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Barreiro AK, Thilo EL, Shea-Brown E. A-current and type I/type
II transition determine collective spiking from common input. J
Neurophysiol 108: 1631–1645, 2012. First published June 6, 2012;
doi:10.1152/jn.00928.2011.—The mechanisms and impact of corre-
lated, or synchronous, firing among pairs and groups of neurons are
under intense investigation throughout the nervous system. A ubiqui-
tous circuit feature that can give rise to such correlations consists of
overlapping, or common, inputs to pairs and populations of cells,
leading to common spike train responses. Here, we use computational
tools to study how the transfer of common input currents into common
spike outputs is modulated by the physiology of the recipient cells.
We focus on a key conductance, gA, for the A-type potassium current,
which drives neurons between “type II” excitability (low gA), and
“type I” excitability (high gA). Regardless of gA, cells transform
common input fluctuations into a tendency to spike nearly simultane-
ously. However, this process is more pronounced at low gA values.
Thus, for a given level of common input, type II neurons produce
spikes that are relatively more correlated over short time scales. Over
long time scales, the trend reverses, with type II neurons producing
relatively less correlated spike trains. This is because these cells’
increased tendency for simultaneous spiking is balanced by an anti-
correlation of spikes at larger time lags. These findings extend and
interpret prior findings for phase oscillators to conductance-based
neuron models that cover both oscillatory (superthreshold) and sub-
threshold firing regimes. We demonstrate a novel implication for
neural signal processing: downstream cells with long time constants
are selectively driven by type I cell populations upstream and those
with short time constants by type II cell populations. Our results are
established via high-throughput numerical simulations and explained
via the cells’ filtering properties and nonlinear dynamics.
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NEURONS THROUGHOUT THE NERVOUS system, from the retina
(Shlens et al. 2008), thalamus (e.g., Alonso et al. 1996), and
cortex (e.g., Zohary et al. 1994) to motoneurons (Binder and
Powers 2001), show temporal correlation between the dis-
charge times of their spikes. This correlated spiking can impact
sensory discrimination (Averbeck et al. 2006) and signal prop-
agation (Salinas and Sejnowski 2000).

How do these correlations arise? We study a simple mech-
anism in which the inputs to a pair or population of neurons has
a common component that is shared across multiple cells
(Fig. 1). On an anatomical level, the large number of divergent
connections that span layers and areas makes shared afferents
to pairs of nearby cells unavoidable (Shadlen and Newsome
1998). Correlated spiking in areas upstream from the target

cells can add to this anatomical factor. In fact, for some neural
circuits, shared inputs are themselves the dominant source of
correlated spiking (Trong and Rieke 2008). In general, corre-
lating effects of shared input interact with effects of recurrent
coupling (cf. Ostojic et al. 2009).

What makes shared input circuitry especially interesting is
the pivotal role of spike-generating dynamics. For a given
fraction of shared input, these dynamics control the fraction of
shared output; that is, the fraction of spikes that will be shared
across the two cells. This correlation transfer depends on two
factors. The first is the mechanism of spike generation. The
second is the operating point of the neurons (i.e., their rate and
variability of firing or the strength of DC and time-varying
inputs that they receive; Binder and Powers 2001; de la Rocha
et al. 2007). Excepting Hong and De Schutter (2008), studies
of correlation transfer have mostly focused on simplified neu-
ron models, such as integrate-and-fire, phase, or threshold
crossing systems, leaving open allied questions for models
with more complex subthreshold and after-spike dynamics.

Here, we study correlation transfer for a family of conduc-
tance-based neuron models that spans a wide range of excit-
ability properties. This is the spectrum from type I excitability,
in which firing can occur at arbitrarily low rates in response to
a DC current (as for cortical pyramidal cells), to type II
excitability, in which firing occurs at a non-zero “onset” rate
(as for fast-spiking interneurons or the Hodgkin-Huxley
model) (Rinzel and Ermentrout 1998; Hodgkin 1948; Izhikev-
ich 2007). We use the Connor-Stevens model (Connor and
Stevens 1971), which transitions between type I and type II as
gA, the maximal conductance of the A-type potassium current,
is varied (see Fig. 2). Beyond firing rates, type I vs. type II
neurons with different levels of gA differ in single-cell com-
putation (Ermentrout et al. 2007) and synchronization under
reciprocal coupling (see e.g., Rinzel and Ermentrout 1998;
Ermentrout and Terman 2010 and references therein). While
we use computational models here, we note that the dynamical
response properties of type I and type II cells that will be
central to our analysis here have been observed in in vitro
studies (for example, see Reyes and Fetz 1993; Galán et al.
2005; Tateno and Robinson 2007; Netoff et al. 2005).

