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Abstract

Determining how synaptic coupling within and between regions is modulated during sensory processing is an
important topic in neuroscience. Electrophysiological recordings provide detailed spiking information about
neurons but have traditionally been confined to a particular region or layer of cortex. Here, we develop a
novel theoretical framework that relies on efficiently calculating the first and second order statistics in a
multi-population firing rate model. We apply this method to determine qualitative relationships between
important network connections in the rat olfactory system, when the model is constrained by data from
simultaneous dual micro-electrode array in vivo recordings from two distinct regions, the olfactory bulb (OB)
and anterior piriform cortex (PC). In particular, the model predicts that: i) inhibition within the afferent
region (OB) has to be less than the inhibition in PC, ii) excitation from PC to OB is often stronger than
excitation from OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively
strong compared to presynaptic inputs from OB. These predictions are validated in a full spiking (leaky
integrate-and-fire) neural network model of the OB–PC pathway that satisfies the many constraints from our
experimental data. We find when the derived relationships are violated, the spiking statistics no longer satisfy
the constraints from the data. In principle this modeling framework can be adapted to other systems and be
used to investigate relationships between other neural attributes besides network connection strengths. Thus,
this work can serve as a guide to further investigations into the relationships of various neural attributes
within and across different regions during sensory processing.

Author Summary

Sensory processing is known to span multiple regions of the nervous system. However, electrophysiological
recordings during sensory processing have traditionally been limited to a single region or brain layer. Recent
advances in experimental techniques have enabled simultaneous recordings of multiple populations and
across different regions. This new data allow us to pose the following question: what are the crucial neural
network connections that enable sensory processing across different regions? Furthermore, how are these
these connections interrelated?

We address this question by developing a novel theoretical framework to efficiently calculate spiking
statistics in a multi-population firing rate model. These fast calculations enable exploration of a high-
dimensional parameter space of possible networks, where we derive relationships between the effective network
coupling strengths within and across regions. We apply this method to the olfactory system, by using
simultaneous array recordings of the olfactory bulb and anterior piriform cortex to constrain the model. We
are able to derive several relationships between the effective network coupling strengths within and across
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these two regions. Our framework is adaptable to other systems and should be a valuable theoretical tool for
investigating underlying neural features for sensory processing across regions.

Introduction

As experimental tools advance, measuring whole-brain dynamics with single-neuron resolution becomes closer
to reality [2, 32, 36, 58]. However, a much harder task that remains technically elusive is to measure the
interactions within and across brain regions that govern such system-wide dynamics. Here we develop a
theoretical approach to elucidate such interactions based on easily-recorded properties such as mean and (co-
)variance of firing rates in multiple regions and how they change at the onset of sensory stimulation. Although
previous theoretical studies have addressed how spiking statistics depend on various mechanisms [8,9,19],
these studies have typically been limited to a single region, leaving open the challenge of how inter-regional
interactions impact the system dynamics, and ultimately the coding of sensory signals [3, 20,34,49,72].

As a test case for our new theoretical tools, we studied interactions in the olfactory system. We used
two micro-electrode arrays to simultaneously record from olfactory bulb (OB) and anterior piriform cortex
(PC). Constrained by these experimental data, we developed computational models and theory to investigate
interactions within and between OB and PC. The modeling framework includes two distinct regions: a network
that receives direct sensory stimuli (here, the OB), and a second neural network (PC) that is reciprocally
coupled to the afferent region. Each individual population is modeled via a firing rate model [71], but because
of the two regions and our focus on correlated spiking, we still have a system of six (6) stochastic differential
equations and thus a large-dimensional parameter space even in this minimal model. Analysis of this system
would be unwieldy in general; we develop a novel method to compute firing statistics that is computationally
efficient, captures the results of Monte Carlo simulations, and can provide analytic insight.

Thorough analysis of experimental data in both the spontaneous and stimulus-evoked states leads to a
number of constraints on first- and second-order spiking statistics— many of which could not be observed
using data from just one micro-electrode array. In particular, we find twelve (12) constraints that are
consistent across different odorant stimuli. We use our theory/model to study an important subset of neural
attributes (i.e., particular synaptic strengths) and investigate what relationships, if any, must be satisfied
in order to robustly capture the many constraints observed in the data. We find that: i) inhibition within
OB has to be less than the inhibition in PC, ii) excitation from PC to OB is often stronger than excitation
from OB to PC, iii) excitation from PC to OB and inhibition within PC have to both be relatively strong
compared to inputs originating in OB (inhibition from OB and excitation from OB to PC). We validate
these guiding principles in a full spiking neural network (leaky integrate-and-fire LIF) model, mimicking the
OB–PC pathway with synaptic delays, by showing that the many constraints from the experimental data are
all satisfied. Finally, we demonstrate that violating these relationships in the LIF model results in spiking
statistics that do not satisfy all of the data constraints.

Our predictions provide insights on interactions in the olfactory system that are difficult to directly measure
experimentally. Importantly, these predictions were inferred from spike rates and variability, which are
relatively easy to measure. We believe that the general approach we have developed – using easy-to-measure
quantities to predict hard-to-measure interactions – will be valuable in diverse future investigations of how
whole-brain function emerges from interactions among its constituent components.
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Results

Our main result is the development of a theoretical framework to infer connection strengths (hard to measure)
in a minimal firing rate model constrained by experimental data (commonly measured spike count statistics),
validating the results in a full spiking neural network, withs a specific application to the olfactory system.
The next paragraph summarizes the Results section exposition in the order of the presentation.

We performed simultaneous dual micro-electrode recordings with an array placed in the olfactory bulb
(OB) and one placed in the anterior piriform cortex (PC) with the animal anesthetized and tracheotomized
(see Materials and Methods). In this paper, we focus on the spike count statistics rather than the detailed
temporal structure of the neural activity (Fig 1A–B). First we analyze the experimental data and compare
the average (across cells or pairs) first and second order firing statistics, considering all combinations between
spontaneous and evoked states and cell type (OB or PC). Then we present a minimal firing rate model where
we develop a method to quickly and efficiently calculate the firing statistics in a coupled noisy neural network
consisting of 6 neurons. As a test case for our methods and framework, we investigate the structure of four
important parameters that result in firing statistics that satisfy all constraints from the experimental data.
The results are then validated with a full spiking network of leaky integrate-and-fire (LIF) model neurons.

Consistent Trends in the Experimental Data

We first present our data from simultaneous dual micro-electrode array recordings, in which anesthetized
rats were presented with odors. During each trial an odor was presented for roughly one second; recording
continued for a total of 30 seconds. This sequence was repeated for 10 trials with 2-3 minutes in between
trials; the protocol was repeated for another odor. Recordings were processed to extract single-unit activity;
the number of units identified was: 23 in OB and 38 in PC (first recording, two odors), 18 in OB and 35 in
PC (second recording, another two odors). In total, there were 4 different odors presented.

We divided each 30 s trial into two segments, representing the odor-evoked state (first 2 seconds) and
the spontaneous state (remaining 28 seconds). We computed first- and second-order statistics for identified
units; i.e. firing rate νk, spike count variance, and spike count covariance (we also computed two derived
statistics, Fano Factor and Pearson’s correlation coefficient, for each cell/cell pair). Spike count variances,
covariances and correlations were computed using time windows Twin ranging between 5 ms and 2 s. In
computing population statistics we distinguished between different odors (four total), different regions (OB vs.
PC), and different activity states (spontaneous vs. evoked); otherwise, we assumed statistics were stationary
over time.

We analyzed the data to identify relationships among these standard measures of spiking activity. We
found twelve (12) robust relationships that held across multiple odorants. Table 1 summarizes the consistent
relationships we found in our data, and Fig 1C–D, Fig 2, Fig 3 show the data exhibiting these relationships
when combining all odorant stimuli (see S1 Text for statistics plotted by distinct odors). Throughout the
paper, when comparing activity states the spontaneous state is in black and the evoked state in red; when
comparing regions the OB cells/pairs are in blue and PC in green.

A common observation across different animals and sensory systems, is that firing rates increase in the
evoked state (see, for example, Figure 3 in [14]). Indeed, we observed that average firing rates in both the
OB and PC were higher in the evoked state than in the spontaneous state (Fig 1C–D). Furthermore, the
firing rate in the OB was larger than the firing rate in the PC, in both spontaneous and evoked states (see
mean values in Fig 1C–D).

Stimulus-induced decorrelation appears to be a widespread phenomena in many sensory systems and
in many animals [19]; stimulus-induced decorrelation was previously reported in PC cells under different
experimental conditions [48]. Here, we found that in the PC, the average spike count correlation is lower in
the evoked state (red) than in the spontaneous state (black), at least for time windows of 0.5 s and above
(Fig 2A). Although we show a range of Twin for completeness, we focus on the larger time windows because
in our experiments the odors are held for 1 s and our subsequent methods only address long time-averaged
spiking statistics. Note that we did not generally observe stimulus-induced decorrelation in the OB cells.
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Fig 1. Population firing rates in anterior piriform cortex (PC) and olfactory bulb (OB) from
simultaneous dual array recordings. (A) Trial-averaged population firing rate in time from 73 PC cells
(38 and 35 cells from two recordings). The inset shows a closeup view, to highlight the distinction between
spontaneous and evoked states. (B) Trial-averaged population firing rate in time from 41 OB cells (23 and 18
cells from two recordings). Inset as in (A); both (A) and (B) use 5 ms time bins. (C) The PC firing rate
(averaged in time and over trials) of individual cells in the spontaneous (black) and evoked states (red). The
arrows indicate the mean across 73 cells; the mean±std. dev. in the spontaneous state is: 0.75± 0.93 Hz, in
the evoked state is: 1.5± 1.6 Hz. (D) Similar to (C), but for the OB cells described in (B). The mean±std.
dev. in the spontaneous state is: 2± 3.3 Hz, in the evoked state is: 4.7± 7.1 Hz.

