponential
filter with time constant 20 ms, an approximate model of the smooth-
ing effect of synaptic transmission. These smoothed responses were
then summed to form a single stochastic process for each pool [see
Fig. 3, right, and Smith (2010)].

We then approximated the smoothed output of each spiking pool by
a simpler stochastic process that captures the mean, variance, and
temporal correlation of this output as a function of dot coherence. We
used Gaussian processes Il(t) and Ir(t) for the rightward- and leftward-
selective pools (see Fig. 3). Specifically, we chose Ornstein-Uhlen-
beck (OU) processes, which are continuous Gaussian processes gen-
erated by the stochastic differential equations

dIl,r �
�l,r(C) � Il,r

�
dt ��2	l,r(C)

�
dWt (2)

with mean �l,r(C) as dictated by Eq. 1 and noise contributed by the
Wiener process Wt. The variance �l,r(C) and timescale � were chosen
to match the steady-state variance and autocorrelation function of the
smoothed spiking process. As shown in RESULTS, this timescale affects
the speed and accuracy of decisions under robust integration.

Our construction so far accounts for variability in output from left
vs. right direction selective neurons. We now incorporate an addi-
tional noise source into the output of each pool. These noise terms
[
l(t) and 
r(t), respectively] could represent, for example, neurons
added to each pool that are nonselective to direction or intrinsic
variability in the integrating circuit. Each noise source is modeled as
an independent OU process with mean 0, timescale 20 ms as above,
and a strength (variance) 	�/2. This noise strength is a free parameter
that we vary to match behavioral data (see Parameterizing and
Comparing the Robust Integrator Model with Behavioral Data and
Fig. 15). We note that previous studies (Shadlen et al. 1996; Mazurek
et al. 2003; Cohen and Newsome 2009) also found that performance

based on the direction-sensitive cells alone can be more accurate than
behavior and, therefore, incorporated variability in addition to the
output of left and right direction selective MT cells.

Finally, the signals that are accumulated by the left and right neural
integrators are constructed by differencing the outputs of the two
neural pools:

�Il(t) � �Il(t) � 
l(t)� � �Ir(t) � 
r(t)�
�Ir(t) � ��Il(t).

(3)

Neural Integrator Model and the Robustness-Sensitivity Tradeoff

A central issue is the impact of variability in the relative tuning of
recurrent feedback vs. decay in a neural integrator circuit. Below, we
will introduce the mistuning parameter , which determines the extent
to which feedback and decay fail to perfectly balance. We first define
the dynamics of the general integrator model on which our studies are
based. This is described by the firing rates El,r(t) of integrators that
receive outputs from left-selective or right-selective pools Il,r(t) re-
spectively. The firing rates El,r(t) increase as evidence for the corre-
sponding task alternative is accumulated over time:

�E

dEl,r

dt
� �El,r � (1 � )El,r � ��Il,r(t)

�El,r � ��Il,r(t).

(4)

The three terms in this equation account for leak, feedback exci-
tation, and the sensory input (scaled by a weight � � 1/9), with time
constant �E � 20 ms. When the mistuning parameter  � 0, leak and
self-excitation exactly cancel, and hence the integrator is perfectly
tuned. An integrator with  � 0 is said to be mistuned, with either
exponential growth or decay of activity (in the absence of input).
Imprecise feedback tuning is modeled by randomly setting  to
different values from trial to trial (but constant during a given trial),
with a mean value ̄ and a precision given by a standard deviation �.
We assume that ̄ � 0 for most of the study. Thus the spread of ,
which we take to be Gaussian, represents the intrinsic variability in the
balance between circuit-level feedback and decay. Perfect tuning
corresponds to � � ̄ � 0, while � � 0 or ̄ � 0 corresponds to
a mistuned integrator. Finally, we set initial activity in the integrators
to zero [El,r(0) � 0], and impose reflecting boundaries at Er � 0,
El � 0 [as in, e.g., Smith and Ratcliff (2004)] so that firing rates never
become negative.

The tradeoff between robustness to mistuning and sensitivity to
inputs is described by the extended model

�E

dEl,r

dt
� �0 �El,r � ��Il,r� � �R

El,r � ��Il,r otherwise

Sensory Neurons

C
el

l #

Fig. 3. Construction of Gaussian (OU) processes to represent fluctuating, trial-by-trial firing rate of a pool of weakly correlated MT neurons (Bair et al. 2001;
Zohary et al. 1994). As in Mazurek and Shadlen (2002), these motion sensitive neurons provide direct input to our model integrator circuits. Simulated spike
trains from weakly correlated, direction selective pools of neurons are shown as a rastergram. All spikes before time t, a sum over the jth spike from the ith neuron,
for all i and j, are convolved with an exponential filter, and then summed to create a continuous stochastic output (right); here, H(t) is the Heaviside function.
We approximated this output by a simpler Gaussian (OU) process to simplify numerical and analytical computations that follow.
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All subsequent results are based on this simplified model, which
captures the essence of the robust integration computation. The first
line is analogous to the series of potential wells depicted in Fig. 1: if
the sum of the mistuned integrator feedback and the input falls below
the robustness limit R, the activity of the integrator remains fixed. If
this summed input exceeds R, the activity evolves as for the nonrobust
integrator in Eq. 4. To interpret the robustness limit R, it is convenient
to normalize by the standard deviation of the input signal:

R̂ �
R

�Var��Il,r(t)�
�

R

S

where S � �Var��Il,r�t	�. In this way, R̂ can be interpreted in units
of standard deviations of input OU process that are “ignored” by the
integrator. This yields the final expression, which we reproduce for
convenience:

�E

dEl,r

dt
��0 �El,r � ��Il,r� � �̂SR̂.

El,r � ��Il,r otherwise
(5)

To summarize, Eq. 5 defines a parameterized family of neural
integrators, distinguished by the robustness limit R̂ As R̂ ¡ 0, the
model reduces to Eq. 4. When additionally  � 0, the (perfectly
tuned) integrator computes an exact integral of its input: Eq. 5 then
yields El,r(t) � �t

0�Il,r (t=)dt=. We analyze this robust integrator model
below.

Computational Methods

Monte Carlo simulations of Eq. 5 were performed using the
Euler-Maruyama method (Higham 2001), with dt � 0.1 ms. For a
fixed choice of input statistics and threshold �, a minimum of 10,000
trials were simulated to estimate accuracy and reaction time values. In
simulations where � � 0, results were generated across a range of
-values and then weighted according to a normal distribution. The
range of values was chosen with no less than 19 linearly spaced
points, across a range of 	3 SD around the mean ̄. Simulations were
performed on NSF Teragrid clusters and the UW Hyak cluster.

Reward rate values presented in Reward Rate and the Robustness-
Sensitivity Tradeoff are presented as maximized by varying the free
parameter �; values were computed by simulating across a range of �
values. The range and spacing of these values were chosen dependent
on the values of R̂ and  for the simulation; the range was adjusted to
capture the relative maximum of reward rate as a function of �, while
the spacing was adjusted to find the optimal � value with a resolution
of 	0.1: the values of � and 	� (see table included in Fig. 15) were
chosen to best match accuracy and chronometric functions to behav-
ioral data reported in Roitman and Shadlen (2002). This was accom-
plished by minimizing the sum-squared error in data vs. model
accuracy and chronometric curves across a discrete grid of � and 	�

values, with a resolution of 0.1.
Autocovariance functions of integrator input presented in Analysis:

Robust Integrators and Decision Performance were computed by
simulating an Ornstein-Uhlenbeck process using the exact numerical
technique in Gillespie (1996) with dt � 0.1 ms to obtain a total of 227
sample values. Sample values of the process less than the specified
robustness limit R̂ were set to 0, and the autocovariance function was
computed using standard Fourier transform techniques.

RESULTS

How Do Robustness and Mistuning Affect Decision Speed
and Accuracy?

A general issue affecting neural systems that integrate stim-
uli is the balance between mechanisms that lead their activity
to decay vs. grow over time (Fig. 1A). If these are tuned to a

perfect balance, the result is graded persistent activity that can
accumulate and store inputs. Robust integrators provide an
alternative to such fine tuning but at the cost of lost sensitivity
to input signals, represented by the energy wells in Fig. 1A.