Here, we ask: how does gA affect correlated spiking driven
by common inputs? In superthreshold firing regimes (i.e., with
DC inputs that drive periodic spiking), our findings for Con-
nor-Stevens neurons make contact with earlier results for
“normal form” phase oscillator models (Barreiro et al. 2010;
Marella and Ermentrout 2008; Galán et al. 2007). We extend
our investigation to subthreshold regimes and demonstrate
novel trends in how correlation transfer depends on the oper-
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ating point of the neurons. We explain and interpret our
findings via the common-input filtering properties of individual
neurons in the presence of independent “background” noise.
Finally, we demonstrate how the distinct features of correlated
spiking in type I vs. type II neurons manifest in signal trans-
mission in a simple feedforward circuit. Preliminary versions
of some findings have appeared in abstract form (Barreiro
2009; Shea-Brown et al. 2009).

METHODS

Circuit setup. We primarily consider the feedforward circuit of Fig. 1.
Here, each of two neurons receives two sources of fluctuating current: a

common, or “shared” source Ic � ��c�c(t), and a “private” source I1 �

��1�c�1(t) or I2 � ��1�c�2(t). Each of these inputs is chosen to be
a scaled statistically independent, Gaussian white noise process (uncor-
related in time); that is, ��i(t)�i(t � �)� � �(�) for i � 1, 2, c. This is for
simplicity and agreement with prior studies of correlated spiking (Lindner
et al. 2005; de la Rocha et al. 2007; Shea-Brown et al. 2008; Marella and
Ermentrout 2008; Vilela and Lindner 2009; Barreiro et al. 2010). The
common current Ic has variance �2c; each private current has zero mean
and variance �2(1 � c). Note that these scalings are chosen so that the
total variance of current injected into each cell is always �2, while the
parameter c gives the fraction of this variance that arises from common
input sources. For example, when c � 0.5, 50% of each neuron’s
presynaptic inputs come from the shared and 50% from the independent
input. Finally, the mean of the total current received by each cell is given
by �. This term represents the total bias toward negative or positive
currents from all sources; in Fig. 1, it is illustrated as part of the common
input for simplicity.

The combined currents,

Iapp,i(t) � � � Ic(t) � Ii(t)

�� � ��c�c(t) � ��1 � c�i(t)

(i � 1, 2) are injected into identical single-compartment, conductance-
based membrane models (see Neuron model); spike times are identi-
fied from the resulting voltage trace.

There are a number of ways in which overlapping and correlated
presynaptic cells can provide a pair of neurons with input currents that
have a given correlation coefficient c (Renart et al. 2010; Rosenbaum
et al. 2010). We specify a simple but illustrative example to offer one
interpretation of this value. Consider a case in which a fraction p of
the cells presynaptic to each of our two neurons is drawn from a
“shared,” correlated pool of neurons. Let the remaining inputs to each
cell be drawn from a similar pool of cells, such that cells within the

pool for each cell are correlated with one another but are independent
of cells in the other pools. Finally, for simplicity, let within-pool
correlation coefficients be the same in each pool. Then, for large pool
sizes, the total inputs to each cell have correlation (cf. Rosenbaum
et al. 2010)

c �
p2

p2 � (1 � p)2 .

In particular, the value c � 0.1 used repeatedly in our study results
from a shared fraction p � 1/4.

Neuron model. We investigate correlation transfer in the Connor-
Stevens model, which was designed to capture the low firing rates of
a crab motor axon (Connor and Stevens 1971; Connor et al. 1977).
This model adds a transient potassium current, or A-current, to
sodium and delayed rectifier potassium currents of Hodgkin-Huxley
type. The A-type channel provides extended after-spike hyperpolar-
ization currents, which lead to arbitrarily low firing rates and hence
type I excitability (see Introduction).

The voltage equation is

CM

dV

dt
� �gL(V � EL) � gNam

3h(V � ENa) � gKn4(V � EK)

� gAA3B(V � EK) � Iapp, (1)

The gating variables m, n, h, A, and B each evolve according to the
standard voltage-gated kinetics; e.g., for m:

dm

dt
�

m	(V) � m

�m(V)
(2)

where m�(V) is the steady-state value and �m(V) is the (voltage-
dependent) time constant. All equations and parameters are exactly as
specified as in Connor et al. (1977), with the exception that we vary
the maximal A-current conductance, gA, over the range of values
reported below. As gA is decreased from the value set by Connor et al.
(1977), the neuron transitions from type I to type II excitability.

