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Spectral gradient flow and equilibrium

configurations of point vortices

By Andrea Barreiro, Jared Bronski, and Paul K. Newton

Department of Mathematics, University of Illinois
Urbana-Champaign, Il

and
Department of Aerospace & Mechanical Engineering and Department of

Mathematics, University of Southern California, Los Angeles, CA 90089-1191
(newton@usc.edu)

We formulate the problem of finding equilibrium configurations of N -point vortices
in the plane in terms of a gradient flow on the smallest singular value of a skew-
symmetric matrix M whose nullspace structure determines the (real) strengths,
rotational frequency, and translational velocity of the configuration. A generic con-
figuration gives rise to a matrix with empty nullspace, hence is not a relative equi-
librium for any choice of vortex strengths. We formulate the problem as a gradient
flow in the space of square covariance matrices MTM . The evolution equation for
det(MTM) drives the configuration to one with a real nullspace, establishing the
existence of an equilibrium for vortex strengths that are elements of the nullspace of
the matrix. We formulate both the unconstrained gradient flow problem where the
point vortex strengths are determined a posteriori by the nullspace of M , as well as
the constrained problem where the point vortex strengths are chosen a priori and
one seeks configurations for which those strengths are elements of the nullspace.

Keywords: Gradient flow; point vortex equilibria; Relative equilibria; N-body
problems, interacting particle systems.

1. Introduction

The problem of finding and classifying all fixed and relative equilibria of N -point
vortices in the plane or on the sphere is of long-standing interest. In the plane,
attacks on the problem date back to the 1800s with the works of Kirchhoff and von
Helmholtz who first formulated the problem as a Hamiltonian system of interact-
ing particles – a complete bibliography of papers on the subject has been compiled
recently by Meleshko & Aref (2006). When the particles are restricted to lie along
a line, equilibrium positions are known to be related to the zeros of classical func-
tions (Aref (2007)). More generally, one finds deep connections with equilibria in
the plane and rational solutions of KdV and the Adler-Moser polynomials – see
Aref et. al. (2003), and Aref (2007) for entries into this literature. On the sphere,
the problem is related to Smale’s 7th problem (Smale (2000)) of how to arrange
N points on the surface so as to minimize the Riesz-s energy (see Saff and Klui-
jaars (1997)) of the system in the limit s → 0. These points are generally known
as Fekete points, or elliptic Fekete points when the interaction is logarithmic. Al-
though much is known for special values and ranges of N , the general solution to
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this problem has not been found and is of interest, for example, to gain a better un-
derstanding of the ways in which complex virus molecules arrange themselves (see
Longuet-Higgins (2009)), or how to distribute the nodes of a computational mesh
on a general surface (Szeliski, Tonnesen & Terzopoulos (1993)). It has emerged as a
canonical ‘benchmark’ problem in constrained optimization theory that is routinely
used as a challenge for numerical codes of all sorts, ranging from genetic algorithms,
simulated annealing, and gradient methods. The article of Aref et. al. (2003) con-
tains a relatively comprehensive survey of what was known at the time of writing,
and the recent article of Newton & Chamoun (2009) highlights questions that can
be addressed with the matrix based approach used in this paper. The closely re-
lated problem of classifying relative equilibria for N -body gravitational interactions
is also not yet solved and continues to present challenges (see Hampton & Moeckel
(2006)).

By formulating the problem as one of identifying fixed-points of the system
written in terms of inter-particle distances, recent progress has been made in iden-
tifying and classifying equilibria of all types. Since the system is linear in the particle
strengths, the relative equilibrium problem can be reduced to a problem in linear
algebra (see Jamaloodeen & Newton (2006), Newton & Chamoun (2007, 2009)). In
order to set the stage for the gradient flow method detailed in this paper, we first
give the necessary background.

The N -vortex problem in the plane can be written in terms of the N position
vectors ~xα ∈ R2 and real particle strengths Γα 6= 0 as

Γα~̇xα = J∇αH, 1 ≤ α ≤ N, (1.1)

where

J =

(
0 1

−1 0

)
(1.2)

is a 2 x 2 skew-symmetric matrix and ∇α is the two-dimensional partial gradient
vector with respect to ~xα. The Hamiltonian H is given by

H = − 1

2π

N∑

α<β

ΓαΓβ ln rαβ , (1.3)

with rαβ = |~xα − ~xβ | being the inter-vortical distances. The condition for the
configuration to form a relative equilibrium for a given set of particle strengths
Γα ∈ R is that all inter-vortical distances remain constant, i.e. rαβ = const. for
α 6= β.

