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Information measures

The uncertainty in a distribution of a random variable

S is quantified by its entropy,

H½S� ¼ �
Z

ds PðsÞ log2PðsÞ: (1)

The mutual information quantifies the average gain

in certainty about one variable S owing to knowledge

of the other, R:

IðR; SÞ ¼ H½S� �
Z

dr PðsÞH½Rjs� (2)

IðR; SÞ ¼ H½R� �
Z

ds PðrÞH½Sjr �: (3)

When the response, R, is a binary variable, and the

event is generally rare, the probability distribution of

inputs associated with the non-event is very similar to

the prior probability, and the information is approxi-

mated by the difference in entropy between the event-

triggered stimuli and all stimuli. The MI between a

spike and the stimulus can then be expressed as

IðS; spikeÞ ¼
Z

ds Pðs; spikeÞ log2

PðsjspikeÞ
PðsÞ ; (4)

which is the Kullback–Leibler divergence between

the joint distribution of inputs, P(S), and those inputs

that are associated with a spike, P(S j spike). When

considering the output of more than one responder to

an input, one can ask how much additional knowledge

of the input is gained by measuring these responses

simultaneously:

DIðR1; R2; SÞ ¼ IðR1; R2; SÞ � IðR1; SÞ � IðR2; SÞ (5)

Synergy occurs when DI > 0, and the two responses

are more informative about the input when recorded

together than when they are treated as independent.

The responses are redundant when DI < 0, which

occurs when some of the information conveyed by the

two responses is the same. There are several other

related quantities such the Fisher information that

are used to quantify the success of decoding; we will

not discuss these here.
The analysis of stimulus/response patterns using information

theoretic approaches requires the full probability distribution of

stimuli and response. Recent progress in using information-

based tools to understand circuit function has advanced

understanding of neural coding at the single cell and population

level. In advances over traditional reverse correlation

approaches, the determination of receptive fields using

information as a metric has allowed novel insights into stimulus

representation and transformation. The application of

maximum entropy methods to population codes has opened a

rich exploration of the internal structure of these codes,

revealing stimulus-driven functional connectivity. We speculate

about the prospects and limitations of information as a general

tool for dissecting neural circuits and relating their structure and

function.
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Introduction
Over the past twenty years, information theory has

become a central part of the arsenal of analysis tools in

neuroscience. Mutual information is a measure of the

correlation between two variables [1] and allows one to

evaluate the quality of a proposed neuronal representa-

tion. It therefore plays a dual role in neuroscience. First, it

is a method for discovering and interpreting correlational

structure in inputs and outputs. While the examples we

will consider here focus on sensory coding, the develop-

ments we consider should ultimately allow for general-

izations of the notion of input and output to correlated

firing in complex circuits. Second, it is a normative theory,
www.sciencedirect.com 
providing a well-defined quantity that a system – via a

coding strategy, a specific circuit dynamics, or even a

behavior – might be expected to maximize.
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654 Microcircuits
Here we will discuss recent developments in the applica-

tions of information methods to characterize neural cod-

ing at the single cell and population level. The evaluation

of correlation using information depends on estimation of

the entire probability distribution. Obtaining good esti-

mates can be very challenging with limited data [2,3��],
and progress will depend on intelligent simplifications of

high-dimensional distributions. We will highlight

advances in the use of approximation methods that are

moving toward an increasingly complete description of

probabilistic encoding of inputs by populations of neu-

rons. A very important open question is the interpretation

of observed statistical correlations in terms of the struc-

ture of underlying neuronal circuitry. We review recent

work that has begun to address the relationship between

the statistics of neural firing and structure.

