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Abstract In dynamical systems, configurations that
permit flexible control are also prone to undesirable
behavior. We study a bilateral model of the oculomo-
tor pre-motor network that conforms with the neu-
roanatomical constraint that brainstem neurons project
to cerebellar Purkinje cells on both sides, but Purkinje
cells project back to brainstem neurons on the same
side only. Bifurcation analysis reveals that this network
asymmetry enables flexible control by the cerebellum
of brainstem network dynamics, but small changes in
connection pattern or strength lead to behavior that
is unstable, oscillatory, or both. The model produces
the full range of waveform types associated with the
hereditary eye movement disorder know as congenital
nystagmus, and is consistent with findings linking the
disorder with abnormal connectivity or limited plastic-
ity in the cerebellum.
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1 Introduction

Congenital nystagmus (CN), now known also as infan-
tile nystagmus, is a hereditary disorder characterized
by uncontrollable eye movements that are oscillatory
(pendular), unstable (jerk), or both (Maybodi 2003).
Models of CN originally focused on the oculomotor
integrator, a brainstem neural network that converts
eye-velocity signals into the eye-position commands
that are essential for eye-movement control (Robinson
1989). Brainstem integrator neurons collectively pro-
duce temporal integration by exerting positive feed-
back on each other (Robinson 1989). In integrator
models, errors in tuning of positive feedback weights
lead to instability but not to oscillation. Further, it
was observed that oscillation could coexist with normal
integrating function in CN patients (Dell’Osso et al.
1974), but models based on the integrator (Optican and
Zee 1984) or the saccadic system (Akman et al. 2005)
were unable to simulate this phenomenon. This led
some researchers to suggest that oscillation in CN is due
to increased delay in the smooth pursuit system (Jacobs
and Dell’Osso 2004), leaving an abnormal integrator to
blame for instability (Dell’Osso 1982).

A potential drawback of this view, in which CN has
two separate causes that are segregated into different
oculomotor subsystems, is that it does not account
for the close pathophysiological relationship between
the two basic forms of CN. The different forms can
occur in different individuals in the same family, and
even in the same individual at different eye positions
(Dell’Osso et al. 1972, 1974; Dell’Osso and Daroff 1975;
Yee et al. 1976). The observation that jerk and pendular
CN can both occur in the same individual does not sup-
port the hypothesis that jerk nystagmus is an optimal
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eye-movement strategy, employed by adults, that com-
pensates for reduced, high-spatial-frequency visual
contrast sensitivity, and that pendular CN is a non-
optimal strategy employed by children with immature
saccadic systems (Harris and Berry 2006). The close
pathophysiological relationship between the two basic
forms of CN suggests that they both arise from small
changes occurring in the same subsystem. Here we pro-
vide an analysis of a network model of a single oculo-
motor subsystem that is consistent with neuroanatomy.
The model produces the full range of waveform types
observed in CN with only minor changes to its connec-
tion strengths.

2 Methods

Our analysis is based on a model of the neural in-
tegrator that includes the connections between the
brainstem and the cerebellum. A schematic of the
brainstem-cerebellar network is shown in Fig. 1. It is

Fig. 1 Schematic diagram of the bilateral brainstem-cerebellar
model. Circles and pitchforks represent brainstem integrator neu-
rons (VUs) and cerebellar Purkinje cells (PCs), respectively. VUs
project to each other contralaterally. PCs only project to VUs
ipsilaterally, but VUs can project to PCs ipsilaterally (dashed
connections) or contralaterally (solid connections). For clarity
only a few of the VU–PC connections are shown

composed of elements representing neural types that
are known to be essential for neural integration. The
VUs represent neurons in the medial vestibular (MVN)
and prepositus hypoglossi (NPH) nuclei in the brain-
stem. The PCs represent Purkinje cells in the floccular
complex of the cerebellum. Lesions of these struc-
tures cause profound integrator deficits (Cannon and
Robinson 1987; Zee et al. 1981; Chelazzi et al. 1990).
With a normal, intact cerebellum, integrator time con-
stant and gain are independently adjustable (Tiliket
et al. 1994). The brainstem portion of the model is
similar to previous models of the mammalian integrator
in that VUs are arranged on either side of a bilateral
network, and connected over the midline by reciprocal
inhibition (Robinson 1989). The cerebellar connections
conform to the neuroanatomic asymmetry by which the
floccular complex receives input bilaterally from brain-
stem MVN/NPH neurons, but floccular Purkinje cells
inhibit MVN/NPH neurons on the same (ipsilateral)
side only (Büttner-Ennever 1988).