Since the dynamics takes place in R2, one can formulate the problem as a dynam-
ical system in the complex plane, with ~xα = (xα, yα) = xα + iyα = zα representing
the position coordinates of the αth vortex. This N -dimensional complex dynamical
system takes the form

Γαżα = −2i
∂H
∂z∗α

, (1.4)

with Hamiltonian

H(zα, z
∗
α) = − 1

2π

N∑

α<β

ΓαΓβ ln |zα − zβ|, (1.5)
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where we treat z and z∗ as independent variables, adopting the notation

∂

∂z
=
∂x

∂z

∂

∂x
+
∂y

∂z

∂

∂y
=

1

2

(
∂

∂x
− i ∂

∂y

)
, (1.6)

∂

∂z∗
=

∂x

∂z∗
∂

∂x
+

∂y

∂z∗
∂

∂y
=

1

2

(
∂

∂x
+ i

∂

∂y

)
. (1.7)

The dynamical equations obtained from (1.4), (1.5) are then

ż∗α =
1

2πi

N∑

β=1

′
Γβ

zα − zβ
, (1.8)

where the prime on the sum indicates that the term β = α is omitted in order
to avoid the singular term. In addition to the Hamiltonian (1.5), the interacting
particle system (1.8) has three other conserved quantities. The first,

I =

N∑

α=1

Γα|zα|2, (1.9)

is due to invariance of the system with respect to rotations in C. The other two
arise from translational invariance of the system

N∑

α=1

Γαzα = const. = V. (1.10)

As long as the total vorticity of the system is not zero, it is traditional to normalize
this by the total vorticity and to define the center-of-vorticity as

z0 ≡
∑

Γαz
∗
α/
∑

Γα. (1.11)

Hence, a rigidly rotating configuration must rotate about the center of vorticity z0

which we can always choose as our origin z0 = 0. For the time being we will focus on
configurations which rotate, so we assume that

∑
Γα 6= 0, and thus z0 = 0. Rotating

patterns have been studied in Campbell & Ziff (1979), Gueron & Shafrir (1999), Aref
& van Buren (2005), and Lewis & Ratiu (1996), for example. A more comprehensive
treatment can be found in Aref et. al. (2003) and Newton & Chamoun (2009). Later
we will consider the case of translation. Note that the above argument implies that
a collection of vortices can only translate if

∑
Γα = 0, (1.12)

so configurations which translate uniformly should be of co-dimension one in the
set of all configurations which are rigid.

The equations for rigid rotation about the origin are the following N+1 complex
equations:

dzα
dt

= iωzα =
∑N

β 6=α
iΓβ

z∗α−z∗β
, (1.13)
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where ω is the rotational frequency. This gives N + 1 homogeneous equations in
N + 1 real unknowns Γα, ω, with N complex parameters z1, z2 . . . zN . This same
algebraic system can be obtained by extremizing the augmented Hamiltonian

H + v

N∑

α=1

Γαxα − u
N∑

α=1

Γαyα +
1

2
ω

N∑

α=1

Γα|zα|2 (1.14)

where V = u + iv and ω play the role of Lagrange multipliers and the con-
straints are the conservation of linear impulse V =

∑N
α=1 Γαz

∗
α and angular impulse

I =
∑N

α=1 Γα|zα|2. Thus, relative equilibria are obtained as critical points of the
augmented Hamiltonian (1.14), a variational principal due originally to Kelvin, as
discussed in Aref et. al. (2003) and used by Campbell & Ziff (1979) for computa-
tional purposes, and Gueron & Shafrir (1999) for analysis.

2. The linear system

Since the system (1.13) is linear in the particle strengths and rotational frequency,
one can write the equations as a linear system:

M(~z)~Γ =




0 i
z∗1−z∗2

i
z∗1−z∗3

i
z∗1−z∗4

· · · i
z∗1−z∗N

iz1

i
z∗2−z∗1

0 i
z∗2−z∗3

i
z∗2−z∗4

· · · i
z∗2−z∗N

iz2

...
...