Another common observation in cortex, is for variability to decrease at the onset of stimulus [14]: in
Fig 2B we see that the Fano Factor of spike counts in PC cells decreases in the evoked state (red) compared
to the spontaneous state (black); note that other experimental labs have observed this decrease in the Fano
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Fig 2. A subset of the important relationships between the spiking statistics in spontaneous
and evoked states. Consistent trends that hold for all 4 odorant stimuli in the experimental data. Each
panel shows two spike count statistics, as a function of the time window Twin. The shaded error bars denote
1 standard deviation (across all pairs or all cells) above and below the mean statistic. A: Stimulus-induced
decorrelation of PC cell pairs (red) compared to the spontaneous state (black). B: The variability in PC
(measured by Fano Factor) is lower in the evoked state (red) than in the spontaneous state (black). (C) In
the spontaneous state, the average correlation of PC pairs (green) is higher than that of OB pairs (blue). (D)
In the evoked state, the average correlation of PC pairs (green) is lower than that of OB pairs (blue). There
were 406 total OB pairs and 1298 total PC pairs. (Although the trend is not apparent in (A) and (D) for
smaller time windows, recall that the stimuli were held for 1 s and that our focus is on the larger time
windows; smaller time windows are shown for completeness.)

factor of PC cells (see supplemental figure S6D in [48]). Fig 2C–D shows a comparison of PC and OB
spike count correlation in the spontaneous state and evoked state, respectively. Spike count correlation in
PC (green) is larger than correlation in OB (blue) in the spontaneous state, but in the evoked state the
relationship switches, at least for Twin > 0.5 sec.

Fig 3 shows the four remaining constraints that are consistent for all odors and for all time windows.
The Fano Factor in PC (green) is larger than in OB (blue), in the spontaneous state (Fig 3A); spike count
variance in PC (green) is smaller than in OB (blue) in the evoked state (Fig 3B); spike count covariance in
PC (green) is smaller than in OB (blue) in the evoked state (Fig 3C); and in OB the spike count variance in
the evoked state (red) is larger than spontaneous (black, Fig 3D). Throughout the paper, we scale the spike
count variance and covariance by Twin for ease of visualization; this does not affect the relative relationships
we describe.
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Fig 3. Showing the other trends from the experimental data that are consistent with all odors and for all
time windows Twin. A: Fano Factor of spontaneous activity is larger in PC (green) than in OB (blue). B:
The spike count variance in the evoked state is smaller in PC (green) than in OB (blue). C: Spike count
covariance in the evoked state is smaller in PC (green) than in OB (blue). D: In OB cells, the evoked spike
count variance (red) is larger than the spontaneous (black). The number of cells and number of pairs are the
same as in Fig 2. Throughout we scale spike count variance and covariance by Twin for ease of visualization.
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Table 1. The 12 relationships (constraints) that hold in the experimental data across all
odors.

Spont. Evoked Spon. to Evoked

νSpPC < νEvPCFiring Rate νPC < νOB νPC < νOB νSpOB < νEvOB
V arPC < V arOB V arSpOB < V arEvOBVariability

FFPC > FFOB FFSpPC > FFEvPC
CovPC < CovOB

Co-variability
ρPC > ρOB ρPC < ρOB ρSpPC > ρEvPC

Relationships are of the averaged statistics across the population or all possible pairs that occurred with all
odors. Other possible relationships were left out because they were ambiguous and/or odor dependent.

A Minimal Firing Rate Model to Capture Data Constraints

We model two distinct regions (OB and PC) with a system of six (6) stochastic differential equations, each
representing the averaged activity of a neural population [71] or representative cell (see Fig 4 for a schematic
of the network). For simplicity, in this section we use the word “cell” to refer to one of these populations. Each
region has two excitatory (E) and one inhibitory (I) cell to account for a variety of spiking correlations [41].
We use j ∈ {1, 2, 3} to denote three OB “cells” and j ∈ {4, 5, 6} for three PC cells, with j = 1 as the inhibitory
OB cell and j = 4 as the inhibitory PC cell. The equations are:

τ
dxj
dt

= −xj + µj + σjηj +
∑
k

gjkF (xk) (1)

where F (xk) is a transfer function mapping activity to firing rate. Thus, the firing rate is:

νj = F (xj). (2)

We set the transfer function to F (X) = 1
2 (1 + tanh((X − 0.5)/0.1)), a commonly used sigmoidal function [71]

for all cells; experimental recordings of this function demonstrate it can be sigmoidal [13,22,57]. All cells
receive noise ηj , the increment of a Weiner process, uncorrelated in time but correlated within a region: i.e.
〈ηj(t)〉 = 0, 〈ηj(t)ηj(t+ s)〉 = δ(s), and 〈ηj(t)ηk(t+ s)〉 = cjkδ(s). We set cjk to:

cjk =


0, if j ∈ {1, 2, 3}; k ∈ {4, 5, 6}
1, if j = k
cOB if j 6= k; j, k ∈ {1, 2, 3}
cPC if j 6= k; j, k ∈ {4, 5, 6}

(3)

The parameters µj and σj are constants that give the input mean and input standard deviation, respectively.
Within a particular region (OB or PC), all three cells receive correlated background noisy input, but there is
no correlated background input provided to both PC and OB cells. This is justified by the experimental
data (see Fig S9); average pairwise OB-to-PC correlations are all relatively small, and in particular, less than
pairwise correlations within the OB and PC. Furthermore, anatomically there are no known common inputs
to both regions that are active at the same time.

We also set the background correlations to be higher in PC than in OB: i.e.

cPC > cOB .

This is justified in part in our array recordings where correlated local field potential fluctuations are larger in
PC than in OB. Furthermore, one source of background correlation is global synchronous activity; Murakami
et al. [50] has demonstrated that state changes (i.e., slow or fast waves as measured by EEG) strongly affect
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Fig 4. Minimal firing rate model to analyze important synaptic conductance strengths. A
firing rate model (Wilson-Cowan) with background correlated noisy inputs is analyzed to derive principles
relating these network attributes. This model only incorporates some of the anatomical connections that are
known to exist and are important for modulation of statistics of firing (see main text for further discussion).
Each neuron within a region (OB or PC) receives correlated background noisy input with cOB < cPC . Each
plot shows parameter sets (4-tuples) that satisfy all 12 data constraints in Table 1, projected into a
two-dimensional plane in parameter space. The blue dots show the result of the fast analytic method that
satisfy all constraints; the red dots show the Monte Carlo simulations that satisfy all of the constraints. For
computational purposes, we only tested the Monte Carlo on parameter sets that first satisfied the constraints
in the fast analytic method. (A) The magnitude of the inhibition within PC (|gIP |) is greater than the
magnitude of the inhibition within OB (|gIO|); all dots are above the diagonal line. (B) The excitation from
PC to OB (gEP ) is generally (but not always) larger than the excitation from OB to PC (gEO). (C) The
inhibition within OB is generally weak; dots are to the left of the vertical line. (D) The inhibition within PC
is generally strong; dots are to the right of the vertical line. Table 3 states the parameter values.

odorant responses in piriform cortex but only minimally effect olfactory bulb cells. Also, PC has more
recurrent activity than the olfactory bulb; this could lead to more recurrent common input, if not cancelled
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by inhibition [59].
We constructed our model to have two distinct activity states, spontaneous and evoked. We modeled the

evoked state by increasing the three parameters µ1, µ2, µ3, representing mean input to the olfactory bulb
(values given in Table 3). All other parameters were the same for both states.

The model we have described may be less realistic than a large network of spiking models (such as
Hodgkin-Huxley or leaky integrate-and-fire neurons). However, its simplicity permits fast and efficient
evaluation of firing rate statistics, a necessity in exploring large parameter spaces that result in models
satisfying numerous data constraints. Specifically, we calculate the statistics of the coupled network by
solving a system of algebraic equations Eq 29–46 rather than using Monte Carlo simulations (see Materials
and Methods for details). To derive tractable equations, we use an approximation based on asymptotic
expansions. This allowed us to evaluate many parameter combinations, and therefore constrain the unknown
coupling parameters, gjk, which might otherwise be an intractable problem. Comparisons of the firing
statistics computed from our method and Monte Carlo simulations show that the mean activity and firing
rates are very accurate; variance and covariance (and thus correlation) are not as accurate, for larger coupling
strengths (see Fig S10 in S2 Text comparing 100 random parameter sets). Nonetheless, we will find that the
results are qualitatively replicated by more realistic spiking network models.

In principle, there can be up to 36 coupling strengths; however, we can make several assumptions:

• No cross-region inhibitory projections: g41 = g51 = g61 = g14 = g24 = g34 = 0.

• Excitatory OB → PC output will synapse only onto the inhibitory population: g52 = g62 = g53 =
g63 = 0.

• Similarly, excitatory PC → OB output will synapse only onto the inhibitory population: g25 = g26 =
g35 = g36 = 0.

Within OB, there is no excitatory (mitral cell) input to the inhibitory cells (i.e., granule cells), but feedforward
inhibition is known to be a significant component in this circuit [12]. The OB to PC pathway has balanced
excitation and inhibition [35]; however, within PC the recurrent activity is dominated by inhibition [35].
Previous work has also shown that inhibitory synaptic events are much more common in PC and are much
easier to elicit [56]. Thus, the connection from excitatory OB to inhibitory PC (Fig 4) can thought of as the
net effect of OB-to-PC connections. There is also experimental evidence that the feedback projections from
PC to OB are dominated by inhibition [6, 44].

Even though several of the assumptions in this circuit are not anatomically correct (e.g., no E-to-E
connections from OB to PC), we again emphasize that this is a minimal model meant to provide guiding
principles about network structure and relative relationships, rather than precise anatomical modeling.
Moreover, the next section will test the results on full spiking model with more realistic dynamics and features
(containing these omitted connections).

We also made the following simplifying assumptions to limit the dimension of the parameter space of
interest:

• Feedforward inhibitory connections within a population were identical: gIO ≡ g21 = g31 and gIP ≡
g54 = g64.

• Excitatory connections projecting outward from each region to the other region were identical: gEO ≡
g42 = g43 and gEP ≡ g15 = g16.

• No within-region excitatory connections; g23 = g32 = g56 = g65 = 0.