It is important to make a distinction between bi-
lateral symmetry and network symmetry. The model
we consider here is bilaterally symmetric because the
VU-to-VU, VU-to-PC, and PC-to-VU connections are
the same on both sides. We refer to a model as being
network symmetric if the matrix representing the con-
nections between units is symmetric across the main
diagonal. This would correspond to the VU–PC con-
nections being the same as the PC–VU connections.
Most previous models of the neural integrator that
lack PCs are both network and bilaterally symmet-
ric (Robinson 1989). Systems having network symmetry
are called self-adjoint in the mathematics literature,
and it is well-known that such systems can not exhibit
oscillation, but only exponential growth and decay. Our
model is not network symmetric, since the VU–PC
connections are very different from the PC–VU con-
nections in the ways described above. As a result this
model can exhibit more complicated dynamics than
simple exponential growth and decay, including oscil-
lation and high gain.

Networks have twelve VUs (six per side). They have
only four PCs (two per side), and each PC contacts
only one VU, to reflect the sparseness of innervation
of MVN/NPH by the floccular complex (Babalian and
Vidal 2000). We manipulate both PC–VU and VU–PC
connection weights. Changing the weight of the single
PC–VU connection of a PC is equivalent to scaling the
weights of all of the VU connections to that PC by
the same amount. Therefore we consider the ability to
modify single PC–VU weights, or individual VU–PC
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weights, as gross or fine control, respectively, and will
argue that CN might result from abnormalities in cere-
bellar development or adaptive capability that limit
plasticity to gross control of synaptic weights.

A recent study using a genetic algorithm found many
“fit” configurations of the brainstem-cerebellar net-
work model in which time constant and gain could be
adjusted independently by changing only the PC–VU
weights (Anastasio and Gad 2007). Here we show an-
alytically that robust gain adjustment is possible only
because of the lack of network symmetry (connections
between VUs and PCs are asymmetric). This condition
is necessary but not sufficient for normal function. Cer-
tain patterns of VU–PC connectivity can satisfy this
condition but produce abnormal networks in which
gain cannot be increased without introducing oscilla-
tion and/or instability.

We analyze two networks, one normal and one ab-
normal. The VU–PC connections for the normal net-
work were set to an arbitrary pattern of ones and
zeros (Table 1). We then found the abnormal network
by making small changes to the pattern of VU–PC
connections of the normal network (fewer than 17% of
the VU–PC connections differ between the normal and
abnormal networks). We assume that a normal cere-
bellum has developmental and/or adaptive fine con-
trol sufficient to establish a normal pattern of VU–PC
connectivity, but an abnormal cerebellum does not.
We further assume that both normal and abnormal
networks are capable of gross control. Therefore in
both networks the PC–VU weights vary, while the
VU–PC weights are fixed.

Network element (unit) dynamics are first-order and
linear. The firing rates of MVN/NPH neurons are
linearly related to eye position and velocity above
a threshold (Stahl and Simpson 1995). Cut-off of
MVN/NPH neuron firing rates below threshold may
account for eye-position dependent switching between
different forms of CN (see Section 3). Denoting left and
right side vestibular neurons by vL

i and vR
i respectively,

and similarly left and right side Purkinje cells by PL
i and

PR
i , we have the following dynamical system:
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. (4)