Information theory provides a formalism for quantifying

the relationship between two (or more) random variables. A

typical application in neuroscience is to quantify the code-

pendence between an input s and a putative neural repre-

sentation, r, where r might be the timing of a single spike, a

spike pattern, the firing rate or a spatially averaged quantity

such as the local field potential. The inputs and responses

have distributions P(s) and P(r) respectively. If the
Figure 1
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Information encoded by the neural response can be quantified by the mu

distribution is given by PðrÞ ¼
R

PðsiÞPðrjsiÞ. When specifying a value of s, for 

about r, the mutual information between r and s is large (left). The more precis

correlations. Here, two stimuli sA and sB generate binary responses {r1,r2} wit

yet differing joint responses ( p({r1,r2}jsA) 6¼ p({r1,r2}jsB)). If correlations are ign

likely, then I(s; r) � 0.23 bits. From left to right: neural response to sA, with p
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response is predicted by s, knowledge about s should

restrict the possible outputs r, P(rjs). This reduction in

uncertainty is quantified by the mutual information, Eq. (2)

and Figure 1.

Mutual information (MI) can be used to evaluate the

ability of an output representation to convey stimulus

information, without needing to invoke a decoding

mechanism to extract that information, and in units that

are stimulus-independent and response-independent

[4�]. MI has been used to determine the temporal resolu-

tion of spike timing that carries maximal information

[5,6], to test the role of complex spike patterns such as

bursts in conveying stimulus information [7], and to

compare the information content of features of neural

activity on different timescales, such as spike timing and

the local field potential [8]. Different neural ‘symbols’

may multiplex different components of stimulus informa-

tion [9,10]. Definitions of the mutual information can be

generalized to multiple variables [11].

Information and receptive fields
The concept that neuronal receptive fields should

minimize redundancy, or shared information (see Box)

[12], in neural coding [13,14] was used to predict that
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tual information between response and stimulus I(s; r). (A) The response

example, si, significantly reduces uncertainty, or narrows the distribution,

ely that s specifies r, the larger the information (right). (B) Information and

h identical marginal distributions ( p(r1jsA) = p(r1jsB) and p(r2jsA) = p(r2jsB)),

ored, I(s, r) = 0; if correlations are maintained and the stimuli are equally

(r1 = 1jsA) = p(r2 = 1jsA) = 0.4 but response covariance

= 1jsB) = p(r2 = 1jsB) = 0.4 but response covariance

g covariances is identical for each stimulus, carrying no information.
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retinal receptive fields should act to cancel out common, or

predictable, inputs [15,16]. However, the underlying

assumption of redundancy reduction has recently been

challenged by the observation of considerable redundancy

in retinal ganglion cells arising from the overlapping of their

receptive fields [17]. Furthermore, while the filtering prop-

erties of RGC receptive fields do significantly decorrelate

responses to natural images, neuronal threshold nonlinea-

rities turn out to play an even more significant role [18].

Information can be used directly to evaluate how well

receptive fields capture the true feature selectivity of

neural systems. It thus also provides a method for search-

ing for receptive fields. Eq. (4) can be used to quantify the

information captured by a reduced model: that is, one that

replaces the stimulus by its similarity to, or projection

into, a low-dimensional feature space f [19,20]. Maximiz-

ing Eq. (4) amounts to searching for a set of features f,
Figure 2, that maximizes the difference between the

entire set of stimuli, viewed in that basis, and the set

of stimuli that are associated with spikes. These maxi-
mally informative dimensions (MID) then maximize the

mutual information between the reduced stimulus and

spike over the explored stimulus ensemble [21,22].

This powerful method liberates reverse correlation tech-

niques for determining receptive fields from the use of

Gaussian white noise stimuli. This allows one to estimate

the feature selectivity of systems using more natural

stimuli [23] – in some cases driving neurons that may

not even be well-stimulated using Gaussian white noise –
and can expose changes in processing as a result of

adaptation to the stimulus ensemble. For example, Shar-

pee et al. [24] found that the filtering properties of neurons

in V1 adjust when processing natural images compared to

with white noise.
Figure 2
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This projected stimulus, f � s, has a (one-dimensional) distribution P(f � s). This
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distance is equivalent to maximizing the mutual information between the proje

filter shown on the left and a sigmoidal nonlinearity, driven with natural imag

spike-triggered average (with thanks to T. Sharpee).
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The MID method can be applied to understand the