The resulting network model is illustrated in Fig 4.
Thus, we were left with four undetermined coupling strengths: gIO, gIP , gEO and gEP . We compre-

hensively surveyed a four-dimensional parameter space in which each coupling strength |gIO|, |gIP |, gEO,
gEP was chosen between 0.1 and 2, with a interval of 0.1; giving us 204 = 1.6 × 105 total models. Given
each choice of 4-tuple {gIO, gIP, gEO, gEP}, we computed first- and second-order statistics of both activity
xk and firing rates F (xk) using the formulas given in Eq (29)–(46), and checked the results satisfied the
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constraints listed in Table 1. We found that approximately 1 % of all 4-tuples satisfied the constraints; we
display them in Fig 4, by projecting all constraint-satisfying 4-tuples onto a two-dimensional plane where the
axes are two of the four coupling parameters. We show four out of six possible pairs (the other two show
qualitatively similar patterns, see Fig S11 in S2 Text): |gIO| vs. |gIP | (Fig 4A), gEO vs. gEP (Fig 4B),
|gIO| vs. gEP (Fig 4C), and |gIP | vs. gEO (Fig 4D).

We found that:

• The magnitude of the inhibition within PC, |gIP |, is greater than the magnitude of the inhibition
within OB, |gIO| (Fig 4A: all dots are above the diagonal line).

• The excitation from PC to OB, gEP , is generally larger than the excitation from OB to PC, gEO.

• The inhibition within OB is generally weak (Fig 4C: dots are to the left of the vertical line).

• The inhibition within PC is generally strong (Fig 4D: dots are to the right of the vertical line).

The statistics computed in Eqs. 29–46 rely on the assumption that the activity distributions xk are only
weakly perturbed from a normal distribution; this may be violated for larger coupling strengths. Thus, we used
Monte Carlo simulations of Eq 1 to check the accuracy of this approximation; specifically we performed Monte
Carlo simulations on each 4-tuple of parameters for which the analytic approximation met our constraints.
The resulting parameter set that satisfied all twelve (12) constraints are included as red dots in Fig 4A–D
(therefore a red dot indicates that all 12 constraints were satisfied both for the analytic approximation AND
for the Monte Carlo simulations). The result was a smaller set of parameters, but it is evident that the
qualitative results derived from the fast analytic solver hold for the Monte Carlo simulations. Moreover, these
results were robust to the choice of transfer function: in Fig. S12, we show that the same constraints are
obtained when using a “square root” transfer function, rather than a sigmoid.

Admissible coupling strengths are characterized by a low-dimensional surface in
parameter space

Another way to more succinctly examine the structure of the four neural attributes: gIO, gEO, gIP, gEP is
to consider a matrix:

A(j, :) = [gIO(j), gEO(j), gIP (j), gEP (j)] (4)

where the jth row of A corresponds to a parameter set where all 12 constraints are satisfied in the Monte
Carlo simulation. A standard singular value composition (SVD) of this matrix:

A = UΣV ′

shows that one dimension in the parameter space accounts for 77.2 % of the variance (all singular values) and
is thus a reasonable entity to describe the structure of the valid gIO, gEO, gIP, gEP values. We scale the
eigenvector from V (since the column space corresponds to our desired parameter space) corresponding to
the largest singular value to get:

v = [gIO, gEO, gIP, gEP ]′ = [−8.5, 14.3, −20, 18.8]′ (5)

which indeed exhibits all of the aforementioned relationships. Thus, we have well-characterized the structure
of these four parameters.

Results are Validated in a Spiking LIF Network

We then sought to reproduce these results in a general leaky integrate-and-fire (LIF) spiking neuron model of
the coupled OB-PC system. Rather than try to model the exact underlying physiological details of the olfactory
bulb or anterior piriform cortex, we aim instead to use a generic spiking model with conductance-based
synaptic input that is at least the bases for many cortical models.
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We set the four conductance strength values that are the focus of our analysis to:

gIO = 7

gEO = 10

gIP = 20

gEP = 15; (6)

See Fig 5 or Eq 65–67 for exact definitions of gXY ; these conductance strength values are dimensionless
scale factors. These values were selected to satisfy the relationships derived from the analysis of the rate
model (see Fig 4) and resemble the scaled vector from the SVD characterization in Eq 5. In contrast to the
minimal firing rate model, here the conductance values are all necessarily positive; an inhibitory reversal
potential is used to capture the hyperpolarization that occurs upon receiving synaptic input.

With the conductance strengths in Eq 6, and other standard parameter values (see Table 4) in a transparent
LIF model of the OB–PC pathway, we were able to easily satisfy all 12 constraints: see Table 2 and Fig 5.
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Fig 5. Detailed spiking LIF model confirms the results from analytic rate model. Schematic of
the LIF model with 2 sets of recurrently coupled E and I cells. There are 12 types of synaptic connections.
(A) Pairwise correlations in PC, spontaneous vs. evoked: ρSpPC > ρEvPC . (B) Variability (Fano factor) in PC,

spontaneous vs evoked: FFSpPC > FFEvPC . (C) Correlations in the spontaneous state, PC vs. OB: ρSpPC > ρSpOB .
(D) Correlations in the evoked state, PC vs. OB: ρEvPC < ρEvOB . (E) Variability (Fano factor) in the

spontaneous state, PC vs. OB: FFSpPC > FFSpOB . (F) Variability (Fano factor) in the evoked state, PC vs.
OB: V arEvPC < V arEvOB in evoked state. (G) Covariances in the evoked state, PC vs. OB: CovEvPC < CovEvOB .

(H) Variability (spike count variance) in OB, spontaneous vs. evoked: V arSpOB < V arEvOB . The curves show
the average statistics over all NOB/PC cells or over all possible pairs NOB/PC(NOB/PC − 1)/2. See
Materials and Methods for model details, and Table 4 and Eq 6 for parameter values.
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Table 2. Population firing rate statistics from an LIF model of the OB–PC pathway.

Mean Firing Rate (Hz) Std. Dev. (Hz)

νSpOB 3.8 3.3
νEvOB 8.5 5.6

νSpPC 2.1 2.5
νEvPC 4.2 7.3

See Materials and Methods for model details, and Table 4 and Eq 6 for parameter values. The mean and
standard deviations are across the heterogeneous population.

While the firing rates in the LIF network (Table 2) do not quantitatively match with the firing rates from
the experimental data, a few qualitative trends are apparent: (i) the ratio of mean spontaneous to evoked
firing rates are similar to that observed in experimental data, for both OB and PC, (ii) the same is true of the
standard deviation, (iii) the ratio of the mean OB firing rate to PC firing rate is similar to what is observed
in the experimental data, in both spontaneous and evoked states. Therefore, the LIF network captures the
mean firing rates reasonably well.

One significant difference between the LIF spiking network and the minimal firing rate model is that
in the evoked state, mean background input to both the OB and PC cells is increased, compared to the
spontaneous state (recall that in the minimal firing rate model, only the mean input to the OB cells increased
in the evoked state; this insured that stimulus-induced changes in PC was due to network activity). When
the mean input to the PC cells is the same in the spontaneous and evoked states, 11 of the 12 constraints
were satisfied – the exception was the relative variability in PC between the spontaneous and evoked states,
FFSpPC > FFEvPC (see Fig. S13). The reason is that as firing rates increase, the OB spiking is more variable
and thus the synaptic input from OB to PC is noisier, so the PC activity inherits this extra variability.

To capture this twelfth constraint, we allowed mean input drive to PC to increase in the evoked state. This
has also been used in previous theoretical studies to achieve stimulus-induced decreases in spiking variability
[38]. Other theoretical studies on stimulus-induced decreases in spiking variability had an extra source of
variability in the spike generating mechanism (doubly stochastic process) which is simply removed with the
stimulus [14]; our model only has one source of variability. Thus, the mechanism we employ to capture
the Fano Factor constraint is reasonable and consistent with other studies on stimulus-induced changes in
variability [14,38].

Results of Violating Derived Relationships Between Conductance Strengths

What happens in the full LIF spiking network when the derived relationships between the conductance
strengths are violated? Since the minimal firing rate model is very different quantitatively from the detailed
spiking model, we do not expect the relationships between the conductance strengths to precisely hold. Not
only are the underlying dynamics of the two models different, the number of cells, connections, as well as
the number of parameters differ. Nevertheless, the minimal firing rate model is still useful in providing
intuition in what would otherwise be a complicated network with a high-dimensional parameter space, where
characterizing connection (conductance) strengths to satisfy the data constraints would be a msytery. We
next demonstrate that when we violate the relationships derived in the previous section, a subset of the
constraints in the experimental data (Table 1) will no longer be satisfied in the full spiking network.

The simulation time for a single parameter set in the full spiking model is time consuming (several days
to to a week) because we are computing all covariance and correlation values for all possible pairs (O(N2)) in
this completely heterogeneous network, for a variety of time windows, and the required number of realizations
for accurate spiking statistics is large. Thus, we cannot exhaustively explore the parameter space; recall that
the purpose of the method we developed in the minimal firing rate model is for faster computation. Instead,
we distill results into three tests:

1. Make gIO > gIP by setting gIO = 20 and gIP = 7.
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2. Make gEO > gEP by setting gEO = 15 and gEP = 1

3. Make gEP and gIP relatively smaller by setting gEP = 10 and gIP = 10

The original values (used in Fig 5) for these parameters were given in Eq 6.
The result of Test 1 is that 7 of the 12 constraints are violated (see Fig S14 in S2 Text); most importantly

stimulus-induced decorrelation of the PC cells, which is particularly important in the context of coding, was
not present. In addition, the PC firing rates are larger than the OB firing rates in both states, the evoked PC
correlation is larger than evoked OB correlation, the spontaneous PC Fano Factor is larger than spontaneous
OB Fano Factor, and both the variance and covariance of PC is larger than OB in the evoked state (all of
which violate the constraints from our data).

The result of Test 3 is that 4 of the 12 constraints are violated (see Fig S16 in S2 Text), including
again stimulus-induced decorrelation of the PC cells. The evoked PC correlation is larger than evoked OB
correlation, and both the variance and covariance of PC are larger than the corresponding quantities in OB
in the evoked state. Both these two tests (1 and 3) indicate that these two qualitative relationships (stronger
effective inhibition within PC and stronger effective presynaptic inputs from PC) are robust with respect to
both the detailed LIF spiking model and the minimal firing rate model.