Here 1/α = 5ms (Robinson 1989) is the time-
constant of a single neuron, giving α = 200s−1. The
constant β is the weight of the reciprocally inhibitory
connections between VUs. In the absence of the cere-
bellum the time-constant for the integrator is reduced
from about 20s to about 1s in primates (Zee et al. 1981),
and from about 2s to under 1s in rodents (Chelazzi et al.
1990). To demonstrate the robustness of the model, we
choose β to give a time-constant for the integrator of
0.2s in the absence of PCs (β = 0.348). Taking a time-
constant of 1s in the absence of PCs (β = 0.355) pro-
duces a model with qualitatively similar results. Vectors
�wI

i and �wC
i are the ipsilateral and contralateral VU–

PC weight vectors, and adjustable parameters ρ1 and ρ2

are the PC–VU weights of PCs 1 and 2. The Kronecker
delta (δi, j) is 1 when i = j and 0 otherwise.

Because of bilateral symmetry the system decouples
into common modes �vR = �vL and push-pull modes
�vR = −�vL. Because the dominant modes are all push-
pull modes, and because push-pull modes are the most
relevant to integrator function (Robinson 1989), we
consider only these modes. In terms of the difference
variables �v= �vR−�vL, �P= �PR− �PL the system becomes

d �V
dt

= M �V,

Table 1 VU–PC connections for the three networks simulated in this paper

Connection type Normal Abnormal/Cy. left Cycloidal right

�wI
1 [0, 1, 0, 0, 0, 1] [0, 1, 0, 0, 0, 1]

[
0, γ1, 0, 0, 0, 1

]

�wC
1 [1, 0, 1, 0, 1, 1] [1, 0, 0, 0, 1, 1]

[
1, 0, γ2, 0, 1, 1

]

�wI
2 [1, 0, 1, 1, 0, 1] [1, 0, 0, 0, 1, 1] [1, 0, 0, 0, 1, 1]

�wC
2 [0, 1, 0, 0, 0, 1] [0, 1, 0, 0, 0, 1]

[
0, 1, 0, 0, γ3, 1

]

“Normal” denotes the network whose phase space is shown in Fig. 2(a) and “abnormal” denotes the network whose phase space is
shown in Fig. 2(b). To produce the cycloidal CN shown in Fig. 3(c), modest changes were made to the “abnormal” network to produce
“cycloidal right”. Here γ1,2,3 ≈ 1.5, 0.5, 2.5 respectively
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where M is a (n + 2) × (n + 2) matrix. Our experimen-
tal network is

M = α

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 + β β 0 0 0 0 −ρ1 0
β −1 + β β 0 0 0 0 0
0 β −1 + β β 0 0 0 −ρ2

0 0 β −1 + β β 0 0 0
0 0 0 β −1 + β β 0 0
0 0 0 0 β −1 + β 0 0

�w1 −1 0
�w2 0 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(5)

where the new VU–PC coupling vectors are given by
the difference between the ipsilateral and contralateral
vectors, �wi = �wI

i − �wC
i . Note the change in sign of β: in

the difference variables the mutual inhibition between
sides becomes an effective self-excitation.

Only the VUs receive input from outside the net-
work. The input vector �b is set to excite left-side VUs
and inhibit right-side VUs, thus providing a push-pull
input to the VUs. The response of the network to
arbitrary input signal s(t) is:

�V(t) =
∑

i

�ei

�fi · �b
�fi · �ei

∫ t

0
eλi(t−t′)s(t′)dt′

where we define right and left eigenvectors �ei and �fi by

M�ei = λi�ei

MT �fi = λi
�fi.

The push–pull command to move the eyes is the sum
of the VU responses on one side, minus the sum of the
VU responses on the other side. Denoted by c(t), this
command is given by the inner product of �V with �b :

c(t) ≡ �b · �V(t). (6)

In the networks we examine, only a few modes dom-
inate, with the rest contributing very brief transients.
The gain of any mode i, and notably of the integrating
mode, which is a real mode corresponding to a time
constant of 20s, can be expressed in terms of the cosines
of the angles between the input vector and the eigen-
vectors of that mode:

g =
( �b · �ei

) ( �fi · �b)
( �fi · �ei

) ( �b · �b) = cos(θbe) cos(θbf )

cos(θef )

where cos(θbe) is the cosine of the angle between �b
and �e, and similarly for the other two angles. This

expression assumes that there is a single real domi-
nant mode, an approximation which holds for most
parameter values. For the numerical experiments pre-
sented here g reflects the overall gain of the system to
within 3%.