transformations that occur between subsequent processing

stages. According to the data processing inequality, a

transformation of data cannot increase its information

content [1]; however, the retina–LGN synapse was shown

to preserve information almost perfectly, despite a reduc-

tion in firing rate [25]. Furthermore, this method can allow

one to track changes in the structure or dimensionality of

the feature set at different processing stages [26�]. Identi-

fication of multi-component receptive fields motivates and

guides the search for specific circuit mechanisms of stimu-

lus filtering. The MID method has two downsides, how-

ever, that may limit some practical applications. Estimating

the required probability distributions, particularly for mul-

tiple stimulus dimensions, can require daunting amounts

of data. Moreover, this optimization has no global solution

and the procedure may get caught in local minima.

Population coding
The advent of high-throughput imaging and recording

techniques allows simultaneous recording of hundreds of

well-isolated single units. Information allows one to

determine the statistical relationships between patterns

of neural response and an input, whether that input is

sensory or expressed in terms of the activity of another set

of neurons. However, to apply these methods to neuronal

populations, one must estimate the probability of occur-

rence of all combinations of stimuli and the responses

{rj}j=1,N of a population of N neurons – P(r1, r2, . . ., rN;

stimulus). Any direct approach requires sampling an

enormous number of states that increases exponentially

with N and rapidly outstrips the capacity of any possible

experiment [27].

A possible resolution comes from the use of lower order

approximations to the full population response. At the
(c)
(f1.s  spike) STA

MID
(f2.s  spike)
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thod searches for a direction in stimulus space, that is, a filter f. The

y cloud P(s). One then takes the component of s along a direction f. (B)

 is known as the prior distribution. The spike-triggered stimuli (denoted in

e Kullback–Leibler distance (see Box) between these two distributions is

pared with f2. Finding the direction f that maximizes the Kullback–Leibler

cted stimulus and the occurrence of a spike. (C) For a model cell with the

es, the MID method recovers the true filter considerably better than the
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extreme, one might assume that each neuron responds

independently: Pðr1; r2; . . . ; rN Þ � PN
i¼1Pðr iÞ. In gen-

eral, of course, this assumption is too strong: neurons are

driven by common stimuli owing to overlapping receptive

fields. Thus, a weaker assumption is that neurons respond

independently, once taking into account possibly over-

lapping stimulus sensitivities, or signal correlation:

Pðr1; r2; . . . ; rN jstimulusÞ � PN
i¼1PðrijstimulusÞ.

However, neurons may share input variability that is not

stimulus-related, and thus show correlations beyond

those predicted by the input. This is known as noise
correlation [12]. Noise correlations can have a significant

impact on the efficacy of decoding information from

observations [28,29��]; depending on the form of this

correlation, it may help or hinder decoding [30,31] (PE

Latham and Y Roudi, 2011, http://arxiv.org/abs/

1109.6524v1).

Maximum entropy approaches
Thus, the next step in developing an improved approx-

imation for the response distribution is to take into

account noise correlations, but in direct attempts to

capture P(r1, r2, . . ., rN j stimulus) we are still faced with

a problem of unmanageable scale. One approach is to

specify only pairwise noise correlations – dependencies

among two cells at a time – and to extrapolate from here.

Temporarily putting aside the question of stimulus

dependence, let us first consider the response space,

P(r). One would like to pose an approximate form for

this potentially very complex distribution of responses

that will take into account the observations one can

reasonably make, while making minimal assumptions.

The natural model that does this is known as the max-
imum entropy distribution, which is the distribution that

has the most entropy and therefore makes the fewest

assumptions about the structure of the distribution. It has

the form:

PðrÞ ¼ Z�1 exp
X

i

hir i þ
X
i; j

Ji jr ir j þ � � �
  !

; (6)

where Z is a normalization factor, and the parameters hi,

Jij,. . ., are fixed to reproduce the observed moments. For

example, knowing the mean (first-order) responses hrii
will fix the parameters hi. Including the terms with Jij

allows one to match the second order moments, or the

correlations between the firing of any neuron pair, hrirji.
One can then compare the observed frequency of specific

patterns with the probability computed from this model.