The result of Test 2 is not as straightforward as the others. We did not exhaustively search parameter space
due to the vast computational resources this would require, but in several parameter sets with gEO > gEP ,
we found the resulting network statistics could still satisfy all of the constraints (e.g., with gEO = 15 and
gEP = 1, as well as with gEO = 20 and gEP = 1). The reason for this may be that in the two coupled
recurrent networks we chose very different gIO and gIP values to begin with (7 and 20, respectively), and
would thus require gEO and gEP to be significantly different to counter-balance this. Also, notice in the
minimal firing rate model results in Fig 4B that there are a significant number of red dots below the diagonal,
indicating that the relationship gEP > gEO does not have to strictly hold. However, we did find a condition
where this test demonstrates the value of the minimal firing rate model; we changed c̃OB from 0.5 to 0.6
(recall c̃PC = 0.8). (Note that in the minimal firing model that cOB = 0.3 and cPC = 0.35, relatively close in

value.) The result of Test 2 (gEO = 15 and gEP = 1) with c̃OB = 0.6 is that one constraint is violated: ρSpPC
is no longer less than ρSpOB (see Fig S15 in S2 Text). This suggests that the relationship that gEO > gEP is
not as robust as the others and can be violated.

In summary, the intuitions gained from the results and analysis of the minimal firing rate model are
generally transferable to a more complex spiking model of the OB–PC pathway, but may require further
investigations and perhaps experiments for validation.

Discussion

As electrophysiological recording technology advances, there will be more datasets with simultaneous recordings
of neurons spanning larger regions of the nervous system. Such networks are inherently high-dimensional,
making mechanistic analyses generally intractable without fast and reasonably accurate approximation
methods. We have developed a computational reduction method for a multi-population firing rate model [71]
that enables analysis of the spiking statistics. Our work specifically enables theoretical characterizations of an
important, yet hard-to-measure quantity, connection strength, using easy-to-measure spiking statistics. The
method is computationally efficient, is validated with Monte Carlo simulations of spiking neural networks,
and can provide analytic insight.

Our computational methods are applied to simultaneous dual-array recordings in two distinct regions of
the olfactory system: the olfactory bulb (OB) and anterior piriform cortex (PC). Our unique experimental
dataset enables a detailed analysis of the first- and second-order spike count statistics in two activity states,
and a comparison of how these statistics are related between OB and PC cells. We found twelve (12) consistent
trends across four odors in the dataset (Table 1), and sought to identify what neural network attributes would
account for these trends. We focused on four important network attributes, specifically the conductance
strengths in the following connections: feedforward inhibition within OB, within PC, excitatory projections
from OB to inhibitory PC neurons, and finally excitatory projections from PC to OB inhibitory neurons
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(granule cells). Our reduced firing rate model predicts several relationships that are then verified with a more
detailed spiking network model, specifically: i) inhibition within the OB has to be less than the inhibition
in PC, ii) excitation from PC to OB is often stronger than excitation from OB to PC, iii) connections that
originate within PC have to relatively strong compared to connections that originate within OB. These
results make a strong prediction that to the best of our knowledge is unknown and might be testable with
simultaneous patch-clamp recordings.

In principle our theory could be used to study the structure of other network features such as background
correlation, noise level, transfer function, etc.. It is straightforward mathematically to incorporate other
desired neural attributes (with the caveat of perhaps increasing the overall number of equations and terms in
the approximations) without changing the essence of the framework. Here we have focused on the role of the
strength of synaptic coupling; however theoretical studies have shown that other neural attributes can effect
spike statistics (in particular, spike count correlation) [15,19], and some of these attributes can conceivably
change with stimuli. Spike count correlations can depend on intrinsic neural properties [1, 4, 5, 29, 43, 53],
network architecture [38,60,62] and synaptic inputs [37,39,41,46,59,66] (or combinations of these [40,55,68]),
plasticity [61], as well as top-down mechanisms [16, 47, 64]. Thus, correlation modulation is a rich and
deep field of study, and we do not presume our result is the only plausible explanation for spike statistics
modulation.

Although the minimal firing rate model did not include certain anatomical connections that are known
to exist (e.g. recurrent excitation in the PC), the model is meant for deriving qualitative principles rather
than precise quantitative modeling of the pathway. We based our simplifications on insights from recent
experimental work: recent slice physiology work has shown that within PC, recurrent activity is dominated by
inhibition [35]; previous work has also shown that inhibitory synaptic events are much more common (than
excitatory synaptic events) in PC and are much easier to elicit [56]. Thus, the connection from excitatory
OB cells to inhibitory PC cells (gEO in Fig 4) can thought of as the net effect of these connections along
the lateral olfactory tract. Other theoretical analyses of effective feedforward inhibitory networks have also
neglected anatomical E-to-E connections [41, 46]. Furthermore, this minimal model was validated with a
more realistic, recurrently coupled spiking network, which did include within-region excitatory connections
(see Fig 5 and Fig S14–S16 in S2 Text).

In computing statistics for the minimal firing rate model, we only considered asynchronous behavior,
in which a set of stationary statistics can be solved self-consistently. More sophisticated methods might
be used to address oscillatory dynamics (see [52] in which the adaptive quadratic integrate-and-fire model
was successfully analyzed with a reduced method); capturing the firing statistics in these other regimes
is a potentially interesting direction of research. The limitation to asynchronous statistics is not unique,
but is shared by other approximation methods. Some methods are known to have issues when the system
bifurcates [10, 11] because truncation methods can fail [42]. Several authors have proposed procedures to
approximate the first- and second-order spiking statistics with equations derived by using truncations of
moment expansions [10,11,31], or by perturbing from the large population size limit [7,21]. These approaches
generally approximate the dynamics of the entire network configuration based on a master equation, whereas
we do not use a master equation or derive population-averaged dynamics from first principles. Instead, we
focused here on perturbing from a background state in which several populations (each population modeled
by a single equation) receive correlated background input but are otherwise uncoupled. This allows us to
narrow our focus to how spike count co-variability from common input is modulated by recurrent connections.

In other related work, Paninski and colleagues [67] derived approximations to the firing statistics of
generalized linear models [70] by assuming the net input is normally distributed. Although there are
similarities in the underlying assumptions, they rely on large network size (and/or small input strengths)
to appeal to the central limit theorem whereas the models here are exactly normally distributed without
coupling.

We have only focused on first- and second-order firing statistics, even though other higher order statistics
may be important [30,54,69] (but also see [65]). If downstream neurons use a linear decoding scheme, then
first- and second-order spiking statistics are sufficient in quantitative measures of neural coding [18, 33]. It is
currently unknown whether downstream neurons decode olfactory signals with a nonlinear decoder, but there
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is evidence in other sensory systems that second order statistics are sufficient [34]. Recent work has shown
that at the level of the olfactory bulb, decoding an odor in the presence of other odors might be more efficient
using nonlinear decoding [27] (however see [45] who showed that linear decoding is plausible). Considering
higher order spiking statistics may be an area of future research.

As a test case for our method, we use recordings from the olfactory system. The absence of breathing in
tracheotomized rats in these experiments is only an approximation to olfactory processing in awake animals.
However, there are benefits to tracheotomized animals: the complex temporal firing patterns are removed,
making averaging over time to calculate spike count statistics less confounding because the firing statistics are
closer to stationarity. In principle, we can incorporate breathing dynamics into our framework by including
an oscillatory forcing term in Eq 1; this will be the subject of future work. While time-varying statistics are
likely important in the olfactory bulb, there is evidence that in the anterior piriform cortex, spike count —
rather than the timing — is most consequential for odor discrimination [48]. However, other studies have
reported that timing of the stimuli in the olfactory bulb is important: [17,27,28] showed decoding performance
is best at the onset of odors in mammals and worsens as time proceeds, whereas [23] found that decoding
performance improved with time in zebrafish. These important issues are beyond the scope of this current
study.

Materials and Methods

Electrophysiological Recordings

Subjects. All procedures were carried out in accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the National Institutes of Health and approved by University of
Arkansas Institutional Animal Care and Use Committee (protocol #14049). Experimental data was obtained
from one adult male rat (289 g ; Rattus Norvegicus, Sprague-Dawley outbred, Harlan Laboratories, TX, USA)
housed in an environment of controlled humidity (60%) and temperature (23◦C) with 12 h light-dark cycles.
The experiments were performed in the light phase.

Anesthesia. Anesthesia was induced with isoflurane inhalation and maintained with urethane (1.5 g/kg
body weight (bw) dissolved in saline, intraperitoneal injection (ip)). Dexamethasone (2 mg/kg bw, ip) and
atropine sulphate (0.4 mg/kg bw, ip) were administered before performing surgical procedures.

Double tracheotomy surgery. To facilitate ortho- and retronasal delivery of the odorants a double
tracheotomy surgery was performed as described previously [26]. This allowed for the rat to sniff artificially
while breathing naturally through the trachea bypassing the nose. A Teflon tube (OD 2.1 mm, upper
tracheotomy tube) was inserted 10 mm into the nasopharynx through the rostral end of the tracheal cut.
Another Teflon tube (OD 2.3 mm, lower tracheotomy tube) was inserted in to the caudal end of the tracheal cut
to allow breathing. Both tubes were fixed and sealed to the tissues using surgical thread. Local anesthetic (2%
Lidocaine) was applied at all pressure points and incisions. Throughout the surgery and electrophysiological
recordings rats’ core body temperature was maintained at 37◦C with a thermostatically controlled heating
pad.

Craniotomy surgery. Subsequently, a craniotomy surgery was performed on the dorsal surface of the skull
at two locations, one over the right Olfactory Bulb (2 mm × 2 mm, centered 8.5 mm rostral to bregma and
1.5 mm lateral from midline) and the other over the right anterior Pyriform Cortex (2 mm × 2 mm, centered
1.5ṁm caudal to bregma and 5.5 mm lateral from midline).

Presentation of ortho- and retronasal odorants. The bidirectional artificial sniffing paradigm previously
used for the presentation of ortho- and retronasal odorants [26] were slightly modified such that instead of a
nose mask a Teflon tube was inserted into the right nostril and the left nostril was sealed by suturing. The
upper tracheotomy tube inserted into the nasopharynx was used to deliver odor stimuli retronasally (Fig 1.
We used two different odorants, Hexanal (Hexa) and Ethyl Butyrate (EB) by both ortho- and retronasal
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routes, there by constituting 4 different odor stimuli. Each trial consisted of 10 one-second pulse presentations
of an odor with 30 second interval in between two pulses, and 2-3 min in between two trials.