Below we explore the costs and benefits of robust integration
in terms of the general neural integrator model of Eq. 5. This
model summarizes the underlying issues via two key parame-
ters. The first, , describes mistuning of the integrator away
from “perfect” dynamics, so that its activity decays or grows
autonomously (Fig. 1A). We describe the extent of mistuning
by �, which represents the standard deviation of  from the
ideal value ̄ � 0. The second key parameter is the robustness
limit R̂. We emphasize dual effects of R̂: as R̂ increases, the
integrator becomes able to produce a range of graded persistent
activity for ever-increasing levels of mistuning (see Fig. 1A,
where R̂ corresponds to the depth of energy wells). This
prevents runaway increase or decay of activity when integra-
tors are mistuned; intuitively, this might lead to better perfor-
mance on sensory accumulation tasks. At the same time, as R̂
increases, a larger proportion of the evidence fails to affect the
integrator (see Fig. 1B, where R̂ specifies a limit within which
inputs are ignored). Such sensitivity loss should lead to worse
performance. This implies a fundamental tradeoff between
competing desiderata: 1) one would prefer to integrate all
relevant input, favoring small R̂, and 2) one would prefer an
integrator robust to mistuning (e.g., � � 0), favoring large R̂.
Thus it makes sense to assess the effect of robustness under
different degrees of mistuning, as represented schematically in
Fig. 4.

To assess this performance, we consider relationships be-
tween decision speed and accuracy in both controlled duration
and reaction time tasks. In the controlled duration task, we
simply vary the stimulus presentation duration and plot accu-
racy vs. experimenter-controlled stimulus duration. In the re-
action time task, we vary the decision threshold �, treated as a
free parameter, over a range of values, thus tracing out the
parametric curve for all possible pairs of speed and accuracy
values. Here, speed is measured by reaction time (see MATERI-
ALS AND METHODS). For both cases, we use a single representa-
tive dot coherence (C � 12.8 in Eq. 1); similar results were
obtained using other values for motion strength (see Fig. A4).

We first establish the performance impact of mistuning in
the absence of robustness. We begin with a case we call the
“baseline” model (Fig. 4), for which there is no mistuning or
robustness: � � R̂ � 0: Speed accuracy plots for this model
are shown as filled dots in Fig. 5, A and B, for the controlled
duration and reaction time tasks, respectively. We compare the

"Mistuned" 
Model

"Baseline" 
Model

"Robust" 
Model

"Recovery" 
Model

Fig. 4. Parameter space view of 4 integrator models, with different values of
the robustness limit R̂ and feedback mistuning variability �. The impact of
transitioning from one model to another by changing parameters is either to
enhance or diminish performance or to have a neutral effect (see text).
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baseline model with the “mistuned” model, indicated by
crosses, for which the feedback parameter has a standard
deviation of � � 0.1 (i.e., 10% of the mean feedback) and
robustness R̂ � 0 remains unchanged. In the controlled dura-
tion task (Fig. 5A), we observe that mistuning diminishes
accuracy by as much as 10%, and this effect is sustained even
for arbitrarily long viewing windows (Usher and McClelland
2001; Bogacz et al. 2006). The same effect is apparent in the
reaction time task (Fig. 5B): for a fixed reaction time, the
corresponding accuracy is decreased.

While maintaining feedback mistuning, we next increase the
robustness limit to R̂ � 1.25. We call this case the “recovery”
model because robustness compensates in part for the perfor-
mance loss due to feedback mistuning: the speed accuracy
plots in Fig. 6 for the recovery case, indicated by stars, lie
above those for the mistuned model. For example, at the longer
controlled task durations (Fig. 6A) and reaction times (Fig. 6B)
plotted, 30% of the accuracy lost due to integrator mistuning is
recovered via the robustness limit R̂ � 1.25. This degree of
improvement underestimates the recovery attainable in some
more realistic models. Indeed, a less simplified model of the
integrator achieves a larger performance recovery (approach-
ing 
75%; see Eq. 22 and Fig. A4).

One possible reason for the modest recovery of accuracy in
Fig. 6 is that robustness itself reduces decision speed and accu-
racy. However, this does not appear to be a viable explanation.
When the same degree of robustness accompanies a perfectly

tuned integrator, the “robust” case in Fig. 4, there is negligible loss
of performance. In particular, Fig. 7 demonstrates that when � �
0, speed accuracy curves for R̂ � 1.25 almost coincide with those
for the baseline case of R̂ � 0. We note that since R̂ measures
ignored input in units of the standard deviation, the integrator
circuit disregards as much as 75% of the input stimulus at low
coherence values. Given this large amount of ignored stimulus,
the fact that the robust integrator produces nearly the same accu-
racy and speed as the baseline case is surprising, as one might
expect ignoring stimulus to be detrimental to performance. This
implies that the robust model can protect against feedback mis-
tuning, without substantially sacrificing performance when feed-
back is perfectly tuned.

To summarize, the robust integrator appears well suited to
the decision tasks at hand, countering some of the performance
lost when feedback is mistuned. Moreover, even without mis-
tuning, a robust integrator still performs as well as the baseline
case that integrates all information in the input signal. In the
next section, we begin to explain this observation by construct-
ing several simplified models and employing results from
statistical decision-making theory.

Analysis: Robust Integrators and Decision Performance

Controlled duration task: temporally independent signals.
We can begin to understand the effect of the robustness limit
on decision performance by formulating a simplified version of
the evidence accumulation process. We focus first on the
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Fig. 5. Mistuned feedback diminishes decision
performance. Inset: plots depict a move in pa-
rameter space from the baseline model to the
mistuned model by changing � � 0 ¡ 0:1. In
this and subsequent plots, simulation results are
given with markers; lines are rational polyno-
mial fits. A: in the controlled duration task,
accuracy is lower for the mistuned model than
for the baseline model at every trial duration,
indicating a loss of performance when � in-
creases. B: in the reaction time task, we para-
metrically plot all [reaction time (RT), accuracy]
pairs attained by varying the decision threshold
�. Once again, accuracy is diminished by mis-
tuning for a fixed mean reaction time.
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Fig. 6. Increasing the robustness limit R̂ helps
recover performance lost due to feedback mis-
tuning. Results of simulation are plotted with
fitting lines. Inset: we illustrate this by moving in
parameter space from the mistuned model to the
recovery model, by changing R̂ � 0 ¡ 1.25. The
impact on decision performance is shown for
both the controlled duration (A) and reaction
time (B) tasks. We find that R̂ � 0 yields a
performance gain for the recovery model com-
pared with the mistuned model (i.e., for a fixed
accuracy, mean reaction time is increased).
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controlled duration task, where the analysis is somewhat sim-
pler. Readers preferring a brief statement of the underlying
mechanisms may skip to the Summary of analysis and proceed
to the rest of the study from there.

Our first simplification is to consider a single accumulator E,
which receives evidence for or against a task alternative.
Moreover, we consider increments of evidence that arrive both
independently and discretely in time. The value of E on the ith
time step, Ei, is allowed to be either positive or negative,
corresponding to accumulated evidence favoring the leftward
or rightward alternatives, respectively. On each time step, Ei
increments by an independent, random value Zi with a proba-
bility density function (PDF) fZ(Z). We first describe an analog
of the baseline model above (i.e., in the absence of robustness,
R̂ � 0). Here, we take the increments Zi to be independent,
identical, and Gaussian distributed, with a mean � � 0 (estab-
lishing the preferred alternative) and standard deviation �: that
is, Zi � N (�, �2). After the nth step, we have

En � 

i�1

n

Zi.

In the controlled duration task, a decision is rendered after a
fixed number of time steps N, (i.e., n � N), and a correct decision
occurs when EN � 0. By construction, En � N (n�, n�2), which
implies that accuracy can be computed as a function of the
signal-to-noise ratio (SNR) s � ��� of a sample:

Accuracy � �0

� 1

�2�N�2
e�

(x � N�)2

2N�2 dx

�

1 � Erf��N

2
s

2
. (6)

Next, we change the distribution of the accumulated incre-
ments Zi to construct a discrete time analog of the robust
integrator. Specifically, increasing the robustness parameter to
R � 0 affects increments Zi by redefining the PDF fZ(Z) so that
weak samples do not add to the total accumulated “evidence,”
precisely as in Eq. 5. [Models where such a central “region of
uncertainty” of the sampling distribution is ignored were pre-
viously studied in a race-to-bound model (Smith and Vickers
1989); see DISCUSSION]. This requires reallocating probability

mass below the robustness limit to a weighted delta function at
zero (Fig. 8A). Specifically:

fzR(Z) � �(Z)��R

R
fz(Z=)dZ=� � 0 |Z| � R.

fz(Z) otherwise
(7)

To estimate decision accuracy with robustness R̂ � 0, we
sum N random increments from this distribution forming the
cumulative sum ENR̂

. As above, a correct decision occurs on

trials where ENR̂
� 0. As shown in Fig. 9, the replacement of

increments with zeros has negligible effect on accuracy when
R̂ is less than �0.5. For larger values of R̂, accuracy diminishes
faster for the discrete/independent model (light curve) com-
pared with the continuous/correlated model (dark curve). Loss
of accuracy is expected for both models as robustness effec-
tively prevents stimulus information from affecting the deci-
sion. However, the continuous model suffers less than the
discrete approximation, owing to the one important difference:
the presence of temporal correlations in the evidence stream.
We will return to this matter below. First, we give an expla-
nation for the negligible effect of R̂ on decision accuracy for
either model.