...
. . .

i
z∗N−z∗1

i
z∗N−z∗2

i
z∗N−z∗3

· · · i
z∗N−z∗N−1

0 izN

−iz1 −iz2 −iz3 · · · −izN−1 −izN 0







Γ1

Γ2

...

ω


 = 0

(2.1)

where M(~z) is an (N+1)×(N+1) matrix with complex entries and ~Γ is a vector in
RN+1. As such, we would like to characterize the nullspace structure of M , noting
that M is skew-symmetric, i.e. MT = −M .

(a) Singular value spectrum

One may obtain the nullspace of a general matrix by performing a singular
value decomposition and using the right singular vectors corresponding to the zero
singular values as a basis set. In our case, we obtain the N + 1 singular values σi
(called the singular spectrum) of M , along with their corresponding left and right
singular vectors ~ui ∈ CN+1, ~vi ∈ CN+1 by solving the coupled linear system

M~vi = σi~ui; M∗~ui = σi~vi (2.2)

where σmax ≡ σN+1 ≥ σN ≥ · · · ≥ σ2 ≥ σ1 = σmin ≥ 0 and M∗ denotes the
hermitian conjugate (adjoint) of M . The left and right singular vectors are used as
columns to construct the unitary matrices U and V :

U = (~u1 ~u2 · · · ~uN+1); V = (~v1 ~v2 · · ·~vN+1), (2.3)

which produces the singular value decomposition of M :

M = UΣV ∗ =

N+1∑

i=1

σi~ui~v
∗
i . (2.4)
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Σ ∈ R(N+1)×(N+1) is a diagonal matrix with (real) singular values down the diag-
onal, ordered from smallest (top left) to largest (bottom right):

Σ =




σmin 0 · · · 0 0

0 σ2 · · · 0 0
...

...
. . .

...
...

0 · · · · · · σN 0

0 · · · · · · 0 σmax



. (2.5)

The decomposition (2.4) expresses M as a linear superposition of the rank-one
matrices ~ui~v

∗
i , (i = 1, ..., N + 1) with weighting determined by the singular values

σi. The dimension of the nullspace of M corresponds to the number of zero singular
values, while the right singular vectors ~vi corresponding to those zero singular values
form a basis set for the nullspace of M . A comprehensive discussion of the many
advantages and ramifications of adopting this approach is described in Newton &
Chamoun (2009).

Note that Null(M) 6= ∅ is a necessary but not sufficient condition for the ex-
istence of a vortex equilibrium. Since M ∈ C(n+1)×(n+1) while the vorticities are
assumed to be real one needs the nullspace of M to be real. It is easy to see that the
condition that M have a real nullspace is equivalent to the condition that MR and
MI , the real and imaginary parts of the matrix M = MR + iMI , have nullspaces
with a non-empty intersection. It is not hard to see that Null(MR)∩Null(MI) 6= ∅
if and only if

det(MT
RMR +MT

I MI) = 0. (2.6)

The one direction is obvious. To see that det(MT
RMR + MT

I MI) = 0 implies the
existence of a real non-zero vector which is in the nullspaces of MR and MI , note
that, given v ∈ (MT

RMR +MT
I MI), we have

(
MT
RMR +MT

I MI

)
v = 0,

m
< v,

(
MT
RMR +MT

I MI

)
v > = 0,

m
‖MRv‖2 + ‖MIv‖2 = 0.

For a generic collection of position coordinates zα, both the matrices MR and MI

will have full-rank, hence an empty nullspace. However, if we view the smallest
singular value associated with this matrix as a scalar which we would like to ‘drive’
to zero, we can formulate a gradient flow method based on the singular spectrum
of M , which we describe next.