Measuring spike train correlation. We represent the output spike
trains as sequences of impulses yi(t) � �k �(t � ti

k), where ti
k is the

time of the kth spike of the ith neuron. The firing rate of the ith cell,
�yi(t)�, is denoted 
i. To quantify correlation over a given time scale T,

Fig. 1. Shared input microcircuit, in which two neurons receive input currents
with a common component that represents correlated activity or shared
afferents upstream. Each neuron is a single-compartment Connor-Stevens
model (see METHODS), with a maximal A-current conductance gA that we vary,
eliciting a full range of type I to type II spiking dynamics. Shared input
currents lead to correlated spikes, which are quantified as shown via spike
counts n1, n2 over sliding time windows of length T. The input currents
received by each cell have mean � and fluctuate with total variance �2; the
common noise is chosen with variance �2c and independent noise terms with
variance �2(1 � c).

Fig. 2. Firing rate vs. injected current (f-I) curves, for the deterministic (� �
0) Connor- Stevens model. Several values of gA, yielding a range from type II
to type I excitability, are shown; note the nonzero “onset” firing rates and type
II excitability for gA � 0 mS/cm2, zero onset rate and type I excitability for
gA � 60 mS/cm2, and a gradual transition between. Insets: cartoons of
dynamical transitions that lead to nonzero vs. zero onset rates: a subcritical
Hopf bifurcation (left) and a saddle-node on invariant circle bifurcation (right);
see text for definitions.
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we compute the Pearson’s correlation coefficient of spike counts over
a time window of length T (as in, e.g., Zohary et al. 1994; Bair et al.
2001):

�T �
Cov(n1, n2)

�Var(n1)�Var(n2)

where n1, n2 are the numbers of spikes simultaneously output by
neurons 1 and 2 respectively, in a time window of length T; i.e.,
ni(t) � �t

t � T yi(s) ds. If �T is measured at values of T that are less than
a typical interspike interval, we are essentially measuring the degree
of synchrony between individual spikes. For larger T values, �T

assesses total correlation between numbers of spikes emitted by each
cell.

A short calculation (cf. Bair et al. 2001; Cox and Lewis 1966)
shows that Cov(n1, n2) is

Cov(n1, n2) � T��T

T
C12(t)

T � �t�
T

dt (3)

where the spike train cross-covariance C12(�) � �y1(t)y2(t � �)� �

1
2. Similarly, the variance Var(n1) can be given in terms of the
spike train autocovariance function. The autocovariance function of
neuron 1, defined as A1(�) � �y1(t)y1(t � �)� � 
1

2, satisfies

Var(n1) � T��T

T
A1(t)

T � �t�
T

dt ,

and similarly for neuron 2.
Linking linear response theory, spike-triggered averages, and spike

count correlations. When the variance c of the shared input is small
(see Fig. 1), then we can treat the circuit with a shared input as a
perturbation from two independently firing neurons. We describe this
perturbation via linear response theory (Lindner et al. 2005; de la
Rocha et al. 2007; Ostojic et al. 2009; Ostojic and Brunel 2011),
which is related to classical Linear-Poisson models of neural spiking
(Perkel et al. 1967). That is, we make the assumption that the change
in a neuron’s instantaneous firing rate 
i(t) due to the shared input
signal can be represented by linearly filtering the common (perturb-
ing) input Ic:

vi(t) � �yi(t)�Ic�

�v0,i � �0

	
K(s)Ic(t � s)ds

�v0,i � (K � Ic)(t) (4)

where the filter K(t) � 0 for t 	 0 (causality) and 
0,i is the
“background” average firing rate of the independently firing neuron
(Ostojic et al. 2009).

Equation 4 is extremely useful, because it isolates the common
component of the response of neurons i � 1 and i � 2, which is an
enhanced (or depressed) tendency to emit spikes, at a rate determined
by the filtered, common input. As a result, the cross-covariance
function C12(�) � �(
1(t) � 
0,1) (
2(t � �) � 
0,2)� becomes

C12(�) � Var(Ic)�0

	
K(s)K(s � �)ds

�Var(Ic)(K � K̃)(�) (5)

where K̃�t� � K(�t) and we have used the fact that Ic is white
(uncorrelated in time), �Ic(t)Ic(t � �)� � Var(Ic)�(�) (Ostojic et al.
2009; Gabbiani and Cox 2010)

Moreover, the filter K(t) is precisely given by the spike-triggered
average STA(�) (Gabbiani and Koch 1998; Dayan and Abbott 2001);
different from the classical setting, but as in Ostojic et al. (2009), it is
only the common component of the input current that is averaged in
this procedure. Specifically, if the neuron produces N spikes at times

tk, then STA��� �
1

N	k�1
N Ic�tk � �� and, in the limit of large N,

K(�) �
vi

Var(Ic)
STA(�). (6)

Below, we use this expression to derive K(�) from numerically
computed STAs.