The central limit theorem allows us to approximate the new
cumulative sum ENR̂

as a normal distribution (for sufficiently
large N), with � and � in Eq. 6 replaced by the mean and
standard deviation of the PDF defined by Eq. 7. As before, we
normalize R by the standard deviation of the increment, R̂ �
R/�, and then express the fraction correct AccuracyR̂ as a
function of R̂ and s. One can think of R̂ as perturbing the
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Fig. 7. Increasing R̂ alone does not compromise
performance. Only simulation results, without
fitting lines, are plotted for clarity. Inset: we
illustrate this by moving in parameter space
directly from the baseline to the “robust” model.
For both controlled duration (A) and reaction
time tasks (B), we plot the relationship between
mean reaction time and accuracy. Circles give
results for the baseline model, and “x” and “y”
markers for the robust model at R̂ � 1 and 1.25,
respectively. These curves are very similar in
the baseline case, indicating little change in
decision performance due to the robustness limit
R̂ � 1.25.

Fig. 8. R̂ affects the discrete time increment distribution. The probability
density function of the random variable ZR̂, with probability mass for values
between the robustness limit R̂ reallocated as a delta function centered at zero
(in this figure, R̂ � 1).
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original accuracy function given in Eq. 6. Although this per-
turbation has a complicated form, we can understand its be-
havior by observing that its Taylor expansion (see Derivation
of Eqs. 8 and 20 for more details) does not have first or
second-order contributions in R̂ :

AccuracyR̂(N) � Accuracy(N)

�
�Ns (1 � 2s2)e�

(1�N)s2

2

6�
Rˆ 3 � O (Rˆ 5).

(8)

Thus, for small values of R̂ (giving very small R̂3), there will
be little impact on accuracy. Equation 8 can therefore partially
explain the key observation in Fig. 7A that R̂ can be substan-
tially increased while incurring very little performance loss.

Now we return to the comparison between the discrete/
independent and continuous/correlated models, by setting the
SNR of the sampling distribution identical to the steady-state
distribution of the input signal to the neural integrator model
(see Sensory Input). The interval between samples is set to
match accuracy performance of the continuous time model at
R̂ � 0. The gray line in Fig. 9A shows the accuracy for the
discrete time model, as the robustness limit R̂ is increased. The
discrete time model predicts a decrease in accuracy at R̂ � 0.5;
intriguingly, this is not seen in an analogous continuous time
model. In the next sections, we first describe this continuous
time model and explain how the discrepancy in the impact of
robustness can be resolved by accounting for the temporally
correlated structure of the continuous time signal.

Controlled duration task: temporally correlated signals. We
next extend the analysis of the controlled duration task in the
previous section to treat integration of temporally correlated
signals. In particular, we consider the continuous time signals
described in Sensory Input above (although our conclusions
would apply to temporally correlated processes in discrete time
as well). We follow the method developed in Gillespie (1996)
to describe the mean and variance of the integral of a contin-
uous input signal. The challenge here lies in the temporal
correlations in the Gaussian OU input signal (see Sensory
Input). As in the previous section, we describe the distribution
of the integrated signal at the final time T.

We first replace the discrete input samples Zi from the
previous section with a continuous signal Z(t), which we take
to be a Gaussian process with a correlation timescale derived

from our model sensory neurons (see MATERIALS AND METHODS).
We define the integrated process

dE

dt
� Z(t) → E(t) � �0

t
Z(t=)dt= (9)

with initial condition E(0) � 0.
Assuming that Z(t) satisfies certain technical conditions that

are easily verified for the OU process [wide-sense stationarity,
�-stability, and continuity of sample paths (Gardiner 2002;
Billingsley 1986; Gillespie 1996)], we can construct differen-
tial equations for the first and second moments �E�t	� and �E2

�t	� evolving in time. We start by taking averages on both sides
of our definition of E(t) and, noting that E(0) � 0, compute the
time-varying mean:

d�E(t)�
dt

� �Z(t)�) �E(t)� � t�Z(t)� . (10)

Similarly, we can derive a differential equation for the second
moment of E(t):

d�E2(t)�
dt

� 2�Z(t)E(t)� . (11)

The right-hand side of this equation can be related to the area under
the autocovariance function A��	 � �Z�t	Z�t � �	� � �Z�t	�2 of the
process Z(t):

�Z(t)E(t)� � �Z(t)�0

t
Z(s)ds� ��0

t
�Z(t)Z(s)�ds

��0

t
�Z(t)Z(t � �)�d�

��0

t
A(�) � �Z(t)�2d�

(12)

We now have an expression for how the second moment
evolves in time. We can simplify the result via integration by
parts and the fact that �Z�t	� is constant in time:

�E2(t)� � 2�0

t �0

s
A(�) � �Z(t)�2d�ds

� 2�0

t
(t � �)A(�)d� � t2�Z(t)�2

)Var�E(t)� � 2�0

t
(t � �)A(�)d� .

(13)

Because E(t) is an accumulation of Gaussian random samples
Z(t), it will also be normally distributed and hence fully
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Fig. 9. Accuracy of the discrete/independent and continuous/correlated models for the controlled duration task, T � 500 ms. A: approximation of the performance
of the continuous/correlated model via Eq. 15 is plotted as a black curve, and that predicted by the discrete/independent model with identical signal increments
is plotted as a gray curve. B: disparity in performance of these 2 models can be partially understood by observing the decorrelating effect of R̂ on the
autocorrelation function for the evidence stream in the continuous/correlated model. Inset: 2 of these same functions (for R̂ � 0 and R̂ � 1.5) are plotted
normalized to their peak value.
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described by the mean (Eq. 10) and variance (Eq. 13) (Billing-
sley 1986).

To model a nonrobust integrator, we take Z(t) to be a OU
process with steady-state mean and variance � and �2, and
time constant �. For the robust case, we can follow Eq. 5 and
parameterize a family of processes ZR̂(t) with momentary
values below the robustness limit R̂ set to zero. (Here, we again
normalize the robustness limit by the standard deviation of the
OU process.) We numerically compute the autocovariance
functions AR̂(�) of these processes and use the result to com-
pute the required mean and variance, and hence time-depen-
dent signal-to-noise ratio SNR(t), for the integrated process
E(t). This yields

SNRR̂(t) �
�E(t)�

�Var�E(t)�
�

tE�ZR̂(t)�

�2�0

t
(t � �)AR̂(�)d�

. (14)

Under the assumption that E(T) is approximately Gaussian for
sufficiently long T (which can be verified numerically), we use
this SNR to compute decision accuracy at T:

AccuracyR̂(T) �

1 � Erf� 1

�2
SNRR̂(T)

2
. (15)

This function is plotted for T � 500 ms as the black line in
Fig. 9A. The plot shows that accuracy remains relatively
constant until the robustness limit R̂ exceeds 
1.25, a longer
range of R̂ values than for the discrete time case (compare gray
curve vs. black curve in Fig. 9A).

Why does the robustness limit appear to have a milder effect
on degrading decision accuracy for our temporally correlated
vs. independent input signals? We can get some insight into the
answer by examining the autocovariance functions AR̂��	,
which we present in Fig. 9B. When normalized by their peak
value, the autocovariance for R̂ � 0.5 falls off more quickly
with respect to the time lag � (see Fig. 9B, inset), indicating
that subsequent samples become less correlated in time. Thus
there are effectively more “independent” samples that are
drawn over a given time range T, improving the fidelity of the
signal and hence decision accuracy. Such an improvement
clearly has no room to occur when samples are already inde-
pendent, as in the preceding section. Interestingly, this argu-
ment, that, all else being equal, the sum of samples with lower
correlation will yield better decision accuracy, is the same as
that applied to samples pooled across neural populations by
(Zohary et al. 1994; Averbeck et al. 2006).