3. Gradient flow on the singular spectrum

(a) A simple example

We first introduce some notation. Let Mn,k denote the space of n× k matrices,
and f : Mn,k → R be a function from n× k matrices to the reals. The gradient of
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f with respect to M is an n× k matrix with entries given by

(∇Mf)i,j =
∂f

∂Mi,j
. (3.1)

For example from the minor expansion one has the well-known relation that the
derivative with respect to the argument of the determinant is given by

∇M (det(M)) = cof(M) = det(M)M−1, (3.2)

where the last equality holds if det(M) 6= 0. Recall that the cofactor matrix is the
matrix whose (i, j) entry is (−1)i+j times the (i, j) minor determinant of M . More
generally if M is a real non-square matrix then the following identity holds:

∇M det(MTM) = 2M cof(MTM). (3.3)

To start, let us suppose that, given a matrix with empty nullspace, we wish
to find a nearby matrix with a non-trivial nullspace. One tempting strategy is
to employ a gradient flow, with a Lypanuov function given by det(MTM). More
specifically consider the flow

Ms = −2M cof(MTM), (3.4)

where s denotes a generic ‘flow’ parameter. This flow has the following nice prop-
erties. Assuming that det(MTM) 6= 0 it is easy to check that this flow leaves the
singular value basis invariant, changing only the singular values, since

U †MsV = −2 det(MTM)U †M(M †M)−1V

= −2 det(MTM)U †MV V †(M †M)−1V

= −2 det(ΣTΣ)Σ(ΣTΣ)−1

which is manifestly diagonal. Since M and Ms share a singular value basis, the
dynamics takes place entirely in the singular values. If σi are the singular values of
M , then the evolution of σi is given by

dσi
ds

= −2σi
∏

j 6=i
σ2
j . (3.5)

This flow possesses a number of conserved quantities. It is clear that the difference
of the squares of any two singular values is conserved, σ2

i − σ2
j = Cij , and thus the

flow is reducible to quadratures:

dσi
ds

= −2σi
∏

j 6=i
(Cij − σ2

i ) (3.6)

Also, it is easy to see that the flow for σ1 has an unstable fixed point at σ1 = σ2

and a stable fixed point at σ1 = 0, so for generic initial data it will flow to the
configuration where the smallest singular value is zero and the rest are non-zero.
We note the similarities to some previous work on completely integrable gradient
flows by Bloch, Brockett and Ratiu (1992).
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(b) The vortex system

We now specialize to the vortex system (2.1). Using the identities derived ear-
lier it is straightforward to find the gradient flow associated with this Lyapunov
function. If we define M̃ = MT

RMR+MT
I MI then using the chain rule we have that

d

dx
det(M̃) =

∑

j,k

dM̃j,k

dx

∂d̃et(M̃)

∂M̃j,k

= det(M̃) tr(M̃xM̃
−1).

This gives the following expression for the gradient flow:

dxj
ds

= − ∂

∂xj
det(MT

RMR +MT
I MI)

= − det(MT
RMR +MT

I MI) tr((MT
RMR +MT

I MI)
−1(MT

RMR +MT
I MI)xj )

(3.7)

and similarly for the y coordinates. This system admits a clear physical interpreta-
tion. Originally we considered matrices M ∈ C(n+1)×(n+1), but we are in fact only
interested in matrices of the form (2.1), which forms an n (complex) dimensional
subset. Since tr(MTN) defines an inner product on the space of square matrices,
and (MT

RMR + MT
I MI)x, (M

T
RMR + MT

I MI)y form a basis for the tangent space
to the set of matrices (MT

RMR +MT
I MI) derived from a vortex configuration, the

above flow simply represents the original gradient flow projected down onto the
constraint set.

It is worth noting the following that for the unconstrained gradient flow, it is
clear that the vector field vanishes only when det(MTM) = 0 (since the cofactor
matrix of a non-zero matrix cannot be identically zero.) For the above constrained
flow it is no longer clear that this is the case. It is possible that the gradient
of the Lyapunov function is orthogonal to the tangent space of the constraint set
(tr((MT

RMR+MT
I MI)

−1(MT
RMR+MT

I MI)xi) = 0, and similarly yi). Checking this
analytically seems prohibitively difficult, and we have not done so. Nevertheless this
does not seem to be a problem numerically as we now show.

4. Numerical implementation

We now present some numerical results based on the above formulation. Figure 1
represents a direct numerical implementation of the gradient flow algorithm. The
initial locations of the vortices were chosen randomly in the unit square. The vortices
were then allowed to flow according to the constrained gradient flow (3.7). In the
figure, the dot size representing the individual vortices are chosen to be proportional
to the absolute magnitude of the vorticity Γi.