Numerical simulations and estimates of spike count statistics. To
compute spike count correlations and other statistical quantities, we
performed Monte Carlo simulations of the circuit in Fig. 1. The
governing Connor-Stevens equations (1, 2) were integrated using the
stochastic Euler method with time step 
t � 0.01 ms for a total time Tmax

of 8 � 106 ms. Random input currents were chosen at each time step
using a standard random number generator (Marsaglia and Zaman
1994). To facilitate exploration of parameter space �, �, c, and gA, we
distributed computations on parallel machines through the NSF Tera-
grid program (http://www.teragrid.org). The simulation code was
implemented in FORTRAN90 and distribution scripts in Python for
running on clusters with and without PBS submission protocols. All
code and scripts will be available at the modelDB site upon publica-
tion (http://senselab.med.yale.edu/modeldb/).

We register spikes in our simulations at times when the membrane
voltage exceeds �30 mV and maintains a positive slope in voltage for
the next three time steps (0.03 ms). To avoid counting each spike
more than once, we omit a 2-ms refractory period after each spike.

Spike count statistics were computed directly from the recorded
spike times, based on a single long simulation, after discarding an
initial transient (200 ms). When sampling spike counts over a time
window T, we advance the window by 1/4 T, resulting in �4 Tmax/T
(correlated) samples; consequently, our estimates of spike counts
become noisier as T increases. To estimate SEs on spike count
statistics, we further divided the simulation into 10 equal time inter-
vals (8 �105 ms each) and computed statistics on each subsimulation;

SD, divided by �10, gives us an estimated SE. When appropriate,
these are presented along with the mean estimates, as error bars.

Below, we also report STAs described above; these were computed
using long simulations of length 8 � 107 ms for several sets of
parameter values �, �, and gA. To compute these, the common input
current Ic was treated as the “signal” that was averaged and the private
input as a “background” that was not. We used c � 0.10 in this
computation. In our code, the history Ic was continuously recorded for
a duration into the past; when a spike was recorded, the STA was
augmented by this current.

Finally, we generate auto- and cross-correlograms (shown in Fig. 4) by
collecting interspike intervals from our simulations in 1-ms-long bins.
These are used, after the standard normalization, as auto- and cross-
covariance functions.

RESULTS

Rich structure of spike count correlations over short and
long time scales. Our central findings contrast how different
conductance-based neuron models produce correlated spiking
when they receive overlapping fluctuating inputs, via the
shared-input circuitry in Fig. 1. Specifically, we show how this
correlation depends on the type I vs. type II excitability class of
a neuron described by the well-studied Connor-Stevens model.
As discussed above, neurons are often classified as type I vs.
type II based on whether their firing rate-current curves are
continuous (type I) vs. discontinuous (type II) at � � Ibif, the
threshold current above which periodic spiking can be elicited.
Figure 2 demonstrates, as shown in (Rush and Rinzel 1995),
that the Connor-Stevens model is type II when the maximal
A-current conductance gA �0 mS/cm2, type I for gA �60
mS/cm2, and displays a gradual transition in between. Thus we
fix the neurons in the shared-input circuit to a point along the
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spectrum from type I to type II excitability by choosing
different values of gA.

To compute levels of correlated spiking, we then fix the
correlation in the input currents, that is, the fraction of the
current variance that is shared vs. private to the two cells, to a
preset value c. For each value of c and gA, we compute spike
count correlations for wide range of operating points for the
neurons, as determined by a �200 � 50 grid of values for the
mean current � and variance �2 (both � and � are sampled at
a resolution of 0.1 �A/cm2 and �A·ms1/2/cm2, respectively).
Specifically, we vary � over values centered at the threshold
current Ibif (gA), from a minimum � � Ibif(gA) � 10 (�A/cm2)
to a maximum � � Ibif (gA) � 10 (�A/cm2) for each value of
gA. This enables us to cover, respectively, both subthreshold
[i.e., fluctuation-driven, � 	 Ibif (gA)] and superthreshold [i.e.,
mean-driven, �  Ibif (gA)] firing regimes for each value of gA.
We additionally vary � over 0 	 �  5 (�A·ms1/2/cm2), so that
we cover the range from nearly Poisson, irregular spiking to
nearly periodic, oscillatory spiking. This is demonstrated by
Fig. 3, which shows the Fano factor of spike counts over a long
time window (T � 256 ms), a proxy for the squared interspike
interval coefficient of variation (Gabbiani and Koch 1998),
over the entire �, � parameter space for three representative
values of gA (0, 30, and 60 mS/cm2). For each value of gA, the
Fano factor spans a range from near zero (periodic) to one (i.e.
Poisson-like) or higher.