The impact of the robustness limit on temporally correlated
signals can be visualized by considering how robustness trans-
forms a set of correlated (Gaussian) random variables, each
representing the value of the signal at a nearby point in time
(Fig. 10). As proven by (Lancaster 1957) and applied in a
different context by (de la Rocha et al. 2007; Dorn and Ringach
2003), the nonlinear, thresholding action of this function must
reduce the correlation of these variables; Fig. 10 demonstrates
this explicitly. This is the mechanism behind the decrease in
autocorrelation above.

As pointed out to us by a reviewer, the same setup leads to
a complementary view of why the robustness operation can
have minimal impact on decision accuracy. The more corre-

lated a set of random samples is, the greater the chance that
they will have the same deviation from the mean, i.e., that
nearby samples in time will all provide evidence in favor of the
same task alternative. The limited effect of robustness on
decision accuracy suggests that, even if some of these samples
are rectified to zero, other (correlated) samples remain that lead
to the same final decision.

In summary, our analysis of decision performance for the
controlled duration task shows that two factors contribute to
the preservation of decision performance for robust integrators.
The first is that the momentary SNR of the inputs is barely
changed for robustness limits up to R̂ 
 0.5. The second is that,
as R̂ increases, the signal ZR̂�t	 being integrated becomes less
correlated in time. This means that (roughly) more independent
samples will arrive over a given time period.

Reaction time task. In the context of threshold crossing in
the reaction time task, the accumulation of increments toward
decision thresholds can be understood as the sequential prob-
ability ratio test, where the log odds for each alternative are
summed until a predefined threshold is reached (Wald 1945;
Gold and Shadlen 2002; Luce 1963; Laming 1968). Wald
(1944) provides an elegant method of computing decision
accuracy and speed (reaction time). The key quantity is given
by the moment generating function [MGF, denoted MZ(�)
below] for the samples Z [see Luce (1986), Link and Heath
(1975), and Doya (2007)]. Under the assumption that thresh-
olds are crossed with minimal overshoot of the accumulator on
the final step, we have the following expressions:

Accuracy �
1

1 � e�h0
(16)

RT �
�

E[Z]
tanh��

�

2
h0� (17)

where h0 is the nontrivial real root of the equation MZ(�) � 1
and � is the decision threshold.

We first consider the case of a nonrobust integrator, for which
the samples Z are again normally distributed. In this case, we must
solve the following equation to � � h0:

MZ(�) � Ez[e�z] � ���

�
fZ(z)e��zdz � e

�2�2

2
��� � 1. (18)

It follows that � � 0 and � � h0 � � 2���2 provide the two
real solutions of this equation. (Wald’s Lemma ensures that
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Fig. 10. Distribution of 2 neighboring (in time) samples of the incoming signal.
A: before application of the robustness operation, the samples Z(t1) and Z(t2)
covary with correlation coefficient Corr � 0:5. B: after applying robustness
(R̂ � 1), samples with Z(t1) � R̂ are mapped to ZR̂ (t1) � 0, and likewise for
samples with Z(t2) � R̂. As a consequence, samples covary less in the region
where either sample has been thresholded to zero, yielding Corr � 0:42.
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there are exactly two such real roots, for any sampling distri-
bution meeting easily satisfied technical criteria.)

When the robustness limit R̂ � 0, we can again compute the
two real roots of the associated MGF. Here, we use the increment
distribution fZR

(Z) given by Eq. 7, for which all probability mass
within R of 0 is reassigned to 0. Surprisingly, upon plugging this
distribution into the expression MZ(�) � 1, we find that � � 0, h0
continue to provide the two real solutions to this equation regard-
less of R, as depicted in Fig. 11A.

This observation implies that 1) accuracies (Eq. 16) are
unchanged as R is increased, and 2) reaction times (Eq. 17)
only change when E[ZR] changes. In other words, the integra-
tor can ignore inputs below an arbitrary robustness limit at no
cost to accuracy; the penalty will be incurred in terms of
reaction time, and this will only be significant when E[ZR]
changes appreciably. This result holds for any distribution for
which:

fZ(z) � fZ(�z)e�h0z. (19)

it is straightforward to verify that the Gaussian satisfies this
property (see Derivation of Eq. 19 for more details).

How much of an increase in R is necessary to decrease
E[ZR], the key quantity that alone controls performance loss?
After substituting R̂ � R/�, we again find only one term up to
fifth order in R̂,

E[ZR̂] � E[Z] � �� 2

9�
e�

1

2��

� 2

R̂3 � O(R̂5) � ... , (20)

indicating that modest amounts of robustness lead to only small
changes in E[ZR̂]. [This is similar to the controlled duration
case, where small values of R̂ will have little effect on
AccuracyR̂�N	, cf. Eq. 8; see Derivation of Eqs. 8 and 20 for
more details.] This property, in combination with the constancy
of h0, allows us to reason about the tradeoff of speed vs.
accuracy under robustness. Under symmetrically bounded
drift-diffusion, accuracy is determined by � and h0, whereas the
mean decision time is determined by �, h0, and E[Ẑ]. Since h0
is fixed for all values of R̂, the predicted effect of robustness is
a slowing of the decision time owing to the small change in
E[ZR̂] (Eq. 20).

This effect is depicted in Fig. 10B. The solid curve is a locus
of speed-accuracy combinations achieved by varying � under
no robustness. As in the previous section, the SNR of the

independent sampling distribution is identical to the continuous
time model (and performance at R̂ � 0 is matched to Fig. 7B
by varying the time intersampling time, here 37 ms). Perfor-
mance begins to decrease at R̂ � 0.5, and is much lower at
R̂ � 1 than the continuous time model with correlated evidence
streams. As in the preceding section, robustness serves to
decorrelate this input stream, effectively giving more indepen-
dent samples and preserving performance beyond that pre-
dicted by the independent sampling theory.

Summary of analysis. In the preceding three sections we have
analyzed the impact of the robustness limit on decision perfor-
mance. For both the controlled duration and reaction time tasks,
we first studied the effect of this limit on the evidence carried by
momentary values of sensory inputs. In each task, this effect was
more favorable than might have been expected. In the controlled
duration case, the SNR of momentary inputs was preserved for a
fairly broad range of R, while in the reaction time task, R affected
speed but not accuracy at fixed decision threshold. These results
provided a partial explanation for the impact of robustness on
decisions. The rest of the effect was attributed to the fact that the
robustness mechanism serves to decorrelate input signals in time,
further preserving decision performance by providing the equiv-
alent of more independent evidence samples in a given time
window.

Reward Rate and the Robustness-Sensitivity Tradeoff

Up to now, we have examined performance in the reaction
time task by plotting the full range of attainable speed and
accuracy values. The advantage of this approach is that it
demonstrates decision performance in a general way. An al-
ternative, more compact approach, is to assume a specific
method of combining speed and accuracy into a single perfor-
mance metric. This approach is useful in quantifying decision
performance and rapidly comparing a wide range of models.

Specifically, we use the reward rate (RR) (Gold and Shadlen
2002; Bogacz et al. 2006):

RR �
Accuracy

�RT� � Tdel
, (21)

the number of correct responses made per unit time, where a
delay Tdel imposed between responses to penalizes rapid guess-
ing. Implicitly, this assumes a motivation on the part of the
subject that may not be true; in general, human subjects seldom
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Fig. 11. In the discrete model R̂ increases RT
but not accuracy. A: the second real root h0 of
MZR̂

(s) remains unchanged as R̂ increases from
0 ¡ 2 (lines are uniformly distributed in this
range). This implies that in the reaction time
task, no changes in the accuracy will be observed
(see Eq. 16). B: however, the speed accuracy
tradeoff will be affected, once E�Zˆ R� begins to
diminish (see Eq. 17). This performance loss
begins for R̂ � 0.5, in contrast to the per-
formance of the continuous time model (see
Fig. 7B).
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achieve optimality under this definition as they tend to favor
accuracy over speed in two-alternative forced choice trials
(Zacksenhouse et al. 2010). Here, we simply use this quantity
to formulate a scalar performance metric that provides a clear,
compact interpretation of reaction time data.