While the gradient descent algorithm worked well for relatively small configu-
rations of vortices, of the order of 10 or so, it was found to be too slow for large
ensembles of vortices. For this reason we compute rigid equilibria by applying stan-
dard optimization algorithms to the Lyapunov functions just described. In partic-
ular we chose a trust-region algorithm implemented in the MATLAB Optimization
Toolbox (Branch et al. (1999)). An outline of the method is as follows:
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(a) N = 8 (b) N = 9

Figure 1. Rigid equilibria obtained by using gradient descent to minimize
det(MT

RMR +MT
I MI), as described in §3. Gray (black) vortices have positive (negative)

circulation. The size of the vortices is linearly related to their strength. The ”×” in the
center of the configuration shows the center of vorticity. Sample particle paths (obtained
by allowing the configuration to evolve according to the equations of motion) are super-
imposed to confirm that these are indeed rigid; although (b) is sufficiently unstable that
it cannot remain rigid for a complete rotation. Histograms at bottom right of each figure
indicate the collection of vortex strengths associated with the configuration.

1. Determine the two-dimensional subspace ~s1, ~s2 such that ~s1 = ∇f and ~s2

solves H(f)~s2 = −∇f , where H(f) is the Hessian of f . That is, the subspace
contains the gradient direction and the “Newton” direction.

2. Solve the minimization problem

min{1

2
~s tH(f)~s+ ~s t∇f | ‖ ~s ‖≤ C}

That is, model the function locally by its Taylor series and seek a minimum
of this approximation within a bounded region of the current point.

3. If in fact f(~x + ~s) ≤ f(~x), keep the new value ~x + ~s → ~x and return to step
1. If not, reduce the size C of the “trust-region” and repeat step 2.

The implementation of this algorithm typically converges quickly for N ≈ 50
vortices. Because this implementation is Matlab-scripted, a compiled version would
have the potential for a significant (by a factor of 10-100) speedup. We have used
this methodology to numerically compute rigid vortex configurations which either
rotate, translate, or are stationary. We have done this in both the case where the
vortex strengths are fixed (typically to ±1) or where, as above, they are determined
as part of the nullspace of the underlying linear algebra problem (which we refer to
as the case of free vortex strength).

(a) Rotating Solutions (free vortex strengths)

Next, we applied the quasi-Newton root-finding algorithm to the function

f(~z) = det
(
M̃(~z)

)
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(a) N = 67 (b) N = 67

(c) N = 100 (d) N = 100

Figure 2. Rigid equilibria computed by minimizing det(MT
RMR + MT

I MI), as described
in §3. Gray (black) vortices have positive (negative) circulation. The size of the vortices
is linearly related to their strength. The ”×” in the center of the configuration shows the
center of vorticity. Sample particle paths (obtained by allowing the configuration to evolve
according to the equations of motion) are superimposed to confirm that these are indeed
rigid although possibly unstable. Histograms at bottom right of each figure indicate the
collection of vortex strengths associated with the configuration.

as outlined in the previous section. Using the quasi-Newton algorithm we were able
to handle a larger number of vortices than was possible with the gradient algorithm.
Some configurations that were computed using this algorithm are shown in figure 2.
Note that there is a pattern – while still quite irregular, the vortices seem to form
a rough triangular lattice, with the vortices in the center tending to have smaller
vorticity and the vortices near the edges tending to have larger vorticity.

(b) Rotating Solutions (fixed vortex strengths)

One can also use similar ideas to compute rigidly rotating solutions where the
circulations of the vortices are all the same. We can proceed in a similar way with
a somewhat different choice of Lyapunov function. Having all circulations equal is
equivalent to having the vector ~v ≡ [1, 1, · · · , 1, 1, ω]t in the nullspace of MR and
MI . The total vorticity ω is positive in this case and can, by the scaling invariance,
be chosen to be 1. The simplest way to construct such solutions is to choose the
Lyapunov function

f(~z) =‖MR~v ‖2 + ‖MI~v ‖2 .
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(a) N = 50 (b) N = 50

(c) N = 50 (d) N = 50

Figure 3. Rigid equilibria computed by minimizing ‖ MR~v ‖2 + ‖ MI~v ‖2, as described
in §4.2. Gray (black) vortices have positive (negative) circulation and the strength of
each vortex is equal. The ”×” in the center of the configuration is the center of vorticity.
Sample particle paths (obtained by allowing the configuration to evolve according to the
equations of motion) are superimposed to confirm that these are indeed rigid, although
possibly unstable.