We now note the following important fact: in the
case where M is self-adjoint (network symmetric), as
in previous integrator models that omit the cerebel-
lum (Robinson 1989), the left and right eigenvectors
are the same, �ei = �fi, and cos(θef ) = 1. Thus gain for
any single mode is at most one, and the amplitude of
command c(t), given by Eq. (6), is at most twelve. In
the non-self-adjoint (network asymmetric) case, how-
ever, the denominator cos(θef ) can be arbitrarily close
to zero, and thus gain can be made arbitrarily large.
Further, since the denominator is small, relatively small
changes in the left and the right eigenvectors can lead
to large changes in gain (Anastasio and Gad 2007).
This phenomenon is well known in applied mathemat-
ics (Embree and Trefethen 2001; Trefethen 1997). In
non-self-adjoint systems the norm of the exponential
‖etM‖ can be much larger than might be predicted on
the basis of the eigenvalues alone, because it is no
longer determined solely by the eigenvalues but also
involves geometric information about the eigenvectors
(the angles between the left and right eigenvectors).
We believe that the brainstem-cerebellar integrator ex-
ploits this mechanism as a way to manipulate integrator
gain.

The potential for large gain carries with it a poten-
tial for instability. The inner product between a right
eigenvector and the corresponding left eigenvector can
vanish (or become vanishingly small) only when the
Jordan normal form of M is not diagonal. A non-
diagonal Jordan form represents a bifurcation point: a
point where a pair of real eigenvalues collide and split
into a complex conjugate pair of eigenvalues. In order
to achieve large gains, the brainstem-cerebellar system
must operate near this bifurcation point.
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Fig. 2 Phase planes as a
function of PC–VU weights
(ρ2, ρ1) for (a) a normal, and
(b) an abnormal
brainstem-cerebellar
network. The Hopf curve,
envelope, and λ = −0.05s−1

curves divide the plane into
regions characterized by the
arrangement of the dominant
eigenvalues. Insets A–G are
cartoons of the locations of
the eigenvalues in the
complex plane for parameter
values in the regions labelled
with the corresponding letter.
In Fig. 2(b) only the regions
relevant to the CN
simulations in Fig. 3(b–f) are
labelled. The cycloidal CN is
produced by toggling
between two phase planes
(see text); the phase plane
shown is cycloidal left as
described in Table 1

We explore this bifurcation by determining sev-
eral boundary-defining curves in the phase plane for
the system using differential geometry (Spivak 1999).
Phase planes for the normal and abnormal networks
are shown in Fig. 2(a), (b). In the network given by
Eq. (5), feedback through the PCs (ρ1, ρ2 �= 0) forms
a rank-two perturbation of the system defined without
feedback through the PCs (ρ1, ρ2 = 0). Due to this
special structure the equation for the eigenvalues takes
the following form:

det( M−λI) = D(λ)+P1(λ)ρ1+P2(λ)ρ2+Q(λ)ρ1ρ2 =0

(7)

where D(λ), Pi(λ), and Q(λ) are polynomials. This
result is known as the Aronszajn-Krein formula
(Simon 1993).

Considering λ as a parameter, Eq. (7) defines a fam-
ily of curves in the (ρ2, ρ1) plane representing the values
of (ρ2, ρ1) for which λ is an eigenvalue. For instance,
for the integrating mode, λ = −0.05s−1 and we get the
equation

D(−0.05) + P1(−0.05)ρ1 + P2(−0.05)ρ2

+ Q(−0.05)ρ1ρ2 = 0
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or equivalently

ρ1 = − P1(−0.05) + Q(−0.05)ρ2

D(−0.05) + P2(−0.05)ρ2
.

This curve represents the set of all points in the
(ρ2, ρ1) plane for which λ = −0.05s−1 is an eigenvalue
of the model. Note that it may not be the dominant
eigenvalue. In Fig. 2(a), (b) this λ = −0.05s−1 curve,
corresponding to normal, leaky integration with a time-
constant of 20s, is shown in red dashed bold.