Such second-order models have been shown to improve

the prediction of network patterns significantly

[27,28,32,33] over those of independent models.

Despite this improvement, the second-order maximum

entropy description fails to completely capture the dis-

tribution of patterns in large networks, implying the need
Current Opinion in Neurobiology 2012, 22:653–659 
to incorporate higher-order structure. To capture these

‘beyond-pairwise’ interactions, recent approaches retain

selected higher-order terms in the probability model,

Eq. (5). For example, the distribution of summed popula-

tion spike count in somatosensory cortex – that is, the

total number of simultaneously active units out of the 24

recorded – could be described by including third order

terms [34�]. Encouragingly, this suggests that a relatively

low-order correction may achieve the correct structure for

significantly larger populations. Ganmor et al. [29��]
aimed to capture not just the summed population output,

but the entire distribution of spike patterns, in recordings

of �100 retinal ganglion cells. Their insight was to only

include in Eq. (5) selected terms corresponding to fre-

quently occurring responses. This ‘reliable interaction’

approach cleverly avoids the need to include every term

at a given order. Equating the model probability of

patterns that occur frequently to their well-sampled

empirical frequencies produces a set of linear equations

for the model parameters. This fit is thus rapid, easily

learnable and is guaranteed by construction to reproduce

the best-known observed probabilities.

Stimulus dependence
Ultimately, one needs to resolve response distributions as

a function of the stimulus. Returning to the characteriza-

tion of single neuron responses, one can again use the idea

of the maximum entropy distribution to simplify stimulus

dependence. Unlike maximizing information (Figure 2),

maximizing entropy is a convex and therefore relatively

easily solved problem. One can then instead apply a

maximum entropy approach to the response distributions,

conditioned on the stimulus, also known as the noise

entropy. The constraints will now apply not to the corre-

lations between responses, but to correlations between

stimulus and response [35�,36��,37]. Constraining only

the first order correlation, hr j si – or the spike-triggered

average – results in a logistic response function that

depends on a single stimulus dimension. Including the

next order terms means that the spike-triggered covar-

iance [20] also appears in the logistic function, which

allows for some of the complex multidimensional

response functions that are observed in data [38]. Given

this flexibility, such ‘minimal models’ are likely to give

good fits to a wide variety of sensory responses.

The correlated population models described previously

have so far only captured fairly coarse-grained stimulus

dependence. Third-order interactions were necessary to

capture information about whisker vibrations in rat soma-

tosensory cortex [34�]. In retina, spike-triggered average

stimuli for the significantly correlated cell triplets or

quadruplets differ from the spike-triggered averages of

the constituent pairs, indicating that these higher-order

interactions do convey distinct stimulus information

[29��]. To date, these methods applied to populations

do not fully take into account evolution in time.
www.sciencedirect.com
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Ultimately, we expect that a maximum entropy approach

that jointly constrains stimulus and response correlation

and incorporates their temporal dynamics is a difficult

but likely path to a complete population coding model

[39].

One may also ask about the ability of a maximum entropy

decoder to extract information from the observed

responses (cf [40,31], Latham and Roudi (2011)). In

[29��], the use of selected higher order terms translated

into a three-fold speed increase in classifying new stimu-

lus segments, compared with the pairwise model. On the

contrary, Oizumi et al. [41] find that despite significant

pairwise correlations in spike responses in RGCs, an

independent decoder could extract 95% of the informa-

tion present about the identity of a natural scene movie.

Understanding and building intuition for how and why

these cases differ is an important next step for informa-

tion-based methods in neuroscience.

What do correlation measures reveal about
circuit structure and mechanism?
Does the existence of higher-order interactions in Eq. (5)

predict the existence of corresponding features of the

physical circuit? Answers to this question so far are mixed,

and point to fruitful opportunities for future research. For

example, a pairwise maximum entropy model produces

extremely accurate descriptions of population activity in

the retina [42], and the extent of statistical interactions

agreed with general expectations from retinal anatomy.