Electrophysiology. Extracellular voltage was recorded simultaneously from OB and aPC using two different
sets of 32-channel microelectrode arrays (MEAs). (OB: A4x2tet, 4 shanks x 2 iridium tetrodes per shank,
inserted 400 µm deep from dorsal surface; aPC: Buzsaki 32L, 4 shanks x 8 iridium electrode sites per shank,
6.5 mm deep from dorsal surface; NeuroNexus, MI, USA). Voltages were measured with respect to an AgCl
ground pellet placed in the saline-soaked gel foams covering the exposed brain surface around the inserted
MEAs. Voltages were digitized with 30 kHz sample rate as described previously [25] using Cereplex + Cerebus,
Blackrock Microsystems (UT, USA).

Recordings were filtered between 300 and 3000 Hz and semiautomatic spike sorting was performed using
Klustakwik software, which is optimized for the types of electode arrays used here [63]. After automatic
sorting, each unit was visually inspected to ensure quality of sorting.

Data processing

After the array recordings were spike sorted to identify activity from distinct cells, we further processed the
data as follows:

• We computed average firing rate for each cell, where the average was taken over all trials and over the
entire trial length (i.e. not distinguishing between spontaneous and evoked periods); units with firing
rates below 0.008 Hz and above 49 Hz were excluded.

• When spike times from the same unit were within 0.1 ms of each other, only the first (smaller) of the
spike time was used and the subsequent spike times were discarded

We divided each 30 s trial into two segments, representing the odor-evoked state (first 2 seconds) and
the spontaneous state (remaining 28 seconds). In each state, we are interested in the random spike counts
of the population in a particular window of size Twin. For a particular time window, the jth neuron has a
spike count instance Nj in the time interval [t, t+ Twin):

Nj =
∑
k

∫ t+Twin

t

δ(t− tk) dt (7)

The spike count correlation between cells j and k is given by:

ρT =
Cov(Nj , Nk)√
V ar(Nj)V ar(Nk)

, (8)

where the covariance of spike counts is:

Cov(Nj , Nk) =
1

n− 1

∑
(Nj − µ(Nj)) (Nk − µ(Nk)) . (9)

Here n is the total number of observations of Nj , and µ(Nj) := 1
n

∑
Nj is the mean spike count across

Twin-windows and trials. The correlation ρT is a normalized measure of the the trial-to-trial variability (i.e.,
noise correlation), satisfying ρT ∈ [−1, 1]; it is also referred to as the Pearson’s correlation coefficient. For
each cell pair, the covariance Cov(Nj , Nk) and variance V ar(Nj) are empirically calculated by averaging
across different time windows within a trial and different trials.

A standard measure of variability is the Fano Factor of spike counts, which is the variance scaled by the
mean:

FFk =
V ar(Nk)

µ(Nk)
. (10)
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In principle, any of the statistics defined here might depend on the time t as well as time window size
Twin; here, we assume that V ar, Cov, FF , and ρT are stationary in time, and thus separate time windows
based only on whether they occur in the evoked (first 2 seconds) or spontaneous (last 28 seconds) state.

Each trial of experimental data has many time windows1; the exact number depends on the state, the
value of Twin, and whether disjoint or overlapping windows are used. In this paper we use overlapping
windows by half the length of Twin

2 to calculate the spiking statistics. The results are qualitatively similar
for disjoint windows and importantly the relationships/constraints are the same with disjoint windows. We
limit the size of Twin ≤ 2 s because this is the maximum duration of the evoked state, within each trial.

The average spike count µ(Nj) of the jth neuron with a particular time window Twin is closely related
the average firing rate of that neuron:

νj :=
µ(Nj)

Twin
(11)

Firing Rate Model

Recall that the activity in each representative cell is modeled by:

τ
dxj
dt

= −xj + µj + σjηj +
∑
k

gjkF (xk) (12)

where F (xk) is a transfer function mapping activity to firing rate. Thus, the firing rate is:

νj = F (xj). (13)

The index of each region is denoted as follows: j ∈ {1, 2, 3} for the 3 OB cells, and j ∈ {4, 5, 6} for the 3
PC cells, with j = 1 as the inhibitory OB cell and j = 4 as the inhibitory PC cell (see Fig 4). In this paper,
we set σ1 = σ2 = σ3 = σOB and σ4 = σ5 = σ6 = σPC (see Table 3).

Table 3. Parameters of the rate model Eq 1. The only difference between the spontaneous
and evoked states, is that the mean input to OB increased in the evoked state

Parameter Definition Spontaneous Value Evoked Value

Olfactory Bulb

µ1 Mean Input 13/60 26/60
µ2 9/60 18/60
µ3 7/60 14/60
σOB Background Noise Level 1.4 1.4
cOB OB Background Correlation 0.3 0.3

Piriform Cortex

µ4 Mean Input 9/60 9/60
µ5 5/60 5/60
µ6 3/60 3/60
σPC Background Noise Level 2 2
cPC PC Background Correlation 0.35 0.35

In the absence of coupling, any pair of activity variables, (xj , xk), are bivariate normally distributed
because the equations:

τ
dxj
dt

= −xj + µj + σj
(√

1− cjkξj(t) +
√
cjkξc(t)

)
(14)

τ
dxk
dt

= −xk + µk + σk
(√

1− cjkξk(t) +
√
cjkξc(t)

)
(15)

1an exception is when Twin = 2 s; in the evoked state, there is only 1 window per trial
2e.g. if the trial length is 2 s and Twin = 1 s, then there are 3 total windows per trial: [0 s, 1 s], [0.5 s, 1.5 s], and [1 s, 2 s]
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describes a multi-dimensional Ornstein-Uhlenbeck process [24]. Note that we have re-written ηj/k(t) as
sums of independent white noise processes ξ(t), which is always possible for Gaussian white noise. Since

xj(t) = 1
τ

∫ t
0
e−(t−u)/τ

[
µj + σjηj(u)

]
du, we calculate marginal statistics as follows:

µ(j) ≡ 〈xj〉 = µj + 0 (16)

σ2(j) ≡ 〈(xj − µ(j))2〉

=

〈
σ2
j

τ2

∫ t

0

∫ t

0

e−(t−u)/τηj(u)e−(t−v)/τηj(v) du dv

〉

=
σ2
j

τ2
lim
t→∞

∫ t

0

e−2(t−u)/τ du =
σ2
j

2τ

A similar calculations shows in general we have:

Cov(j, k) =
cjk
2τ
σjσk (17)

Thus, (xj , xk) ∼ N
(

( µjµk ) , 1
2τ

(
σ2
j σjσkcjk

σjσkcjk σ2
k

))
.

To simplify notation, let use define:

ρSN (y) :=
1√
2π
e−y

2/2, the standard normal PDF (18)

ρ2D(y1, y2) :=
1

2π
√

1− c2jk
exp

(
− 1

2
~yT
(

1 cjk
cjk 1

)−1

~y
)
, bivariate standard normal

(19)

With coupling, an exact expression for a joint distribution for (x1, x2, x3, x4, x5, x6) is not explicitly known.
However, we can estimate this distribution (and any derived statistics, such as means and variances) using
Monte Carlo simulations. All Monte Carlo simulations of the six (6) coupled SDEs were performed using a
time step of 0.01 (we set τ = 1) with a standard Euler-Maruyama method, for a time of 5000 units (arbitrary,
but relative to the characteristic time scale τ = 1) for each of the 3000 realizations. The activity xj was
sampled at each time step after an equilibration period.

Furthermore, we can approximate moments of the joint distribution under the assumption of weak coupling,
described in the next section.

Approximation of Firing Statistics in the Firing Rate Model

We will now show how to compute approximate first and second order statistics for the firing rate model
with coupling; i.e. we aim to compute the mean activity 〈xj〉, mean firing rate 〈F (xj)〉, variance and
covariances of both: 〈xjxk〉 and 〈F (xj)F (xk)〉. For a simpler exposition, we have only included eight synaptic
connections; we have excluded autaptic connections, E→E connections, and E→I connections within a region.

An equation for each statistic can be calculated by first writing Eq (12) as a low-pass filter of the
right-hand-side:

xj(t) =
1

τ

∫ t

0

e−(t−u)/τ
[
µj + σjηj(u) +

∑
k

gjkF (xk)
]
du (20)

We then take expectations, letting t→∞; e.g.

µ(j) := 〈xj〉 = µj + 〈
∑
k

gjkF (xk)〉 = µj +
∑
k

gjk〈F (xk)〉 (21)
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If the stochastic process is ergodic — generally true for stochastic differential equations of this type — then
averaging over time is equivalent to averaging over the invariant measure.

We will make several assumptions for tractability. First, we only account for direct connections in the
formulas for the first and second order statistics, assuming the terms from the indirect connections are either
small or already accounted for in the direct connections. We further make the following assumptions to
simplify the calculations:〈∫ t

0

F (xk(u))e−(t−u)/τ du

∫ t

0

F (xk(v))e−(t−v)/τ dv

〉
≈ τ

2
E
[
F 2(xk)

]
(22)

where E
[
F 2(xk)

]
:=

∫
F 2(σ(k)y + µ(k)) ρSN (y) dy (23)〈∫ t

0

σjηj(u)e−(t−u)/τ du

∫ t

0

F (xk(v))e−(t−v)/τ dv

〉
≈ τ

2
E [NjF (xk)] , if j 6= k (24)

where E [NjF (xk)] :=
σj√

2

∫∫
y1F (σ(k)y2 + µ(k)) ρ2D(y1, y2) dy1dy2 (25)〈∫ t

0

σjηj(u)e−(t−u)/τ du

∫ t

0

F (xk(v))e−(t−v)/τ dv

〉
≈ τ

2

σk√
2

∫
yF (σ(k)y + µ(k)) ρSN (y) dy, if j = k (26)〈∫ t

0

F (xj(u))e−(t−u)/τ du

∫ t

0

F (xk(v))e−(t−v)/τ dv

〉
≈ τ

2
E [F (xj)F (xk)] (27)

where E [F (xj)F (xk)] :=∫∫
F (σ(j)y1 + µ(j))F (σ(k)y2 + µ(k)) ρ2D(y1, y2) dy1dy2 (28)

and Nj denotes the random variable
∫ t

0
σjηj(u)e−(t−u)/τ du, which is by itself normally distributed with mean

0 and variance σ2
j τ/2.