For each set of parameters gA, c, �, and �, we compute the
Pearson’s correlation coefficient �T between the spike counts
that the neuron pair in Fig. 1 produces in time windows of
length T. Figure 4 summarizes the results, for inputs with 10%
shared variance (c � 0.1). Here, we view �T over the entire �,
� parameter space for three representative values of gA (0, 30,
and 60 mS/cm2) and two different time windows (T � 4 ms
and T � 128 ms). Values of �T depend in a strong but
systematic way on all of the parameters we have introduced.
As we move down a column, we see major qualitative differ-
ences in the levels of correlation that emerge at different points
through the type II (gA � 0) to type I (gA � 60) spectrum.
Within each panel, the operating point set by input mean and
variance (�, �) has a strong impact on �T. Finally, the levels
and trends in �T depend strongly on the time scale T. We now
describe these trends in more detail; the sections that follow
will give an explanation for how they arise.

We begin with Fig. 4, top, which shows correlation �T for gA � 0
and hence type-II excitability. First, note that correlations are
overall quite weak. The largest values of �T obtained are
�0.04, indicating that �40% or less of correlations in input
currents are ever transferred into correlations in output spikes.
Moreover, the level of correlations �T and their dependence on
input parameters � and � appear roughly similar for both short
and long time scales T. In both cases, for a fixed value of DC
input �, a general trend is that �T gradually increases with
fluctuation strength �. For a fixed value of �, in general �T first
increases and then decreases with �; the dependence is slightly
more complex at longer T. Significantly non-zero values of �T
are present for � 	 Ibif, as � becomes appreciably high; this
reflects the bistable firing dynamics of the underlying deter-
ministic system, which supports both a stable resting state and
a stable spiking trajectory for � 	 Ibif .

For type I excitability at gA � 60 (Fig. 4, bottom), the picture
is dramatically different. First, there is a marked difference
between correlation elicited on short vs. long time scales T,
with much stronger correlations observed for larger T. More-
over, correlations produced by type I neurons over longer time
scales T are much higher than those observed for type II
neurons at any time scale: the largest values of �T obtained for
type I are �0.08, indicating that �80% of correlations in input
currents can be transferred into spike correlations. Conversely,
correlations for type I neurons are strongly suppressed at short
time scales, where 10% of input correlations are transferred.
Overall, trends in �T as � and � vary are similar to those found
previously: correlations increase with �, and first increase, then
decrease, with �.

Correlation transfer in the intermediate model, gA � 30,
displays trends between those of the type I (gA � 60) and type
II (gA � 0) cases. As when gA � 60, spike count correlations
�T are very low for short time windows T and attain interme-
diate to high values �60% of input correlations transferred for
longer T. As for both gA � 60 and gA � 0, �T increases with
noise magnitude � and displays a nonmonotonic trend with
mean current �.

We obtain additional insight into how spike count correla-
tions depend on type I vs. type II spike generation and the time
scale T by choosing matched values of input parameters � and
� and comparing spike count correlations produced for differ-
ent values of the A-current conductance gA. We first concen-
trate on the � and � values indicated by squares and circles in

Fig. 3. Fano factor of spike counts over a long time window (T � 256 ms) for
a �200 � 50 grid of values for the mean current � and variance �2. From top
to bottom, type II to type I: gA � 0 (A) , gA � 30 (B), and gA � 60 mS/cm2

(C). Markers indicate relative location of (�, �)-pair; subthreshold by
1 �A/cm2 (diamond), superthreshold by 2 �A/cm2 with low noise (circle) and
high noise (square), and superthreshold with matched Fano factors (asterisk,
see text).
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Fig. 4. Both of these points indicate superthreshold inputs � �
Ibif(gA) � 2 (�A/cm2) for all gA values. The square corre-
sponds to higher noise � � 5 �A·ms1/2/cm2, and the circle to
lower noise � � 1 �A·ms1/2/cm2. In Fig. 5, we plot �T for a full
range of T values from 1 to 200 ms, for nine values of gA
between gA � 0 and gA � 60 (thus filling in intermediate
values of gA and T between those in Fig. 4). For both super-
threshold cases, we see that type II neurons transfer more input
correlation into output (spike) count correlation at small T,
while type I neurons transfer more at large T; this transition
occurs, roughly, at a value Tswitch indicated by the dotted line.
We note that for the low noise case � � 1 (Fig. 5B), the trends
appear less ordered as gA varies; as we will see in the next
section, this is because the cross-covariance function is more
oscillatory here, so that �T has not yet converged to its
asymptotic large T value.