The gradient flow can be written simply in terms of MR, MI and the derivatives of
these matrices with respect to xj and yj . The results of one of these experiments is
shown in Figure 3. The pictures produced in this case are rather strikingly different
from those produced in the case where the circulations are not fixed. In the case
where the circulations are free the equilibrium configurations tend to resemble a
somewhat irregular triangular lattice, with the vortices near the center tending
to have smaller circulation and those near the boundary tending to have larger
circulation. In the case where the circulations are fixed to have the same magnitude,
however, the pictures look very different, and have a much more one-dimensional
feel. The vortices tend to lie along curves in the plane with large fairly large “faces”
containing few or no vortices.

(c) Translating Solutions (free vortex strengths)

Another problem that one can consider is to find vortex configurations which
translate uniformly. The equations governing uniform translation are slightly dif-
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ferent. One needs that
dzα
dt

= 1 =
∑

β 6=α

iΓβ
z∗α − z∗β

.

Here we have chosen the translation to occur in the x direction at unit speed.
Obviously this can be rotated/translated to occur in any direction and at any
velocity.

The above system can be written in the form

M̃R(~z)~Γ = ~1 (4.1)

M̃I(~z)~Γ = 0 (4.2)

with M̃R and M̃I the real and imaginary parts of the matrix M̃α,β = 1
z∗α−z∗β

and

~1 the matrix of all ones. Note that the matrix M̃ is not quite the same matrix
as we used to find uniformly rotating solutions, and is in fact n × n rather than
(n + 1) × (n + 1). From the above equations we need to require that M̃I(~z) have

a null-space, Null(M̃I(~z)) and that ~1 ∈ M̃R

(
Null(M̃I(~z))

)
. We seek solutions by

minimizing the Lyapunov function ‖MIM
−1
R
~1 ‖2 with the associated gradient flow

on vortex coordinates. Once we have a solution, we recover the circulations via
~Γ = M̃−1

R
~1.

(d) Translating Solutions (fixed vortex strengths)

We can seek also seek uniformly translating solutions with specified circulation
strengths. If ~v is the desired vector of circulation strengths, we can use the Lyapunov
function

‖MR~v −~1 ‖2 + ‖MI~v ‖2 (4.3)

A necessary, but not sufficient condition for translating solutions is that the circu-
lation strengths sum to zero. Examples of solutions found by both approaches are
shown in Figure 4.

(e) Stationary solutions (fixed vortex strengths)

Stationary solutions satisfy

dzα
dt

= 0 =
∑

β 6=α

iΓβ
z∗α − z∗β

,

that is, M̃R and M̃I (stated as in §c) share a real nullspace. For the case of free
vortex strengths we can seek solutions by minimizing det(MT

RMR +MT
I MI), while

for the case of fixed vortex strengths we can minimize ‖ M̃R~v ‖2 + ‖ M̃I~v ‖2, where
~v is a constant vector of vortex circulations. It is known that for vortices constrained
to have the same absolute circulations (but allowing either sign), there is a strong
constraint on the vortex circulations that admit a stationary solution. The number
of positive vortices and negative vortices must be consecutive triangular numbers,
N− = 1

2n(n − 1) and N+ = 1
2n(n + 1), in order for a stationary solution to exist
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(a) N = 16 (b) N = 16

(c) N = 16 (d) N = 16

Figure 4. Uniformly translating equilibria, for unconstrained (upper) and constrained
(lower) circulations. Gray (black) vortices have positive (negative) circulations, with the
size of the vortex varying linearly with strength. The ”×” and associated black line denote
the evolution of the center of mass. The configurations are unstable, and eventually the
center of mass departs from perfect translation (gray dashed). Histograms at bottom right
of (a) and (b) indicate the collection of vortex strengths associated with the configuration.

(see Aref 2007 and references therein), and thus the total number of vortices must
be a square.