Each assumption is equivalent to the assumption that two of the random variables of interest are
δ-correlated in time; thus avoiding the need to compute autocorrelation functions explicitly. The first
assumption, Eq 22, states that F (xj(t)) is δ-correlated with itself; the second and third, Eq 24 and Eq 26,
address Nj and F (xk(t)), for j 6= k and j = k respectively. Finally, the fourth assumption, Eq 27, states that
F (xj(t)) and F (xk(t)) are δ-correlated.

In all of the definitions for the expected values with ρ2D, note that the underlying correlation correlation
cjk depend on the pair of interest (j, k). Finally, we assume that the activity variables (xj , xk) are pairwise
normally distributed with the subsequent statistics; this is sufficient to “close” our model and solve for the
statistical quantities self-consistently. This last assumption is implicitly a weak coupling assumption because
with no coupling, (xj , xk) are bivariate normal random variables.
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The resulting approximations for the mean activity are:

µ(1) = µ1 + g15

∫
F (σ(5)y + µ(5)) ρSN (y) dy + g16

∫
F (σ(6)y + µ(6)) ρSN (y) dy (29)

µ(2) = µ2 + g21

∫
F (σ(1)y + µ(1)) ρSN (y) dy (30)

µ(3) = µ3 + g31

∫
F (σ(1)y + µ(1)) ρSN (y) dy (31)

µ(4) = µ4 + g42

∫
F (σ(2)y + µ(2)) ρSN (y) dy + g43

∫
F (σ(3)y + µ(3)) ρSN (y) dy (32)

µ(5) = µ5 + g54

∫
F (σ(4)y + µ(4)) ρSN (y) dy (33)

µ(6) = µ6 + g64

∫
F (σ(4)y + µ(4)) ρSN (y) dy. (34)

The resulting approximation to the variances of the mean activity are:

τσ2(1) =
σ2

1

2
+
g2

15

2
V ar

(
F (σ(5)Y + µ(5))

)
+
g2

16

2
V ar

(
F (σ(6)Y + µ(6))

)
+g15g16Cov

(
F (σ(5)Y1 + µ(5)), F (σ(6)Y2 + µ(6))

)
(35)

τσ2(2) =
σ2

2

2
+
g2

21

2
V ar

(
F (σ(1)Y + µ(1))

)
+σ2g21

∫∫
y1√

2
F (σ(1)y2 + µ(1)) ρ2D(y1, y2) dy1dy2 (36)

τσ2(3) =
σ2

3

2
+
g2

31

2
V ar

(
F (σ(1)Y + µ(1))

)
+σ3g31

∫∫
y1√

2
F (σ(1)y2 + µ(1)) ρ2D(y1, y2) dy1dy2 (37)

τσ2(4) =
σ2

4

2
+
g2

42

2
V ar

(
F (σ(2)Y + µ(2))

)
+
g2

43

2
V ar

(
F (σ(3)Y + µ(3))

)
+g42g43Cov

(
F (σ(2)Y1 + µ(2)), F (σ(3)Y2 + µ(3))

)
(38)

τσ2(5) =
σ2

5

2
+
g2

54

2
V ar

(
F (σ(4)Y + µ(4))

)
+σ5g54

∫∫
y1√

2
F (σ(4)y2 + µ(4)) ρ2D(y1, y2) dy1dy2 (39)

τσ2(6) =
σ2

6

2
+
g2

64

2
V ar

(
F (σ(4)Y + µ(4))

)
+σ6g64

∫∫
y1√

2
F (σ(4)y2 + µ(4)) ρ2D(y1, y2) dy1dy2 (40)

In Eq 29–40, all of the V ar and Cov are with respect to Y ∼ N (0, 1) (for V ar) and (Y1, Y2) ∼
N
(

( 0
0 ) , 1

2

(
1 cjk
cjk 1

))
(for Cov); both are easy to calculate. The value cjk depends on the pairs; for example

in Eq 36, the ρ2D has cjk = cob, the background correlation value in the olfactory bulb but in Eq 35, the Cov
term is with respect to ρ2D with cjk = cpc, the background correlation value in the piriform cortex.

Lastly, we state the formulas for the approximations to the covariances. Although there are 15 total
covariance values, we are only concerned with 6 covariance values (3 within OB and 3 within PC); we neglect
all covariances between regions. First, our experimental data set shows that these covariance (and correlation)
values are small (see Fig S9 in S2 Text). Second, because there is no background correlation (i.e common
input) between PC and OB in our model, any nonzero covariance/correlation arises strictly via direct coupling.
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Thus, we cannot view OB-PC covariance from coupling as a small perturbation of the background (uncoupled)
state; we do not expect our model to yield qualitatively accurate predictions for these statistics. The formulas
are:

τCov(1, 2) =
1

2
cobσ1σ2 + σ1

g21

2

∫
y√
2
F (σ(1)y + µ(1)) ρSN (y) dy (41)

τCov(1, 3) =
1

2
cobσ1σ3 + σ1

g31

2

∫
y√
2
F (σ(1)y + µ(1)) ρSN (y) dy (42)

τCov(2, 3) =
1

2
cobσ2σ3 +

g21g31

2
V ar

(
F (σ(1)Y + µ(1))

)
+
σ3g21 + σ2g31

2

∫∫
y1√

2
F (σ(1)y2 + µ(1)) ρ2D(y1, y2) dy1dy2 (43)

τCov(4, 5) =
1

2
cpcσ4σ5 + σ4

g54

2

∫
y√
2
F (σ(4)y + µ(4)) ρSN (y) dy (44)

τCov(4, 6) =
1

2
cpcσ4σ6 + σ4

g64

2

∫
y√
2
F (σ(4)y + µ(4)) ρSN (y) dy (45)

τCov(5, 6) =
1

2
cpcσ5σ6 +

g54g64

2
V ar

(
F (σ(4)Y + µ(4))

)
+
σ6g54 + σ5g64

2

∫∫
y1√

2
F (σ(4)y2 + µ(4)) ρ2D(y1, y2) dy1dy2 (46)

Iteration procedure to solve for the approximate statistics self-consistently

Based on the approximations and resulting equations described in the previous section, our objective is to
solve for the statistics of xj self-consistently. Once these are determined, the statistics of the firing rates
F (xj) are approximated with the same pairwise normal assumption on (xj , xk) (we are not assuming that
(F (xj), F (xk)) are bivariate normal random variables).

We use a simple iterative procedure to solve the system of coupled algebraic expression for the statistics of
xj . We first solve the system in the absence of coupling (i.e. Eqn. (16), (17)), and use these values to start the
iteration; at each step, the formulas for the means (29)–(34), variances (35)–(40), and covariances (41)–(46)
are recalculated numerically, using the results of the previous step. The iteration stops once all 18 statistical
quantities of the activity match up to a relative tolerance of 10−6 (convergence), or after 50 total iterations
(non-convergence). The result with a given parameter set can either be: i) convergence, ii) non-convergence,
iii) a pair of statistics with invalid covariance (non-positive definite covariance matrix), which is checked after
i) and ii). We only consider parameter sets where the iteration has converged and all of the covariances are
valid, after which we determine whether the constraints are satisfied.

One subtle point is that we did not use any of the numerically calculated Cov values in the bivariate
normal distributions ρ2D; rather, the correlation value is always cjk which is either 0, cob, or cpc depending
on the pair. In principle, one can use a fully iterative procedure where the formulas for the Cov (41)–(46)
are used in ρ2D; however, we found that the resulting covariance matrices (for ρ2D) can fail to be positive
semi-definite. Handling this case requires additional code in the program and slower calculations for each
parameter set, which is antithetical to the purpose of our method. We checked some parameter sets comparing
the results of the two procedures, and the results are quantitatively similar.

The standard normal ρSN and bivariate ρ2D PDFs have state variable(s) y1,2 discretized from -3 to 3
with a mesh size of 0.01; integrals in Eqn. (29)–(46) are computed using the trapezoidal rule.

Simplified network with four coupling parameters

To further simplify the network, we:

• set τ = 1,
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• assume feedforward inhibitory connections within a region have the same strength; i.e. g21 = g31 ≡ gIO
and g54 = g64 ≡ gIP ,

• assume cross-region excitatory connections are equal from the presynaptic cell, i.e., g15 = g16 = gEP
and g42 = g43 = gEO.

• assume σ1 = σ2 = σ3 =: σob and σ4 = σ5 = σ6 =: σpc

Now there are only 4 coupling parameters: gIO, gEO, gIP , gEP .
The above formulas for the statistics of xj reduce to:

µ(1) = µ1 + gEP

∫ (
F (σ(5)y + µ(5)) + F (σ(6)y + µ(6))

)
ρSN (y) dy (47)

µ(2) = µ2 + gIO

∫
F (σ(1)y + µ(1)) ρSN (y) dy (48)

µ(3) = µ3 + gIO

∫
F (σ(1)y + µ(1)) ρSN (y) dy (49)

µ(4) = µ4 + gEO

∫ (
F (σ(2)y + µ(2)) + F (σ(3)y + µ(3))

)
ρSN (y) dy (50)

µ(5) = µ5 + gIP

∫
F (σ(4)y + µ(4)) ρSN (y) dy (51)

µ(6) = µ6 + gIP

∫
F (σ(4)y + µ(4)) ρSN (y) dy; (52)

the variances are:

σ2(1) =
σ2
ob

2
+
g2
EP

2
V ar

(
F (σ(5)Y1 + µ(5)) + F (σ(6)Y2 + µ(6))

)
(53)

σ2(2) =
σ2
ob

2
+
g2
IO

2
V ar

(
F (σ(1)Y + µ(1))

)
+σobgIO

∫∫
y1√

2
F (σ(1)y2 + µ(1)) ρ2D(y1, y2) dy1dy2 (54)

σ2(3) = σ2(2) (55)

σ2(4) =
σ2
pc

2
+
g2
EO

2
V ar

(
F (σ(2)Y1 + µ(2)) + F (σ(3)Y2 + µ(3))

)
(56)

σ2(5) =
σ2
pc

2
+
g2
IP

2
V ar

(
F (σ(4)Y + µ(4))

)
+σpcgIP

∫∫
y1√

2
F (σ(4)y2 + µ(4)) ρ2D(y1, y2) dy1dy2 (57)

σ2(6) = σ2(5); (58)
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the covariances are:

Cov(1, 2) =
1

2
cobσ

2
ob + σob

gIO

2

∫
y√
2
F (σ(1)y + µ(1)) ρSN (y) dy (59)