Subthreshold points, denoted by diamonds in Fig. 4, were also
compared: the mean input current is chosen to be � � Ibif(gA) �
1 (�A/cm2), and the noise magnitude to be � � 5 �A·ms1/2/cm2.
Here, the differing dynamical structure between type II and type
I neurons is evident in the firing statistics (see Table 1): while the
bistable type II neuron (gA � 0) sustains a substantial firing rate,
the monostable type I neuron (gA � 60) barely fires at this level
of input current. The correlation coefficient �T is also very low for
gA � 60 at all time windows (Fig. 5C); this is consistent with the
relationship between correlation and firing rate identified in earlier
studies (de la Rocha et al. 2007; Shea-Brown et al. 2008). Overall,
note that the correlation coefficient �T increases steadily with T for
the type I neurons (high gA) but stays roughly constant over a
broad range of T for type II neurons (low gA). Thus, while we do
not observe a clear value of T switch for all values of gA for the

subthreshold point in Fig. 5C, we see the same relative trends as
for superthreshold points. Below, we will see how this effect
follows from filtering properties of type I vs. type II cells.

Because spike generation mechanisms vary widely as gA
changes, the neuron models with matched input statistics at
different values of gA in Fig. 5, A–C, do not all have the same
firing variability. In Fig. 6A, we address this by showing that the
same trends in �T persist if we select values of � to maintain
constant firing variability for each value of gA [see Table 1;
variability measured via large-time (T � 256 ms) Fano factor].
Here, we fix � � 5 �A·ms1/2/cm2; the required current value � for
each gA is indicated with a red asterisk in Fig. 4.

By considering a wider range of input current parameters � and
�, we can find operating points at which both firing variability and
rate are matched. If we choose � � 9.35 �A/cm2 and � � 7.3
�A·ms1/2/cm2 for gA � 30, or � � 22.75 �A/cm2 and � � 8.1
�A·ms1/2/cm2 for gA � 60, we find that the cell fires at 113 Hz
with a large-time (T � 256 ms) Fano factor of 0.059, matching the
output statistics of the superthreshold, gA � 0 operating point.
Once again, we see that the trends in �T remain (Fig. 6B).

In sum, for matched values of the mean and variance of
input currents, a pair of superthreshold type II (vs. type I)
neurons will produce greater spike count correlations �T at
short time scales T. For a wide range of choices for the mean
and variance, there will be a value of Tswitch where this
relationship reverses, so that type I (vs. type II) neurons
produce greater �T for T  Tswitch. For matched subthreshold
currents, similar trends are present; overall, the presence of a
time Tswitch depends on how the input statistics are chosen.

Finally, we note that the general trends observed here carry
over, largely unchanged, to different values of c. Figure 7

Fig. 4. Spike count correlations for three
models at both short and long time scales.
Each row displays data from a value of gA:
from top to bottom, type II (gA � 0 mS/cm2),
intermediate (gA � 30 mS/cm2), and type I
(gA � 60 mS/cm2). Left: spike count corre-
lations �, for short windows T � 4 ms.
Middle: spike count correlations �T, for long
windows T � 128 ms. Markers indicate
points used for cross-model comparison:
subthreshold by 1 �A/cm2 (diamonds), su-
perthreshold by 2 �A/cm2 and low noise
(circles), superthreshold by 2 �A/cm2 and
high noise (squares), and superthreshold
with matched Fano factor (asterisks). Right:
cross-covariance and autocovariance (inset)
functions for the superthreshold high noise
points (squares). Behind cross-covariance
functions, the shape of the triangular kernel
that relates this function to spike count co-
variance (as in Eq. 3) is illustrated for T �
4 ms (green) and T � 128 ms (yellow). For
each value of gA, autocovariance functions are
given in normalized units [so that A(0) � 1].
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shows that, for the range 0.1 	 c 	 0.5, trends in how �T

changes with excitability type via (gA) remain consistent. In
particular, the relationship between input correlation c and
spike count correlation �T is roughly linear over this broad
range of shared inputs.

Trends in cross-correlation functions for type I vs. type II
neurons. The trends in spike count correlations that we have
just described can be explained from the cross-covariance
functions for neuron pairs and how they differ as the charac-
teristics of input currents and the level of the A-current con-
ductance gA vary. We now demonstrate this via the cross-
covariance functions shown in the Fig. 4, right-most column;

these are for the superthreshold high noise cases (� � 5
�A·ms1/2/cm2) discussed in the previous section.

To make the connection, recall that the spike count covari-
ance, Cov(n1, n2), measured over a window of duration T is
given by the integral of the cross-covariance function C12(�)
against a triangular kernel of width T (see METHODS, and Eq. 3).
Thus, for short windows T, only the central peak of C12(�)
contributes to spike count covariance. In the limit of long
windows T ¡ �, the spike count covariance is simply the
integral of the cross-covariance function, multiplied by T, over
the whole �-axis. Spike-count correlation �T is then given by
the ratio of spike count covariance to the spike count variance.