There is a second curve which contains information
about the bifurcation points. The envelope of the family
of constant eigenvalue curves is defined to be the curve
that is tangent to each curve in the family (Spivak 1999).
The envelope curve can be found as the simultaneous
solution to

D(λ) + P1(λ)ρ1 + P2(λ)ρ2 + Q(λ)ρ1ρ2 = 0 (8)

D′(λ) + P′
1(λ)ρ1 + P′

2(λ)ρ2 + Q′(λ)ρ1ρ2 = 0. (9)

The above equations define a curve in the (ρ2, ρ1) plane
that represents the values of (ρ2, ρ1) for which there is
a bifurcation. This curve is smooth except for cusps at
isolated points where the second derivative of Eq. (8)
with respect to λ equals zero. The envelope curve is
shown as the blue dotted curve in Fig. 2(a), (b). The 20s
time-constant curve is tangent to the envelope at the
point of maximum gain. Beyond this point integrator
function becomes unstable.

We also define the Hopf curve (green dotted curve
in Fig. 2(a), (b)) to be the locus of points where M
has a pair of purely imaginary eigenvalues. The Hopf
curve originates from the point of tangency between
the envelope and the zero eigenvalue curve. (The zero
eigenvalue curve is not shown since at this scale it is
indistinguishable from the −0.05s−1 eigenvalue curve.)
The Hopf curve represents the boundary between de-
caying and unstable oscillation. It is given by the simul-
taneous solution to

Re(det( M − iωI)) = 0 (10)

Im(det( M − iωI)) = 0. (11)

When the parameters (ρ2, ρ1) are changed in such a
way as to cross the Hopf curve the model undergoes
a change in behavior, with an exponentially damped
oscillation giving rise to an exponentially growing
oscillation.

Finally we define the dominance curve (black solid
curve in Fig. 2(a), (b)) to be the curve along which
a real eigenvalue and a complex pair have equal real
part. The dominance curve originates from a cusp in the
envelope. When the parameters are changed in such a
way as to cross the dominance curve a real eigenvalue

and a complex conjugate pair of eigenvalues exchange
dominance.

3 Results

Both networks behave as normal leaky integrators
when gain is small. The networks are distinguished by
their behavior as one moves up the constant eigenvalue
curve and gain is increased. In the normal network
(Fig. 2(a)) the 20s time-constant curve ρ1 = 0.137+2.536ρ2

1+0.371ρ2

crosses neither the Hopf nor the dominance curves.
Thus, gain can be increased in the normal network
without introducing sustained oscillation. Above the
point of maximal gain (i.e. the point at which the
20s time-constant curve is tangent to the envelope),
a previously subdominant real eigenvalue crosses the
eigenvalue corresponding to a time-constant of 20s (the
integrating mode), and the normal network behaves
either as a stable integrator with time-constant greater
than 20s, or as an unstable integrator.

In contrast, in the abnormal network (Fig. 2(b)), the
constant eigenvalue curve crosses both the Hopf and
the dominance curves at locations that correspond to
relatively low values of gain. Thus, increasing the gain
of the abnormal network beyond a certain threshold
causes an exchange of dominance between the integrat-
ing mode and a complex conjugate pair of eigenvalues
that results in sustained oscillation. Both the normal
and abnormal networks can become unstable as gain
is increased past the point of tangency of the constant
eigenvalue curve and the envelope. The relationship
in the model between high gain and both oscillation
and instability is consistent with the observation that
factors that increase oculomotor gain also exacerbate
CN symptoms (Dell’Osso et al. 1974; Optican and Zee
1984; Dell’Osso and Daroff 1975; Yee et al. 1976).