Figure 12A shows accuracy vs. speed curves at four levels of
R̂. The heavy solid line corresponds to the baseline model with
robustness and mistuning set to zero (see Fig. 4). The lighter
solid line corresponds to the mistuned model with � � 0.1.
The remaining broken lines correspond to the recovery model
for three increasing levels of the robustness limit R̂. Also
plotted in the background as dashed lines are reward rate level
curves, that is, lines along which reward rate takes a constant
value, with Tdel � 3 s. On each accuracy vs. speed curve, there
exists a reward rate-maximizing (reaction time, accuracy) pair.
This corresponds to a tangency with one reward rate level
curve and is plotted as a filled circle. In general, each model
achieves maximal reward rate via a different threshold �;
values are specified in the legend of Fig. 12B. [A general
treatment of reward rate-maximizing thresholds for drift-diffu-
sion models is given in Bogacz et al. (2006).]

In sum, we see that mistuned integrators with a range of
increasing robustness limits R̂ achieve greater reward rate, as
long as their thresholds are adjusted in concert. The optimal
values of reward rate for a range of robustness limits R̂ are
plotted in Fig. 12B. Figure 12 illustrates the fundamental
tradeoff between robustness and sensitivity. If there is variabil-
ity in feedback mistuning (� � 0), increasing R̂ can help
recover performance but only to a point. Beyond a certain
level, increasing R̂ further starts to diminish performance, as
too much of the input signal is ignored. Overall, the impact on
levels of reward rate is small: often �1%.

Biased Mistuning Towards Leak or Excitation

We next consider the possibility that variation in mistuning
from trial to trial could occur with a systematic bias in favor of
either leak or excitation and ask whether the robustness limit
has qualitatively similar effects on decision performance as for
the unbiased case studied above. Specifically, we draw the
mistuning parameter  from a Gaussian distribution with
standard deviation � � 0.1 as above but with various mean
values ̄ (see MATERIALS AND METHODS). In Fig. 13A we show
reward rates as a function of the bias ̄, for several different
levels of the robustness limit R̂. At each value of ̄, the highest
reward rate is achieved for a value of R̂ � 0; that is, regardless
of the mistuning bias, there exists an R̂ � 0 that will improve
performance vs. the nonrobust case (R̂ � 0). We note that this
improvement appears minimal for substantially negative mis-
tuning biases (i.e., severe leaky integration) but is significant
for the values of ̄ that yield the highest reward rate. Finally,
the ordering of the curves in Fig. 13A shows that, for many
values of ̄, this optimal robustness limit is an intermediate
value less than R̂ � 2.

While Fig. 13 only assesses performance via a particular
performance rule (reward rate, Tdel � 3 s), the analysis in
Reward Rate and the Robustness-Sensitivity Tradeoff suggests
that the result will hold for other performance metrics as well.
Moreover, Fig. 13B demonstrates the analogous effect for the
controlled duration task: for each mistuning bias ̄, decision
accuracy increases over the range of robustness limits shown.

Bounded Integration as a Model of the Fixed Duration Task

We have demonstrated that increasing the robustness limit R̂
can improve performance for mistuned integrators, in both the
reaction time and controlled duration tasks. In the latter, a
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Fig. 12. Robustness improves reward rate (RR)
under mistuning. A: speed accuracy curves plot-
ted for multiple values of R̂; as in previous fig-
ures, the greater accuracies found at fixed mean
reaction times indicate that performance im-
proves as R̂ increases. The heavy line indicates
the baseline case of a perfectly tuned, nonrobust
integrator (repeated from Fig. 5B). RR level
curves are plotted in background (dotted lines; see
text), and points along speed accuracy curves that
maximize RR are shown as circles. These maxi-
mal values of RR are plotted in B, demonstrating
the nonmonotonic relationship between R̂ and the
best achievable RR.
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A B Fig. 13. Robustness improves performance across a range
of mistuning biases ̄. In both the reaction time (A) and
controlled duration (B) tasks, robustness helps improve
performance when  � N (̄, 0.12), for all values of ̄
shown. As in previous figures, the coherence of the
sensory input is C � 12.8. In the reaction time task (A),
� is varied for each value of ̄ to find the maximal
possible RR, and performance gains are largest for ̄ �
0. In the controlled duration task, substantial gains are
possible across the range of ̄ values.
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decision was made by examining which integrator had accu-
mulated more evidence at the end of the time interval.

In contrast, Kiani et al. (2008) argue that decisions in the
controlled duration task may actually be made with a decision
threshold, much like the reaction time task. That is, evidence
accumulates until an absorbing bound is reached, causing the
subject to ignore any further evidence and simply wait until the
end of the trial to report the decision.

Figure 14 demonstrates that our observations about how the
robustness limit can recover performance lost to mistuned feed-
back carry over to this model of decision making as well. Spe-
cifically, Fig. 14A shows how setting R̂ � 0 improves perfor-
mance in a mistuned integrator. In fact, more of the lost perfor-
mance is recovered than in the previous model of the controlled
duration task (cf. Fig. 6A). Figure 14B extends this result to show
that some value of R̂ � 0 will recover lost performance over a
wide range of mistuning biases ̄ (cf. Fig. 13B).

Parameterizing and Comparing the Robust Integrator Model
with Behavioral Data

We have demonstrated that robustness serves to protect an
integrator against the hazards of runaway excitation and leak
and that the cost of doing so is surprisingly small. Yet, it is hard
to know whether the range of effects is compatible with known
physiology and behavior. Without better knowledge of the
actual neural mechanisms that support integration and decision
making, it is not possible to directly reconcile the parameters of
our analysis with physiology. However, in this study we
required that the free parameter values in the models that we
analyzed were compatible with measured psychophysics.

To accomplish this, we fit accuracy and chronometric func-
tions from robust integrator models to reaction time psycho-
physics data reported in Roitman and Shadlen (2002). This fit
is via least squares across the range of coherence values and
requires two free parameters for each integrator model: addi-
tive noise variance 	� and the decision bound � (see MATERIALS

AND METHODS). Such noise and bound parameters are stan-
dard in fitting accumulator-type models to behavioral data.
Figure 15 shows the results. Figure 15, A and B, displays
accuracy and chronometric data together with fits for various
integrator models, with R̂ � 0. The solid line shows a close fit
for the baseline model (i.e., with no feedback mistuning or
robustness, see Fig. 4) to the behavioral data, in agreement
with prior studies (Mazurek et al. 2003). The broken lines give
analogous fits for mistuned models (� � 0.1), with three
values of bias in feedback mistuning (̄).

Figure 15, C and D, shows the corresponding results for
robust integrators. For all cases in these panels, we take the
robustness limit R̂ � 1.25. We fix levels of additive noise to

values found for the nonrobust case above to demonstrate that
by adjusting the decision threshold, one can obtain approxi-
mate fits to the same data. This is expected from our results
above: Fig. 6 shows that, while accuracies at given reaction
times are higher for mistuned robust vs. nonrobust models, the
effect is modest on the scale of the full range of values traced
over an accuracy curve. Moreover, for the perfectly tuned case,
accuracies at given reaction times are very similar for robust
and nonrobust integrators (Fig. 7, with a slightly lower value of
R̂). Thus comparable pairs of accuracy and reaction time values
are achieved for robust and nonrobust models, leading to
similar matches with data. In sum, the accuracy and chrono-
metric functions in Fig. 15 show that all of the models sche-
matized in Fig. 4, baseline, mistuned, robust, and recovery, are
generally compatible with the chronometric and accuracy func-
tions reported in Roitman and Shadlen (2002).

A limitation of our analysis concerns the distribution of
reaction time. Above we considered the effects of robustness
on mean decision time but not on the shape of the distributions.
The standard DDM predicts a longer tail to the reaction time
distribution than is seen in data, thereby necessitating modifi-
cations to the simple model (Ditterich 2006; Ratcliff and
Rounder 1998; Churchland et al. 2008). The most compelling
modification in our view is a time-dependent reduction in the
decision threshold �. Our experience suggests that such mod-
ifications can also be implemented under robustness with and
without mistuning. However, we did not attempt to fit the
reaction time distributions from the experiments and leave the
matter for future investigation.