As we will show below, �T and
Cov�n1,n2�

T
often show similar

trends with T. Both quantities are of interest: while �T gives a

normalized metric of correlation,
Cov�n1,n2�

T
is the relevant

quantity to analyze impact on downstream excitable cells (see
below, Readout of correlated spiking by downstream cells).

Armed with these relationships between C12(�), Cov(n1, n2),
and �T , we revisit the trends observed in the previous section and
explore their origin. Starting in Fig. 4, top right, note that C12(�)
has a much larger central peak, and hence short-T spike count
covariance, for type II excitability (gA � 0) than for type I (Fig.
4, bottom right, gA � 60). This is also clear in Fig. 8A, where we
plot spike count covariance vs. T. Over long windows T, the trend
reverses. For gA � 0, the cross-covariance function shows oscil-
lations with significant negative and positive lobes. These lobes
tend to cancel as C12(�) is integrated over long windows T. This
cancellation results in little overall change in values of spike-count
covariance computed at increasingly long values of T. For type I
excitability, however, C12(�) is mostly positive, so that spike
count covariance increases with T.

As discussed above, spike-count correlation �T is given by
the ratio of spike-count covariance and variance. Comparing
Figs. 8A and 5A it is clear that spike-count correlation and
spike-count covariance display the same trends as gA is varied.
For example, for very short times T spike-count correlation �T

Fig. 5. Correlation coefficient �T vs. time window T. Colors indicate gA � 0
(dark blue) through gA � 60 (red) mS/cm2. Data from the superthreshold cases
(A, B, and C) show the switch from type II cells transferring more correlations
to type I cells transferring more as T increases. Dotted line indicates the
approximate time window T switch where the switch occurs. A: high noise,
superthreshold; B: low noise, superthreshold; C: subthreshold.

Table 1. Output firing statistics at each of the comparison points
identified in Fig. 4

Regime Statistics gA � 0 gA � 30 gA � 60

Superthreshold, high �
(square) 
, Hz 113.2 69.9 31.6

FFT � 256 0.059 0.0795 0.195
Superthreshold, low �

(circle) 
, Hz 108.4 65.0 34.8
FFT � 256 0.0107 0.013 0.023

Subthreshold (diamond) 
, Hz 81.7 30.0 0.171
FFT � 256 0.145 0.282 0.99

Superthreshold, fixed
variability (*) 
, Hz 113.2 82.5 68.5

FFT � 256 0.059 0.059 0.059
Superthreshold, fixed

variability, and firing
rate 
, Hz 113.2 113 113

FFT�256 0.059 0.059 0.059

For each set of matched points, we note the firing rate 
 and the Fano factor
(FF) of spike counts over long time windows (specifically, T � 256 ms); gA,
maximal A-current conductance. See text.
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is given by the ratio of the peak in C12(�) to that in A1(�); this
ratio is also larger for type II vs. type I excitability.

For other operating points (�, �), while trends in spike-count
correlation and spike-count covariance do not exactly agree,
the same relative trends persist. Specifically, the general pat-
tern that type II cells produce greater covariance over short
time windows, and that this trend disappears or reverses for
larger time windows, holds for each of the superthreshold
operating points explored here. Overall, the major trends in
spike count correlations stem from the presence vs. absence of
large negative lobes in cross-covariance functions for type II
vs. type I neurons. We next describe how this difference arises
via the distinct filtering properties of the two neuron types.

Common-input STAs reliably predict spike count covariance.
The previous section showed how trends in spike count cova-
riances for type I vs. type II neurons follow from the presence
of both strongly negative and positive lobes in crosscovariance
functions for type II neurons. Here, we explain the origin of
this phenomenon. Equations 5 and 6 (see METHODS) provide the
key link, in which the cross-covariance function is given in
terms of a cell’s STA, which is an estimate of the filter through
which cells turn incoming currents into time-dependent spiking
rates. Here, as in Ostojic et al. (2009), we define the common-
input STA as an average of the common current only that
precedes spikes over a single long realization:

STA � 
 1

N 	
k�1

N

Ic(tk � �)� , (7)

where the tk are the N spike times from the realization.
We first show that the prediction of spike count covariances

from STAs is accurate. Figure 8, left, shows close agreement
between spike count covariances computed from “full” numer-
ical simulation (thin lines) vs. predictions from STAs via Eq. 5
(heavy solid lines). Next, we examine the shape of the STAs
themselves (Fig. 8, right).