In Figure (5) we see several examples of stationary equilibria for constrained
vortex circulations. Panels a) and b) show symmetric configurations in which the
9 vortices are relatively equally spaced. Panels c) and d) show configurations in
which vortices are grouped in two scales: small equilibrium configurations are nested
inside a large-scale vortex arrangement. Insets show the nested clusters which are
reminiscent of the (1, 3) Adler-Moser polynomial solutions.

Since the solutions to the problem of stationary vortices with circulations of
equal magnitude is know to be solved in terms of Adler-Moser polynomials this
makes an excellent test problem. After running the quasi-Newton algorithm we
then checked the polynomials numerically to verify that they were, to good approx-
imation, Adler-Moser polynomials. Here is a brief synopsis of the calculation for
Figure (5)(c), with nine vortices (six of the majority species, three of the minority
species).

The locations of the vortices of the majority species (6 vortices) are given by
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(a) N = 9 (b) N = 9

(c) N = 9 (d) N = 16

Figure 5. Stationary equilibria with equal circulation strengths. Gray (black) vortices have
positive (negative) circulation. The “×” is the center of vorticity. Sample particle paths
(obtained by allowing the configuration to evolve according to the equations of motion)
are superimposed to confirm that they are indeed stationary. Insets show more detail of
isolated clusters of vortices which are (approximate) Adler-Moser equilibria of lower order.

the roots of the sixth order polynomial

P̃6(z) = z6 + (5.7221− 1.9185i)z5 + (12.1088− 9.14833i)z4− (17.7 + 4.197i)z3

− (67.2547− 49.282i)z2 + (156.599 + 150.153i)z+ (72.9019 + 181.577i)

while the locations of the vortices of the minority species are given by the roots of
the cubic

P̃3(z) = z3 + (2.861− 0.9592i)z2 + (2.42182− 1.82943i)z− (5.2643− 1.68013i)

The general Adler-Moser polynomials of degree three and six respectively are given
by

P6(z; z0, τ2, τ3) = (z − z0)6 + 5τ2(z − z0)3 + τ3(z − z0)− 5τ2
2 (4.4)

P3(z; z0, τ2, τ3) = (z − z0)3 + τ2. (4.5)

Note that frequently in the literature the translation invariance is removed by choos-
ing z0 = 0. We take z0 = (5.7221−1.9185i)/6 which exactly removes the fifth order
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term from the sextic polynomial. We can read off the coefficients τ2, τ3 from the
cubic and linear terms of the polynomial, giving

τ2 = −(29.1963− 12.5983i)/5 = −5.83927 + 2.51967I (4.6)

τ3 = (204.549 + 72.3914I) (4.7)

Taking the difference between the Adler-Moser polynomial with the above coeffi-
cients and the polynomial found numerically gives

P̃6(z)− P6(z) = 1.6× 10−2 + 2.1× 10−3(z − z0)2 + 2.7× 10−4(z − z0)4 (4.8)

P̃3(z)− P3(z) = 9.6× 10−5 + 1.0× 10−4(z − z0) + 7.1× 10−5 (4.9)

Note that no effort has been made to make any kind of best fit - we simply read off
the coefficients. Nevertheless the residual is quite small, especially when compared
with the coefficients of the original polynomial. We have done similar calculations
with the other configurations – to a good approximation they appear to be Adler-
Moser polynomials.

5. Discussion

The methods described in this paper are based on a formulation of gradient flow for
the singular spectrum, i.e. (3.4), which for the vortex equations become the more
complicated system (3.7). The power of the method is that it is capable of finding
all equilibria associated with (1.8), irrespective of their stability properties. This has
advantages as well as disadvantages over gradient methods based on the augmented
Hamiltonian (1.14). It is clear from our numerical explorations that as N increases,
so do the number of equilibria (typically this increase is cited in the literature as
exponential), hence a categorization of the equilibria based on the full singular
spectrum of the configuration matrix, as detailed in Newton & Chamoun (2009),
becomes valuable. In the future, it would, of course, be interesting to distinguish
between those that are stable and those that are not. This could, in principle, be
achieved by combining the spectral flow method described in this paper with an
algorithm that simultaneously minimizes the augmented Hamiltonian (1.14). An
open question in the field is whether there exist any stable asymmetric equilibria.
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