In the normal network adjustments of the PC–VU
weights within the normal operating regime produce
high gains and arbitrarily long decays. In humans, in-
tegrator gain can be adaptively modified up or down
by a factor of two at most (Tiliket et al. 1994). The
middle circle in Fig. 2(a), at approximately (ρ2 = 0.96,

ρ1 = 1.89), gives an arbitrary medium gain of g = 5.93.
The other two circles represent gains of slightly less
than half this value, g = 2.52, attained for (ρ2 = 0.65,

ρ1 = 1.44), and slightly more than twice this value,
g = 12.9, attained for (ρ2 = 1.09, ρ1 = 2.07). The max-
imum gain point occurs at (ρ2 = 1.22, ρ1 = 2.23). For
reference the gain in the absence of Purkinje cells
(ρ2 = 0, ρ1 = 0) is g = 0.91. Normal network responses
at these three gain levels and at a time constant of
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Fig. 3 Simulating various
forms of CN. (a) Response
of the normal network to
variations in (ρ2, ρ1).
(b) Sinusoidal pendular CN
superimposed on normal
leaky-integrator behavior.
For reference, the normal
integrating mode as it would
appear by itself is depicted
in bold. (c) Cycloidal CN.
(d) Dual-jerk CN.
(e) Unidirectional jerk CN.
(f) Bidirectional jerk CN

20s are shown in Fig. 3(a). Similar gain adjustment is
possible at virtually any time constant.

Note that, as the analysis suggests, as one moves up
the gain curve the gain of the integrator depends more
sensitively on the parameters, and one can produce
rather substantial changes in the gain with fairly modest
adjustments in the ρ values. Small movements away
from the normal operating regime (portions of A and
G near the dashed red line in Fig. 2(a)) can cause
the dynamics of the normal network to become unsta-
ble (B, C, or D in Fig. 2(a)), oscillatory (F), or both
(E). This triple-point characteristic enables the normal
network to simulate some, but not all, types of CN.
Jerk CN consists of eye movements of exponentially
increasing velocity that are periodically interrupted by
fast, resetting eye movements (Dell’Osso et al. 1972,
1974; Dell’Osso and Daroff 1975; Yee et al. 1976). PC–
VU weight values with loci inside the envelope cusp
can cause one or more positive, real eigenvalues, and
produce the instability characteristic of jerk CN.

Pendular CN consists of oscillatory eye movements
that are either quasi-sinusoidal or cycloidal, and that
are superimposed on apparently normal integrator
functioning (Dell’Osso et al. 1972, 1974; Dell’Osso and
Daroff 1975; Yee et al. 1976). PC–VU weight values
with loci outside the envelope cusp can result in a
complex pair of dominant eigenvalues. These networks
would display harmonic oscillation, but would not also
exhibit neural integration. Because the exchange of
dominance occurs on the envelope (and not on the
dominance curve) in the normal network (Fig. 2(a)),

the integrating mode exchanges dominance with a real
eigenvalue rather than a complex pair. At no point in
the phase diagram does the integrating mode coexist
with a sustained (real part near zero) oscillatory mode.
Thus, the normal network could not be used to simulate
pendular CN.

The integrating mode can coexist with a sustained
oscillatory mode in the abnormal network (Fig. 2(b)),
because the exchange of dominance occurs at low gain
values outside the envelope cusp. Thus, the abnormal
network offers richer pathology (Fig. 3(b–f)). An ab-
normal network with a real mode corresponding to a
time constant of 20s and a complex mode with near-
zero real part (A in Fig. 2(b)) would have normal
integrator behavior upon which is superimposed stable
oscillation (Fig. 3(b)). This case would correspond to
quasi-sinusoidal, pendular CN that is independent of
orbital position (Dell’Osso et al. 1974). Oscillations
over a broad range of frequencies are possible, and
changes in the VU–PC connectivity can change the
frequency of pendular CN simulated by the model. For
example, modest changes in the vector �w1,2, detailed
in Table 1, change the frequency of oscillation from
2.5Hz to 10Hz. We can simulate cycloidal pendular CN
(Fig. 3(c)) by defining an arbitrary eye-position com-
mand level (here five) and switching between these �w
vectors as the command crosses that level. Such switch-
ing between slightly different VU–PC connectivity pat-
terns could occur in the actual brainstem-cerebellar
network due to cut-off by some MVN/NPH neurons for
commands in their off-directions (Stahl and Simpson
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1995). Cut-off of an MVN/NPH neuron is equivalent
to switching its output weight value to zero. Cut-off
of subsets of MVN/NPH neurons effectively changes
the configuration of VU–PC weights as a function of
eye position, and could cause switching between the
different forms of CN. Just as cut-off could cause the
abnormal network to switch between oscillatory forms
of CN at different frequencies, thus simulating cycloidal
CN (Fig. 3(c)), it could also cause it to switch between
oscillation and instability (not shown), thus simulating
the position dependent transition from pendular to jerk
CN observed in some patients (Dell’Osso et al. 1974;
Dell’Osso and Daroff 1975).