DISCUSSION

A wide range of cognitive functions require the brain to
process information over time scales that are at least an order
of magnitude greater than values supported by membrane time
constants, synaptic integration, and the like. Integration of
evidence in time, as occurs in simple perceptual decisions, is
one such well-studied example, whereby evidence bearing on
one or another alternative is gradually accumulated over time.
This is formally modeled as a bounded random walk or drift
diffusion process in which the state (or decision) variable is the
accumulated evidence for one choice and against the alterna-
tive(s). Such formal models explain both the speed and accu-
racy of a variety of decision-making tasks studied in both
humans and nonhuman primates (Ratcliff 1978; Luce 1986;
Gold and Shadlen 2007; Palmer et al. 2005), and neural
correlates have been identified in the firing rates of neurons in
the parietal and prefrontal association cortex (Mazurek et al.
2003; Gold and Shadlen 2007; Churchland et al. 2008; Shadlen
and Newsome 1996, 2001; Schall 2001; Kim et al. 2008). The
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bounded integration model of Kiani et al. (2008). Dot
coherence C � 12.8. A: increasing the robustness
limit R̂ helps recover performance lost to mistuning
at multiple reaction times in the controlled duration
task. Specifically, moving from the baseline model to
the mistuned model decreases decision accuracy, but
this lost accuracy can be partially or fully recovered
for R̂ � 0. B: when allowing for biased mistuning
(̄ � 0, � � 0.1), R̂ still allows for recovery of per-
formance; effects are most pronounced when ̄ � 0.
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obvious implication is that neurons must somehow integrate
evidence supplied by the visual cortex, but there is mystery as
to how.

This is a challenging problem because the biological build-
ing blocks operate on relatively short time scales. From a broad
perspective, the challenge is to assemble neural circuits that
that can sustain a stable level of activity (i.e., firing rate) and
yet retain the capability to increase or decrease firing rate when
perturbed with new input (e.g., momentary evidence). A well-
known solution is to suppose that recurrent excitation might
balance perfectly the decay modes of membranes and synapses
(Cannon and Robinson 1983; Usher and McClelland 2001).
However, this balance must be fine tuned (Seung 1996; Seung
et al. 2000), or else the signal will either dissipate or grow
exponentially (Fig. 1A, top). Several investigators have pro-
posed biologically plausible mechanisms that mitigate some-
what the need for such fine tuning (Lisman et al. 1998;
Goldman et al. 2003; Goldman 2009; Romo et al. 2003; Miller
and Wang 2005; Koulakov et al. 2002). These are important
theoretical advances because they link basic neural mechanism
to an important element of cognition and thus provide grist for
experiment.

Although they differ in important details, many of the pro-
posed mechanisms can be depicted as if operating on a scal-
loped energy landscape with relatively stable (low energy)
values, which are robust to noise and mistuning in that they
require some activation energy to move the system to a larger
or smaller value [Fig. 1A, bottom; cf. Pouget and Latham
(2002); Goldman et al. (2009)]. The energy landscape is a
convenient way to view such mechanisms, which we refer to as

robust integrators, because it also draws attention to a potential
cost. The very same effect that renders a location on the
landscape stable also implies that the mechanism must ignore
information in the incoming signal (i.e., evidence). Here, we
have attempted to quantify the costs inherent in this loss. How
much loss is tolerable before the circuit misses substantial
information in the input? How much loss is consistent with
known behavior and physiology?

We focused our analyses on a particular well-studied task
because it offers critical benchmarks to assess both the poten-
tial costs of robustness to behavior and a gauge of the degree
of robustness that might be required to mimic neurophysiolog-
ical recordings with neural network models. Moreover, the key
statistical properties of the signal and noise (to be accumulated)
can be estimated from neural recordings.

We first imposed a modest amount of mistuning in recurrent
excitation and asked whether robustness could protect against
loss of decision-making performance. We found that it could.
Although in general this protection is only partial (Figs. 6, 19),
for the controlled duration task it can be nearly complete
depending on the presence of a decision bound (Fig. 14A,
controlled duration �3 s). In absolute terms, effect sizes are
small for the task and mistuning levels that we modeled. A few
percentage points of accuracy are lost due to mistuning and
recovered due to robustness; this leads to only a small benefit
in performance measures such as reward rate.

However, our most surprising result is not the subtle im-
provement that robustness can confer in our simulated task but
the fact that levels of robustness can be quite high before they
begin to degrade decision-making performance. Both in the
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Fig. 15. Accuracy (A and C) and chronometric
(B and D) functions: data and model predic-
tions. Solid dots and stars are behavioral data
for a rhesus monkey [subject “N” and “B,”
respectively (Roitman and Shadlen 2002)]. In
A–D, the accuracy and chronometric functions
are fit to behavioral data via least squares,
over the free parameters � and 	�. In A and B,
the robustness threshold R̂ � 0, and results are
shown for baseline and exemplar mistuned
models (see legend in table). In C and D,
results are shown for the robust and recovery
models (R is fixed across the range of coher-
ence values so that R̂ � 1.25 at C � 0). The
close matches to data points indicate that these
models can be reconciled with the psycho-
physical performance of individual subjects
by varying few parameters. Parameter values
for each curve are summarized in the table.
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presence and in the absence of mistuning, ignoring a large part
of the motion evidence either slightly improved performance or
produced an almost negligible decrement. This was the case
even when more than a full standard deviation of the input
distribution is ignored; in fact, this is the level of robustness
that produced the best performance in the presence of mild
mistuning.

We can appreciate the impact of robust integration by consid-
ering the distribution of random values that would increment the
stochastic process of integrated evidence. Instead of imagining a
scalloped energy surface, we simply replace all the small pertur-
bations in integrated evidence with zeros. Put simply, if a standard
integrator would undergo a small step in the positive or negative
direction, a robust integrator instead stays exactly where it was. In
the setting of drift diffusion, this is like removing a portion of the
distribution of momentary evidence (the part that lies symmetri-
cally about zero) and replacing the mass with a delta function at
0. At first glance this appears to be a dramatic effect, see the
illustration of the distributions in Fig. 8, and it is surprising that it
would not result in strong changes in accuracy or reaction time or
both.

Three factors appear to mitigate this loss of momentary
evidence. First, setting weak values of the input signal to zero
can reduce both its mean and standard deviation by a similar
amount, resulting in a small net change to the input SNR.
Second, surprisingly, the small loss of signal-to-noise that does
occur would not result in any loss of accuracy if the accumu-
lation were to the same bound as for a standard integrator. The
cost would be to decision time alone. Third, even this slowing
is mitigated by the temporal dynamics of the input. Unlike for
idealized drift diffusion processes, real input streams possess
definite temporal correlation. Interestingly, removing the
weakest momentary inputs reduces the temporal correlation of
the noise component of the input stream. This can be thought
of as allowing more independent samples in a given time
period, thereby improving accuracy at a given response time.

While we used a simplified characterization of the robust
integration operation in our study, we noted that there are many
different ways in which this could be realized biologically
(Koulakov et al. 2002; Nikitchenko and Koulakov 2008; Gold-
man et al. 2003, 2009; Fransén et al. 2006; Loewenstein and
Sompolinsky 2003; Egorov et al. 2002). In APPENDIX A, we
make this connection concrete, for one such mechanism based
on bistable neural pools. An intriguing finding presented there
(see Fig. ) is that the robustness mechanism provided by the
circuit-based bistable model produces an even more favorable
effect of robustness for decision making than the simplified
model in the main text. This demonstrates the generality of our
results and points to an intriguing area of future study, focusing
on the impact of more detailed circuit- and cell-level dynamics.

Our robust integrator framework shares features with exist-
ing models in sensory discrimination. The interval of uncer-
tainty model of Smith and Vickers (1989) and the gating model
of Purcell et al. (2010) ignore part of the incoming evidence
stream, yet they can explain both behavioral and neural data.
We suspect that the analyses developed here might also reveal
favorable properties of these models. Notably, some early
theories of signal detection also featured a threshold, below
which weaker inputs fail to be registered, the so-called high
threshold theory (reviewed in Swets 1961). The primary dif-
ference in the current work is to consider single decisions made

based on an accumulation of many such thresholded samples
(or a continuous stream of them).

Although they are presented at a general level, our analyses
make testable predictions. For example, they predict that pulses
of motion evidence added to random dot stimulus would affect
decisions in a nonlinear fashion consistent with a soft thresh-
old. Such pulses are known to affect decisions in a manner
consistent with bounded drift diffusion (Huk and Shadlen
2005) and its implementation in a recurrent network (Wong et
al. 2008). A robust integration mechanism further predicts that
brief, stronger pulses will have greater impact on decision
accuracy than longer, weaker pulses containing the same total
evidence. Beyond pulses with different characteristics, it is
possible that an analogous thresholding effect could be seen for
periods of strong and weak motion evidence in the random dots
stimuli themselves, although this would require further study to
assess.