Cov(1, 3) = Cov(1, 2) (60)

Cov(2, 3) =
1

2
cobσ

2
ob +

g2
IO

2
V ar

(
F (σ(1)Y + µ(1))

)
+σobgIO

∫∫
y1√

2
F (σ(1)y2 + µ(1)) ρ2D(y1, y2) dy1dy2 (61)

Cov(4, 5) =
1

2
cpcσ

2
pc + σpc

gIP

2

∫
y√
2
F (σ(4)y + µ(4)) ρSN (y) dy (62)

Cov(4, 6) = Cov(4, 5) (63)

Cov(5, 6) =
1

2
cpcσ

2
pc +

g2
IP

2
V ar

(
F (σ(4)Y + µ(4))

)
+σpcgIP

∫∫
y1√

2
F (σ(4)y2 + µ(4)) ρ2D(y1, y2) dy1dy2 (64)

Leaky Integrate-and-Fire Model of the OB–PC Circuit

We use a generic spiking neural network model of leaky integrate-and-fire neurons to test the results of
the theory. There were NOB = 60 total OB cells, of which we set 80% (48) to be excitatory and 20% (12)
inhibitory. The equations for the OB cells are, indexed by k ∈ {1, 2, . . . , NOB}:

τm
dvk
dt

= µOB − vk − gk,XI(t)(vk − EI)− gk,XE(t)(vk − EE)

−gk,XPC(t− τ∆,PC)(vk − EE) + σOB

(√
1− c̃OBηk(t) +

√
c̃OBξo(t)

)
vk(t∗) ≥ θk ⇒ vk(t∗ + τref ) = 0

gk,XE(t) =
γXE

pXE (0.8NOB)

∑
k′∈{ presyn OB E-cells}

Gk′(t)

gk,XI(t) =
γXI

pXI (0.2NOB)

∑
k′∈{presyn OB I-cells}

Gk′(t)

gk,XPC(t) =
γX,PC

pX,PC (0.8NPC)

∑
j′∈{presyn PC E-cells}

Gj′(t)

τd,X
dGk
dt

= −Gk +Ak

τr,X
dAk
dt

= −Ak + τr,XαX
∑
l

δ(t− tk,l). (65)

The conductance values in the first equation gk,XI , gk,XE , and gk,XPC depend on the type of neuron vk
(X ∈ {E, I}). The last conductance, gX,PC(t− τ∆,PC)(vk − EE), models the excitatory presynaptic input
(feedback) from the PC cells with a time delay of τ∆,PC . The conductance variables gk,XY (t) are dimensionless
because this model was derived from scaling the original (raw) conductance variables by the leak conductance
with the same dimension. The leak, inhibitory and excitatory reversal potentials are 0, EI , and EE , respectively
with EI < 0 < EE (the voltage is scaled to be dimensionless, see Table 4). ξk(t) are uncorrelated white noise
processes and ξo(t) is the common noise term to all NOB cells.

The second equation describes the refractory period at spike time t∗: when the neuron’s voltage crosses
threshold θj (see below for distribution of thresholds), the neuron goes into a refractory period for τref , after
which we set the neuron’s voltage to 0.
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The parameter γXY gives the relative weight of a connection from neuron type Y to neuron type X; the
parameter pXY is probability that any such connection exists (X,Y ∈ {E, I}). Gk is the synaptic variable
associated with each cell, and dependent only on that cell’s spike times; its dynamics are given by the final
two equations in Eq 65 and depend on whether k ∈ {E, I}.

Finally, two of the parameters above can be equated with coupling parameters in the reduced model:

gEP = γI,PC ; gIO = γEI (66)

which are dimensionless scale factors for the synaptic conductances.

Table 4. Fixed parameters for the LIF OB–PC model, see Eqs 65–67.

Same for both OB and PC
Parameter τm τref EI EE τd,I τr,I τd,E τr,E αI αE

20 ms 2 ms -2.5 6.5 10 ms 2 ms 5 ms 1 ms 2 Hz 1 Hz

Parameter N Spont. µ Evoked µ σ c̃ γEE γIE γII γE,PC/OB τ∆,PC/OB
OB 60 0.6 0.9 0.05 0.5 2 4 6 1 10 ms
PC 100 0 0.4 0.1 0.8 2 4 6 1 5 ms

All 12 probabilities of connections are set to pXY = 0.30 and were randomly chosen (Erdős-Rényi graphs).
The synaptic time delay from OB to PC is τ∆,OB = 10 ms, and from PC to OB is τ∆,PC = 5 ms. The scaled
voltages from mV is: (V+Vreset)/(Vth+Vreset), corresponding for example to Vreset=Vleak=-65 mV,
Vth=-55 mV (on average), excitatory reversal potential of 0 mV and inhibitory reversal potential of -90 mV.

The PC cells had similar functional form but with different parameters (see Table 4 for parameter values).
We modeled NPC = 100 total PC cells, of which 80% were excitatory and 20% inhibitory. The equations,
indexed by j ∈ {1, 2, . . . , NPC} are:

τm
dvj
dt

= µPC − vj − gj,XI(t)(vj − EI)− gj,XE(t)(vj − EE)

−gj,XOB(t− τ∆,OB)(vj − EE) + σPC

(√
1− c̃PCηj(t) +

√
c̃PCξp(t)

)
vj(t

∗) ≥ θj ⇒ vj(t
∗ + τref ) = 0

gj,XE(t) =
γXE

pXE (0.8NPC)

∑
j′∈{presyn PC E-cells}

Gj′(t)

gj,XI(t) =
γXI

pXI (0.2NPC)

∑
j′∈{presyn PC I-cells}

Gj′(t)

gj,XOB(t) =
γX,OB

pX,OB (0.8NOB)

∑
k′∈{presyn OB E-cells}

Gk′(t)

τd,X
dGj
dt

= −Gj +Aj

τr,X
dAj
dt

= −Aj + τr,XαX
∑
l

δ(t− tj,l). (67)

Excitatory synaptic input from the OB cells along the lateral olfactory tract is modeled by: gX,OB(t −
τ∆,OB)(vj −EE). The common noise term for the PC cells ξp(t) is independent of the common noise term for
the OB cells ξo(t). Two of the parameters above can be equated with coupling parameters in the reduced
model:

gEO = γI,OB ; gIP = γEI (68)

The values of the parameters that were not stated in Table 4 were varied in the paper:

gIO, gEO, gIP, gEP.
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To model two activity states, we allowed mean inputs to vary (see Table 4). In contrast to the reduced
model, we increased both inputs to PC cells (from µPC = 0 in the spontaneous state to µPC = 0.4 in the
evoked state) as well as to OB cells (from µOB = 0.6 in the spontaneous state to µOB = 0.9 in the evoked
state).

Finally, we model heterogeneity by setting the threshold values θj in the following way. Both OB and PC
cells had the following distributions for θj :

θj ∼ eN (69)

where N is normal distribution with mean −σ2
θ/2 and standard deviation σθ, so that {θj} has a log-normal

distribution with mean 1 and variance: eσ
2
θ−1. We set σθ = 0.1, which results in firing rates ranges seen in the

experimental data. Since the number of cells are modest with regards to sampling (NOB = 60, NPC = 100),
we evenly sampled the log-normal distribution from the 5th to 95th percentiles (inclusive).

We remark that the synaptic delays of τ∆,PC and τ∆,OB were set to modest values to capture the
appreciable distances between OB and PC. This is a reasonable choice based on evidence that stimulation in
PC illicit a response in OB 5-10 ms later [51].

In all Monte Carlo simulations of the coupled LIF network, we used a time step of 0.1 ms, with 2 s of
biology time for each of the 100,000 realizations (i.e., over 55.5 hours of biology time), enough simulated
statistics to effectively have convergence.

Supporting Information

S1 Text. Experimental Data Statistics by Odor. This file shows the trial-averaged spiking statistics
of the experimental data dissected by a specific odor. Contains captions for Fig. S1-S8.

S2 Text. Supplementary Figures for Modeling and Analysis. This file contains supplemental
figures from modeling and analysis. Contains captions for Fig. S9-S16.

S1 Figure. Experimental statistics by odor and activity state: Fano Factor.

S2 Figure. Experimental statistics by odor and activity state: spike count variance.

S3 Figure. Experimental statistics by odor and region: Fano Factor.

S4 Figure. Experimental statistics by odor and region: spike count variance.

S5 Figure. Experimental statistics by odor and activity state: spike count correlation.

S6 Figure. Experimental statistics by odor and activity state: spike count covariance.

S7 Figure. Experimental statistics by odor and region: spike count correlation.

S8 Figure. Experimental statistics by odor and region: spike count covariance.

S9 Figure. Cross-region correlations are smaller than within-region correlations.

S10 Figure. Fast analytic approximation accurately captures statistics of a multi-population
firing rate model.

S11 Figure. Experimental observations constrain conductance parameters in analytic model.
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S12 Figure. Analytic approximation results are robust to choice of transfer function.

S13 Figure. Mean input to PC must increase in the evoked state.

S14 Figure. Violating derived relationship gIO < gIP results in statistics that are inconsistent
with experimental observations.

S15 Figure. Violating derived relationship gEP > gEO results in statistics that are inconsis-
tent with experimental observations.

S16 Figure. Violating derived relationship gEP, gIP � gEO, gIO results in statistics that are
inconsistent with experimental observations.
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Tina Schrödel, Ramesh Raskar, Manuel Zimmer, Edward S Boyden, et al. Simultaneous whole-animal
3d imaging of neuronal activity using light-field microscopy. Nature methods, 11(7):727–730, 2014.

59. A. Renart, J. de la Rocha, P. Bartho, L. Hollender, N. Parga, A. Reyes, and K.D. Harris. The
asynchronous state in cortical circuits. Science, 327:587–590, 2010.
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Table S1. Average population firing rate (Hz) by odor and activity state.

Mean across population All Odors Odor 1 Odor 2 Odor 3 Odor 4

νSpOB 1.97 1.44 1.8 2.62 2.24
νEvOB 4.66 4.91 3.28 5.41 5.34

νSpPC 0.75 0.56 0.91 0.74 0.79
νEvPC 1.45 1.6 1.26 1.7 1.23

Table S2. Standard deviation of firing rate across the population (Hz) by odor and activity
state.