An abnormal network with an unstable real mode
and a complex mode with near-zero real part (B in
Fig. 2(b)) would exhibit oscillation superimposed on
instability. This case would correspond to dual-jerk
CN (Optican and Zee 1984; Reccia et al. 1986). For
simplicity, we simulate resetting eye movements by
reinitializing the initial conditions when the amplitude
exceeds a predetermined threshold. Figure 3(d) shows
simulated dual-jerk CN in which resetting eye move-
ments undershoot the midline. One or more real, un-
stable modes with no complex modes (C in Fig. 2(b))
would correspond to jerk CN. Figure 3(e) shows simu-
lated unidirectional jerk CN (running away in only one
direction), in which the fast, resetting eye movements
undershoot the midline. Figure 3(f) shows simulated
bidirectional jerk CN (alternately running away in ei-
ther direction), in which the resetting eye movements
overshoot the midline. Using undershoot or overshoot
of resetting saccades to simulate unidirectional or bidi-
rectional jerk CN was a strategy also adopted in a
previous modeling study (Optican and Zee 1984). Note
that the changes in PC–VU weights that bring about all
the different forms of CN in the abnormal network are
only about one-tenth the size of the changes that adjust
gain over the physiological range in the normal network
(compare the distances between the dots in Figs. 2(a)
and 2(b), and note axis scales).

4 Discussion

Evidence indicates that oculomotor neural integration
results from positive feedback among the neurons that
compose the integrator network, and that this feed-
back is tuned by adaptive cerebellar mechanisms (Zee
et al. 1981; Robinson 1989; Tiliket et al. 1994). Tun-
ing of positive feedback weights is a sensitive process
because of the potential for instability. Our analysis
shows that there is also a potential for oscillation.
As shown in Anastasio and Gad (2007), a plausible,

stochastic learning rule is able to adapt the weights of
the brainstem-cerebellar model to achieve independent
adjustment of integrator time constant and gain over
broad ranges, while avoiding both instability and os-
cillation. Our analysis suggests that independent ad-
justment of integrator time constant and gain in the
real system should be possible, provided that the con-
nectivity and adaptive capability of the cerebellum are
normal, but that an abnormal cerebellum cannot move
integrator time constant and/or gain into operational
ranges without also introducing oscillation and/or
instability.

Our model is capable of simulating the full range of
waveform types observed in CN (Dell’Osso et al. 1972,
1974; Optican and Zee 1984; Dell’Osso and Daroff
1975; Yee et al. 1976; Reccia et al. 1986) and requires
only small changes from normal operation in a network
that achieves its desired characteristics (high gain and
long time constant) by operating near a triple point of
its phase space. It suggests that CN could result from
an abnormal pattern of connections from brainstem
neurons to cerebellar Purkinje cells, which could re-
sult, in turn, from misdirection of developing axons or
limitations of synaptic plasticity. Recent results support
this suggestion. CN in humans has been associated
with mutations in the FRMD7 gene, which encodes a
protein similar to proteins that modulate the length and
degree of branching of developing axons (Tarpey et al.
2006). Mutant mice deficient in the glutamate receptor
γ2 subunit, which have limited plasticity of synapses
onto Purkinje cells, also have oscillations of about 10Hz
in Purkinje cell responses and eye movements that
resemble pendular CN (Yoshida et al. 2004).
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