However, we believe that the most exciting application of
our findings will be to cases in which the strength of evidence
changes over time, as expected in almost any natural setting.
One simple example is for task stimuli that have an unpredict-
able onset time and whose onset is not immediately obvious.
For example, in the moving dots task, this would correspond to
subtle increases in coherence from a baseline of zero coher-
ence. Our preliminary calculations agree with intuition that
robust integrator mechanism will improve performance: in the
period before the onset of coherence, less baseline noise would
be accumulated; after the onset of coherence, the present
results suggest that inputs will be processed with minimal loss
to decision performance. This intuition can be generalized
to apply to a variety of settings with nonstationary sensory
streams.

Many cognitive functions evolve over time scales that are
much longer than the perceptual decisions we consider in this
study. Although we have focused on neural integration, it
seems likely that many other neural mechanisms are also prone
to drift and instability. Hence, the need for robustness may be
more general. Yet, it is difficult to see how any mechanism can
achieve robustness without ignoring information. If so, our
finding may provide some optimism. Although we would not
propose that ignorance is bliss, it may be less costly than one
would expect.

APPENDIX A: A DERIVATION OF THE ABSTRACTED ROBUST
INTEGRATOR MODEL FROM THE DYNAMICS OF NEURAL
SUBUINITS

In this section, we demonstrate one method to construct a circuit-
based robust integrator with the properties described in Fig. 1 and
described by the abstracted integrator model of the main text (Eq. 5).
We emphasize that this is not the only possible way that these
integrator dynamics could be implemented and that the aim of the
below is to provide a single, concrete example. For related approaches
see Koulakov et al. (2002) and Nikitchenko and Koulakov (2008) and
also the behavior of single-cell integrators that are insensitive to weak
fluctuations [for example, see Egorov et al. (2002) and Fransén et al.
(2006)].

Our construction follows closely that of Koulakov et al. (2002) and
Goldman et al. (2003). Accordingly, robustness arises from the
bistability of multiple self-excitatory subpopulations (or subunits).
The dynamics of each subunit are governed by one of N differential
equations. Depending on the activity in the rest of the network, each
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individual subunit can be become bistable, so that its eventual steady-
state value (i.e., “On” or “Off”) depends on its past. This effect,
known as hysteresis, underlies several robust integrator models (Kou-
lakov et al. 2002; Goldman et al. 2003).

The circuit integrates inputs via sequential activation of subunits, in
an order determined by graded levels of “background” inputs (or
biases) to each subunit. Following Goldman et al. (2003), we collapse
the N differential equations that describe individual subunits into an
equation that approximates the dynamics of the entire integrator. This
expression for the total firing rate Ê(t) averaged over all subpopula-
tions reduces to the robust integrator analyzed in the main text (Eq. 7).

Firing Rate Model

The firing rate ri(t) of the ith bistable subunit (i � {1, 2,..., N}) is
modeled by a firing rate equation:

�E

dri

dt
� �ri � r� � (r� � r�)H�pri � q(1 � )


i�j

N

rj

� a�I � bi� (22)

Ê �
1

N

i�1

N

ri (23)

Figure A1 demonstrates the firing rate dynamics of a circuit
composed of a single subunit (N � 1). We plot the identity line,
corresponding to the first “decay” term in Eq. 22, and the “feedback”
line, corresponding to the second. Since N � 1, this simplifies to f(r1).
The two intersections marked c0 and c1 are stable fixed points (which
we refer to as On and Off, respectively). Thus the subunit shown is

bistable. Importantly, however, the location of the step in f(Ê) varies
with changes in the input signal (as per Eq. 22). In particular,
substantial values of �I(t) will (perhaps transiently) eliminate one of
the fixed points, forcing the subunit into either the On or the Off state
with ri � r or ri � r�, respectively. Moreover, the change is
self-reinforcing via the recurrent excitation pri. The range over which
a given subunit displays bistability is affected by the mistuning
parameter , which scales the total recurrent excitation from the rest
of the circuit.

The firing rate dynamics, Ê(t), are obtained by summing both sides
of Eq. 22 over

�E

dÊ

dt
� �Ê � G(Ê) (24)

where

G(Ê) � r� �
(r� � r�)

N 

i�1

N

H�(p � q(1 � ))ri

� Nq(1 � )Ê � a�I � bi� .
(25)

At this point, we almost have a differential equation for a single
variable, Ê(t). However, Eq. 25 still depends on the N activities ri of
the individual subunits, and at any particular time their values are not
uniquely determined by the value of Ê; we can only bound their values
as r� � ri � r.

Bias Term

The bias term for the ith subunit, bi, is set by determining the range
of values of Ê for which the exact value of the feedback function f(ri)

A B

Fig. A1. Simultaneous plots of the identity line and the feedback line, G(Ê), for 2 circuits with differing numbers of subunits. A: here N � 1, and so the feedback
line G(Ê) � f(Ê) is exactly determined as a function of Ê � r1 (see Eq. 25). The 2 intersections c0 and c1 are stable fixed points. In this way, the subunit firing
rate is bistable, and the value attained will depend on the history of the circuit activity. As �I is changed, this translates f(Ê); eventually eliminating either c0

or c1 and forcing the subunit to the remaining stable fixed point (here, c0 corresponds to Ê � 8 Hz. and c1 to 40 Hz). In dashed curves, the feedback line is plotted
for 2 such values of �I. B: now N � 1 and so the feedback line G(Ê) is no longer unambiguously specified as a function of its argument. The function is instead
the sum of N potentially bivalued functions, whose actual values will depend on the stimulus history. We represent this fact by plotting the feedback line as a
set of stacked boxes, representing the potential contribution of the ith subunit to the total integrator dynamics (Goldman et al. 2003).
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Fig. A2. Plot of possible equilibria for Eq. 24. A: extent of each multivalued feedback function defines the minimum input necessary to perturb the system away
from equilibrium, defining the fixation lines. As N ¡ �, the stable fixed points become more tightly packed on the interval (r�; r). B: when the integrator is
mistuned, the fixation lines and the feedback line are no longer parallel. The rate that the integrator accumulates input is approximated by the distance between

the center line of the feedback subunits �G̃�Ê	�, and the feedback line. However, integration only occurs when the “fixation condition” is no longer satisfied, i.e.,
when the feedback line is no longer bounded by the fixation lines at the current value of Ê.
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is unknown. In the case of an integrator composed of only a single
subunit, the bias term causes the positive input needed to force the unit
to be on, and the negative input needed to force the unit to be off, to
take the same values. This yields b1 � p�r� � r�	 � 2.

The general case of N subunits is more complicated. Now the
feedback contribution of the ith unit, f(ri), is no longer a simple
function of the population activity Ê. Instead, it has additional depen-
dence on its own activity ri. We see this clearly in Eq. 25, where the
values of ri that contribute to the definition of G(Ê) are unspecified.
However, we do know that each ri is trapped between r and r�.
Therefore, we can plot G(Ê) as the sum of a sequence of bivalued
functions of Ê; see Fig. 16B and Goldman et al. (2003). The contri-
bution from each pool is then represented by the shaded region.
Finally, the bias terms are chosen to center these shaded boxes over
the identity line:

bi � p� r� � r�

2  � q((i � 1)r� � (N � i)r�). (26)

Fixation Lines

We next define the “fixation” lines [G̃�(Ê) and G̃�(Ê)], which are
the consequence of the multivalued property of the integrator. These
lines define a region (the fixation region) that runs across the outer-
most corners of the “stacked boxes” in Fig. A2.

G̃�(Ê) � Ê(1 � ) �
a�I

Nq
�

r�

N
�

p(r� � r�)

2Nq
(27)

G̃�(Ê) � Ê(1 � ) �
a�I

Nq
�

r�

N
�

p(r� � r�)

2Nq
(28)

The term fixation region refers to the following property: if the
input �I is such that the identity line lies within the fixation region,
then the integrator will possess a range of closely spaced fixed
points [where Ê � G(Ê)]. Thus E is not expected to change from
its current value and integration of �I will not occur. Recall that �I
acts to shift these boxes leftward or rightward relative to the
identity line, just as in the analysis of Fig. A1. As a consequence,
it is weak inputs that fail to be integrated.

From this analysis, we can see that integration by the system as a
whole relies on two concepts. The first is a condition on �I necessary
to eliminate fixed points; we call this the “fixation condition.” The
second is the question of how quickly to integrate once this condition
is no longer satisfied.