Std. Dev. across population All Odors Odor 1 Odor 2 Odor 3 Odor 4

νSpOB 3.28 2.34 3.07 4.32 3.58
νEvOB 7.14 7.55 5.55 8 8.04

νSpPC 0.93 0.83 1.08 0.96 0.95
νEvPC 1.58 2.09 1.45 1.93 1.18

1



0 0.5 1 1.5 2
1

1.2

1.4

1.6

Twin (s)

O
B

 F
a

n
o

 F
a

c
to

r

0 0.5 1 1.5 2
1

1.4

1.8

2.2

Twin (s)

P
C

 F
a

n
o

 F
a

c
to

r

0 0.5 1 1.5 2
1

1.5

2

2.5

Twin (s)

O
B

 F
a

n
o

 F
a

c
to

r

0 0.5 1 1.5 2
1

2

3

4

5

Twin (s)

P
C

 F
a

n
o

 F
a

c
to

r

Exper. 1+2A Exper. 3+4B

C D

Combine 2 odors

1st odor (1 or 3)

2nd odor (2 or 4)

Spontaneous

Evoked

Spontaneous

Evoked

Spontaneous

Evoked

Spontaneous

Evoked

Fig S1. Experimental statistics by odor and activity state: Fano Factor. Comparing the mean
Fano Factor across all simultaneously cells with: i) pairs from the 2 stimuli (black), ii) from the first odor
(red), iii) from the second odor (blue). A and B are the PC cells, C and D are the OB cells. The left column
A), C) is from data040515 exp1+2.mat, and the right column B), D) is from data040515 exp3+4.mat The
spontaneous and evoked states in groups of 3 curves are denoted by the gray arrows.
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Fig S2. Experimental statistics by odor and activity state: spike count variance. Similar to
Fig. S1 but comparing the mean variance divided by time window across all simultaneously cells with: i)
pairs from the 2 stimuli (black), ii) from the first odor (red), iii) from the second odor (blue). A and B are
the PC cells, C and D are the OB cells. The left column A), C) is from data040515 exp1+2.mat, and the
right column B), D) is from data040515 exp3+4.mat The spontaneous and evoked states in groups of 3
curves are denoted by the gray arrows.
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Fig S3. Experimental statistics by odor and region: Fano Factor. Comparing the mean Fano
Factor between recorded PC (3 green curve) and OB (3 blue curves) cells, with: i) pairs from the 2 stimuli ,
ii) from the first odor, iii) from the second odor (see figure legend for color convention). A and B is for the
spontaneous state, C and D is for the evoked state. The left column A), C) is from data040515 exp1+2.mat,
and the right column B), D) is from data040515 exp3+4.mat.
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Fig S4. Experimental statistics by odor and region: spike count variance. Comparing the mean
variance divided by time window between recorded PC (3 green curve) and OB (3 blue curves) cells, with: i)
pairs from the 2 stimuli , ii) from the first odor, iii) from the second odor (see figure legend for color
convention). A and B is for the spontaneous state, C and D is for the evoked state. The left column A), C) is
from data040515 exp1+2.mat, and the right column B), D) is from data040515 exp3+4.mat.
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Fig S5. Experimental statistics by odor and activity state: spike count correlation.
Comparing the mean spike count correlation across all simultaneously recorded pairs with: i) pairs from the
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from data040515 exp1+2.mat, and the right column B), D), F) is from data040515 exp3+4.mat The
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Fig S6. Experimental statistics by odor and activity state: spike count covariance. Similar to
Fig. S5 but comparing the mean spike count covariance divided by time window across all simultaneously
recorded pairs with: i) pairs from the 2 stimuli (black), ii) from the first odor (red), iii) from the second odor
(blue). The left column A), C), E) is from data040515 exp1+2.mat, and the right column B), D), F) is from
data040515 exp3+4.mat The spontaneous and evoked states in groups of 3 curves are denoted by the gray
arrows.
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Fig S7. Experimental statistics by odor and region: spike count correlation. Comparing the
mean spike count correlation between all pairs of PC (3 green curve) and OB (3 blue curves) cells, with: i)
pairs from the 2 stimuli , ii) from the first odor, iii) from the second odor (see figure legend for color
convention). The left column A), C), E) is from data040515 exp1+2.mat, and the right column B), D), F)
is from data040515 exp3+4.mat.
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Fig S8. Experimental statistics by odor and region: spike count covariance. Comparing the
mean spike count covariance divided by time window between all pairs of PC (3 green curve) and OB (3
blue curves) cells, with: i) pairs from the 2 stimuli , ii) from the first odor, iii) from the second odor (see
figure legend for color convention). The left column A), C), E) is from data040515 exp1+2.mat, and the
right column B), D), F) is from data040515 exp3+4.mat.
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Fig S9. Cross-region correlations are smaller than within-region correlations. The experimental
data shows that the PC-OB correlation and covariance is small (on average) compared to both OB and PC.
A: In the spontaneous state, the (average) Fano Factor of the PC cells is larger than the OB cells. B: In the
evoked state, the (average) variance of spike counts of OB cells is larger than the PC cells; here, we have
divided by the time window for illustration purposes (which obviously does not change the relationship). In
both A and B, there are 73 PC cells and 41 OB cells. C: In the evoked state, the (average) OB covariance is
larger than the PC covariance. D: The evoked variance among OB cells is larger than the spontaneous OB
variance. In C and D, the covariances were scaled by the time window for illustration purposes, and there
were 1298 pairs of PC cells and 406 pairs of OB cells.
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Fig S10. Fast analytic approximation accurately captures statistics of a multi-population
firing rate model. Comparing the results of the fast analytic approximation to Monte Carlo simulations
from 100 randomly selected parameters in the 6 equation rate model: −2 ≤ gIO < 0, −2 ≤ gIP < 0,
0 < gEO ≤ 2, 0 < gEP ≤ 2. Comparing 4 important firing rate statistics on a cell by cell basis (i.e., not the
average across the population); the statistics for the activity Xj are just as accurate (not shown). A: The
mean firing rate F (Xj). B: The variance of the firing rate V ar(F (Xj)). C: The covariance of the firing rate
between OB pairs and PC pairs (we do not focus on OB–PC pairs): Cov(F (Xj), F (Xk)). D: The correlation

of the firing rate between OB and PC pairs: ρ = Cov(F (Xj), F (Xk))/
√
V ar(F (Xj))V ar(F (Xk)). The fast

analytic approximation is accurate (dots lie on the diagonal line). Error bars are shown in B and C,
representing 95% confidence intervals assuming a normal distribution for finite number of realizations, or
1.96 standard deviations above and below the mean.
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Fig S11. Experimental observations constrain conductance parameters in analytic model.
The final 2 relationships between the 4 conductance parameters from the fast analytic theory for the rate
model not shown in the main text with F (X) = 1

2 (1 + tanh((X − 0.5)/0.1)). A: Both gEP and |gIP | are
relatively large. B: |gIO| is relatively small.
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Fig S12. Analytic approximation results are robust to choice of transfer function. The results
of the fast analytic theory for the rate model using a truncated square root transfer function
F (X) = 1.25

√
X − 0.2H(X − 0.2) are qualitatively similar to the results with the more common sigmoidal

function (see main text). A: The inhibitory conductance within the PC population |gIP | is larger than in
the OB population gOP . B: The excitatory conductance from PC to OB gEP is generally larger than OB to
PC gEO. C: Both gEP and |gIP | are relatively large. D: |gIO| is relatively small. E: |gIP | is relatively
large. F: Again, |gIO| is relatively small.
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Fig S13. Mean input to PC must increase in the evoked state. Showing the results of the full LIF
spiking model when the mean input to PC is the same in spontaneous and evoked states: µPC = 0. The rest
of the parameters are the same as in Figure 5 (see main text). The firing rates are: νSpOB = 3.8± 3.3,

νEvOB = 8.6± 5.4, νSpPC = 2.1± 2.5, and νEvPC = 2.4± 4.2, which violates the constraint from the experimental
data that νOB > νPC in both states. The 8 panels show the constraints on the 2nd order spiking statistics in
the same format as in Figure 5 of the main text. Only the Fano Factor constraint: FFSpPC > FFEvPC is
violated, panel B with magenta coloring.
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Fig S14. Violating derived relationship |gIO| < |gIP | results in statistics that are inconsistent
with experimental observations. Showing the results of the full LIF spiking model when gIP < gIO;
specifically, we set gIP = 7 and gIO = 20 and set the values of the rest of the parameters to those used in
Figure xxx (see main text). The firing rates are: νSpOB = 2.96± 5, νEvOB = 5.94± 11.67, νSpPC = 3.43± 1.59,
and νEvPC = 8.85± 3.38, which violates the constraint from the experimental data that νOB > νPC in both
states. The 8 panels show the constraints on the 2nd order spiking statistics in the same format as in Figure
xxx of the main text. The panels with magenta letters (i.e., A, D, E, F, G) are constraints that are violated.
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Fig S15. Violating derived relationship gEP > gEO results in statistics that are inconsistent
with experimental observations.Showing the results of the full LIF spiking model when gEP < gEO;
specifically, we set gEP = 1 and gEO = 15, and with c̃OB = 0.6 instead of 0.5; we set the values of the rest

of the parameters to those used in Figure 5 (see main text). The firing rates are: νSpOB = 3.75± 2.61,

νEvOB = 8.73± 5.12, νSpPC = 2.28± 3.32, and νEvPC = 4.87± 9.2. The 8 panels show the constraints on the 2nd
order spiking statistics. Only 1 constraint is violated, panel C in magenta.
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Fig S16. Violating derived relationship gEP, gIP � gEO, gIO results in statistics that are
inconsistent with experimental observations.Showing the results of the full LIF spiking model when
gEP and gIP are both relatively small; specifically, we set gEP = 10 and gIP = 10 and set the values of
the rest of the parameters to those used in Figure 5 (see main text). The firing rates are: νSpOB = 3.85± 3.56,

νEvOB = 8.2± 7.08, νSpPC = 2.92± 2.31, and νEvPC = 6.45± 6.17, which violates the constraint from the
experimental data that νOB > νPC in both states. The 8 panels show the constraints on the 2nd order
spiking statistics. The panels with magenta letters (i.e., A, D, F, G) are constraints that are violated.
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