However, it has been shown that pairwise models can

always be expected to fit population activity provided the

firing rate is sufficiently low, regardless of the underlying

circuit [43]. Barreiro and colleagues (2012, http://arxi-

v.org/abs/1011.2797v3) find examples in which purely

pairwise inputs to triplets of cells can yield very strong
Figure 3

P
ro

ba
bi

lit
y

(a) (b)

A schematic of the dichotomous Gaussian model of population activity (sim

independent inputs; the summed input is compared to a threshold to either g

this idealized model of the thresholding mechanism of spike generation produ

maximum entropy model [45��,46�]. The red and blue lines show the fraction

both models are fixed to have the same firing rate and pairwise correlation 
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third-order interaction terms, and Roudi et al. [44] find

that in large, sparse network simulations, pairwise statis-

tical interactions in maximum-entropy models do not

predict direct synaptic connections.

We anticipate that further understanding of the relation-

ship between structure and statistics will come from

probabilistic models that adopt more mechanistic features

than the statistical description of Eq. (5) – but without

becoming so complex that they are impossible to fit (cf.

[44]). One recent example is the dichotomous Gaussian

method [45��], which has been fit to in vivo cortical slice

data [46�]. Here, spikes are generated by passing a corre-

lated Gaussian signal through a threshold – which may be

viewed as a crude ‘binary’ model of neural spiking in

response to overlapping, common inputs (see Figure 3).

Surprisingly, this model contains the same number of

parameters (�N2) as the pairwise maximum entropy

model (Eq. (5), truncated at second order), but is con-

siderably more accurate in capturing population-wide

spiking patterns (for up to 56 cells) and multichannel

LFP patterns (approximately 100 channels). In related

work, generalized linear models [47] using �N2 para-

meters have been successfully used to model popula-

tion-wide activity in retina – and have been able to

recover qualitative features of circuit connectivity, such

as the relative contributions of common input vs. reci-

procal coupling [28,48�].

We anticipate further advances in the ability of these and

related spiking models to uncover circuit connectivity,

together with circuit mechanisms such as distributions of

synaptic inputs (Barreiro et al., 2012, http://arxiv.org/abs/

1011.2797v3). An important challenge for these models

will be to identify the circuit mechanisms behind aspects of

the population response that contribute most to encoding
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plified version). (A) N cells receive a common Gaussian input, as well as

enerate a spike or silence at each timestep. (B) Intriguingly, the output of

ces highly different population statistics than the corresponding pairwise

 out of N = 50 model cells that spike simultaneously in a given timestep;

[45��].
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of stimuli. Models provide a rapid testbed for this question

by allowing us to compare different circuit mechanisms

that conserve basic features of the population response

(such as firing rates and pairwise correlations) but differ in

more subtle aspects – such as higher order statistics of the

population response (cf. [48�,49] and Figure 3).

Normative models
Aside from stimulus/response characterization, one of the

most intriguing if speculative and sometimes controver-

sial uses of information is as an objective function to

explain coding and behavioral strategies. The ability of

many neural systems to encode stimuli in units that are

rapidly normalized by a changing input range allows them

to maintain high rates of information transmission [50].

Patterns in behavioral search strategies may be qualita-

tively predicted as a search for information; the zigzag

flight pattern of a moth searching for the source of a plume

of pheromone has been proposed to driven by ‘infotaxis’,

an effort to reduce uncertainty about the stimulus [51,52].

Similarly, the trajectories of eye movements are consis-

tent with a theory in which they are driven by entropy

reduction [53,54].

Conclusions
Information theoretic tools are generating new methods

to determine rich models for neural stimulus representa-

tion. The use of maximum entropy distributions has had

tremendous recent impact, driving rapid progress in

building complete population response models. As yet,

these methods are limited in their ability to capture

complex stimulus dependence and temporal dynamics.

An interplay between these statistical methods and alter-

native generative models of network activity will be

needed to interpret the observations of higher-order

correlations and their significance in terms of underlying

circuit motifs. However, such studies are likely to provide

a framework for linking future connectomic data with

functional models of stimulus representation.
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