Integration

Based on the analysis above, we derive a reduced model that
approximately captures the dynamics of the “full” model indicated
by Eq. 24. We call this the “effective” model. The rate of change
of Ê, i.e., the rate of integration, is given by the distance between
the current value of G(Ê) and the identity line. We approximate
this by the distance between the middle of the fixation lines, which

we define as G̃(Ê), and the identity line. This is pictured in Fig. A2
and yields:

�E

dÊ

dt
� �Ê � G(Ê) � �Ê � G̃(Ê) (29)

G̃(Ê) � (1 � )Ê �
a�I

Nq
� 

(r� � r�)

2N
(30)

We emphasize that integration by this equation only occurs when the
fixation condition is no longer satisfied, i.e., when the fixation lines no
longer bound the identity line.

Fixation Condition

The last step in defining the one-dimensional effective model is
determining the fixation condition. We must solve for the values of Ê that
cause the feedback line to lie between the two fixation lines:

No change in Ê ⇔ G̃�(Ê) � Ê � G̃�(Ê) (31)

⇔G̃(Ê) �
(r� � r�)(p � q)

2Nq
� Ê � G̃(Ê)

�
(r� � r�)(p � q)

2Nq
(32)

⇔�Ê �
a�I

Nq
� 

(r� � r�)

2N � �
(r� � r�)(p � q)

2Nq
(33)

If this condition is violated with �I � 0, the integrator displays
runaway integration ( � 0) or leak ( � 0). If it is satisfied when
�I � 0, we have a condition on the level of �I that must be present
for integration to occur. This yields a piecewise-defined differential
equation, corresponding to when integration can and cannot occur:
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Fig. A3. Comparison of integration by Eqs. 22 and 5, R̂ � 0.1 (A), R̂ � 0.5 (B),
and R̂ � 11 (C). Histograms of the relative error between the values of E(t) and
Ê(t) at t � 500 ms are plotted as insets (see Eq. 36). Means and SD (�, �) for
each distribution are, respectively, (0.0097, 0.022), (0.0183, 0.0453), and
(0.1342, 0.1358). At these levels of R̂, E approximates Ê low to moderate error.
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�E

dÊ

dt
��0 �Ê�

a�I

Nq
� 

(r� � r�)

2N � �
(r� � r�)(p � q)

2Nq

Ê �
a�I

Nq
� 

(r� � r�)

2N
otherwise

(34)

We now simplify this equation; we assume that p � O(N) and a �
O(N), i.e., the local feedback term and input weight can be increased
as N is increased. With all other terms held constant, we relabel
� � a �Nq and R � �r� � r�	p � 2a; here R is the robustness
parameter in the main text, and can be decreased or increased by
adjusting p. This yields the central relationship of the main text:

�E

dE

dt
� �0 �E � ��I� � �R

E � ��I otherwise
(35)

Figure A3 compares the integrators defined by Eqs. 22 and 35 at
three different values of the normalized robustness limit R̂, in response
to a fixed realization of �I(t) for comparison. As R̂ increases, the
extent to which the effective model tracks the full model decreases.
The quality of the reduction can be quantified by examining the
relative error between the full and effective models:

�t �
Ê(t) � E(t)

Ê(t)
(36)

Histograms of �t evaluated at t � 500 ms are included in Fig. A3,
insets. The average agreement of the two models is within roughly
20% across a range of robustness values R̂. This agreement on the
basis of individual trials is sufficient for the purpose of demonstrating
the connection between the simplified integrator model we analyze,
and one of its many possible neural substrates. A performance com-
parison between these models is included in Fig. A4, top.

APPENDIX B: ADDITIONAL MATHEMATICAL DETAILS

Derivation of Eq. 19

In this section we derive a necessary and sufficient condition on the
PDF of a random variable (RV) in order for a key property to hold.
This is that the nontrivial real value where its MGF is equal to one

does not change, when its PDF is modified so that samples with
absolute value less than a given threshold are set to zero. More
concretely, let X be a RV with PDF f(x), and let h0 be value in question
for the MGF of X:

���

�
f(x)eh0�xdx � 1. (37)

We next define a new random variable X̂ with a PDF f̂�x	 constructed
by reallocating probability mass below a threshold R to a weighted
delta function at zero:

f̂(x) � �(x)��R

R
f(x=)dx=� �0 �x� � R

f(x) otherwise.
(38)

Then we propose that the following condition:

f(�x) � f(x)eh0x (39)

is necessary and sufficient to conclude:

���

�
f̂(x)eh0�xdx � 1, for any R � 0 (40)

i.e., that the value h0 where the MGF is equal to one remains
unchanged for any positive value of the threshold R.

To begin, we rewrite the left-hand side of Eq. 40 as:

���

�
f̂(x)eh0�xdx����

�R
f(x)eh0�xdx

� �R

�
f(x)eh0�xdx���R

R
f(x)dx . (41)

Sufficiency then follows via direct substitution of Eq. 39 into the last
expression on right-hand side.

More interesting is demonstrating that Eq. 39 is necessary to
conclude the key relationship of Eq. 40. We accomplish this by adding
in, and subtracting back out, the integral over the “central” part of the
real number line:

500 600 700 800
0.8

0.85

0.9

0.95

1.0

500 600 700 800

0.7

0.75

0.8

500 600 700 800

0.6

0.62

0.64

0.66

0.8

0.85

0.9

0.95

1.0

0.7

0.75

0.8

0.6

0.62

0.64

0.66

A
cc

ur
ac

y

Mean Reaction Time (ms)

Coh = 12.8 Coh = 6.4 Coh = 3.2

5
23

Fig. A4. Performance comparison of 2 models of
robust integration, reaction time task. In each panel,
the lines are the same as in Fig. 6 legend. Downward
arrows indicates the impact of mistuning: increasing
�� from 0 to 0.1. Upward arrows show the effect of
robustness: increasing R̂ from 0 to 1.25. Overall, we
see that robustness has an even greater positive
impact on the performance of the circuit-based
model (here q � 1, r� � 0, r � 50, N � 250, � �
1/9; p is then adjusted to give the required robust-
ness level). Data were generated from 50,000 nu-
merical trials per value.
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1 � ���

�
f̂(x)eh0�xdx (42)

����

�R
f(x)eh0�xdx � �R

�
f(x)eh0�xdx���R

R
f(x)dx (43)

����R

R
f(x)eh0�xdx � ��R

R
f(x)eh0�xdx	 (44)

Subtracting 1 from each part of this equation, this implies:

0 � ��R

R
f(x) � f(x)eh0�xdx (45)

Let g(x) � f(x) � f(x)eh0*x; it is clear then that Eq. 45 holding for all
R is equivalent to g(x) being either identically zero, or an odd function
(so long as the expression must hold for all R). Now g(x) � 0 could
require that f(x) � 0, which is impossible given that f(x) is a PDF;
therefore, g(x) must be an odd function:

�g(x) � g(�x) (46)

⇔�(f(x) � f(x)eh0�x) � f(�x) � f(�x)e�h0�x (47)

⇔� f(x)(1 � eh0�x) � f(�x)(1 � e�h0�x) (48)

⇔� f(x)
(1 � eh0�x)

(1 � e�h0�x)
� f(�x) (49)

⇔ f(x)eh0�x � f(�x) (50)

Thus Eq. 39 is also a necessary condition for Eq. 40.

Derivation of Eqs. 8 and 20

Equation 8 is a Taylor expansion in R of the accuracy formula for
a sum of N IID random variables. Assuming that this sum, S �
�i�1

N Xi, can be approximated with a Gaussian, this formula is:

Accuracy �
1

�2�Var[S]
�0

�
e�

(x � E[S])2

2Var[S] dx . (51)

Assuming that Xi has a PDF given by a Gaussian with probability
mass below a threshold R reallocated to 0 (see main text, and also
Derivation of Eq. 19), the expectation and variance of S can be com-
puted as:

E[S] � N�s
1

2
Erf� s � R

�2  � s
1

2
Erf�R � s

�2  �
e�

1
2

(R � s)2

�2�

�
e�

1
2

(R � s)2

�2�
� s (52)

Var[S] �
N

2��
e�

1
2

(R � s)2����s2 � 1	e
1
2

(R � s)2
Erf� s � R

�2  � ��(s2 � 1)e
1
2

(R � s)2
Erf�R � s

�2 
� 2��s2e

1
2

(R � s)2
� �2se2Rs � �2Re2Rs � 2��e

1
2

(R � s)2
� �2R � �2s � NE[S]2 (53)

Expanding Eq. 52 in R about R � 0 yields Eq. 20, while combining
these formulas into Eq. 51 and expanding gives Eq. 8.
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