For each operating point we consider, the type II STA (gA �
0) has a pronounced negative lobe. Functionally, this corre-
sponds to a “differentiating” mode through which inputs are
processed: negative currents sufficiently far in the past tend to
drive more vigorous spiking. Biophysically, this corresponds to
the kinetics of ionic currents, for example, inward currents that
can be de-inactivated through hyperpolarization. The differen-
tiating filtering property with respect to the total input to a cell
has been found before for neurons with type II excitability
(e.g., Aüera y Arcas et al. 2003; Prescott et al. 2008); here, we
show that this persists for common-input STAs in the presence
of background (independent) input, as for correlation transfer
of a weak common input to pairs of cells.

By contrast, type I common-input STAs show a less prom-
inent negative lobe or none at all. The resulting filtering of
inputs is characterized as “integrating:” a purely positive filter
is applied to past inputs to determine firing rate (cf. Dayan and
Abbott 2001; Agüera y Arcas et al. 2003; Mato and Samengo
2008; Prescott et al. 2008).

The consequences for spike cross-covariance functions are
straightforward. Trends are most pronounced for the superthresh-
old, high � case (Fig. 8A). Here, the pronounced negative lobe in
the type II STA (gA � 0) leads to a similar negative lobe in the
crosscovariance, and hence a sharp decrease, following an initial
increase, of spike count covariance as a function of time window
T. The type I STA (gA � 60) is positive, leading to a spike count
covariance that steadily increases until it overtakes the type II
value at T � 20 ms. These trends are also reflected in the spike
count correlation �T, as described previously. Moreover, analo-
gous plots for superthreshold, high � points where either 1) spike-
count variability (Fano factor; Fig. 9A), or 2) both variability
and firing rate (Fig. 9B) are maintained across gA values, show
the same trends.

In the low � case (Fig. 8B), the STAs have similar charac-
teristics; moreover, there is significant ringing in the STA. This

Fig. 6. Correlation coefficient �T vs. time window T,
where input current parameters have been chosen to
match output spiking characteristics across different
gA values. Colors indicate gA � 0 (dark blue)
through gA � 60 (red) mS/cm2. Data from these
superthreshold cases show the switch from type II
cells transferring more correlations to type I cells
transferring more as T increases; the dotted line
indicates the approximate time window T switch
where the switch occurs. A: high noise, superthresh-
old, matched variability; B: high noise, superthresh-
old, matched variability and firing rate. *Parameter
values shown in Figs. 3 and 4 were used to produce
this figure.

Fig. 7. Output correlation coefficient �T vs. input correla-
tion coefficient c, showing an approximate linear relation-
ship. Left: short time window (T � 4 ms). Right: long time
window (T � 150 ms). Colors indicate gA � 0 (dark blue),
gA � 30 (light blue), and gA � 60 (red). Markers indicate
relative location of (�, �)-pair; subthreshold (diamond),
superthreshold with low noise (circle), and superthreshold
with high noise (square).
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occurs at the characteristic firing frequency and reflects the
cell’s oscillatory spiking: inputs that occur more than one
period into the past affect the timing of multiple spikes in the
future. By the time the predicted (and actual) covariances
1

T
Cov�n1,n2� reach a limiting value, they are close to zero, and

possibly too variable to order definitively. It appears that covari-
ance is still larger for type II than for type I at T � 200 ms. In the
subthreshold case (Fig. 8C), the STA for the type I neurons is very
small, consistent with the very low firing rate here. The type II
neuron shows a more robust response, similar in magnitude but
less oscillatory than for the superthreshold regime.

Trends in spike-generating dynamics mirror trends in STAs
and transferred correlations. The transition from type II to type
I spike generation in the Connor-Stevens model, as manifest in the
progression from discontinuous to continuous spike-frequency vs.
current curves in Fig. 2, can also be characterized via the type of
bifurcation that governs the transition from quiescence to periodic
spiking as increasingly strong currents are injected (see Izhikevich

2007; Rinzel and Ermentrout 1998; Guckenheimer and Holmes
1983 for general references; and Rush and Rinzel 1995 and p. 96
of Ermentrout and Terman 2010 for treatment of the Connor-
Stevens model specifically).

For 0 	 gA 	 46 mS/cm2, the transition occurs via a
subcritical Hopf bifurcation, as voltage trajectories jump from
a stable rest state to a preexisting stable periodic orbit (limit
cycle). This transition is schematized in Fig. 2, top left. As this
figure shows, for smaller values of gA in this range, the
frequency of this cycle is high (�60 Hz). The voltage-conduc-
tance dynamics near both stable structures, the stable rest state
and the limit cycle, is oscillatory. This creates a resonator
property (see Izhikevich 2007 and references therein): if they
are properly timed, both negative and positive inputs cooper-
atively produce spikes or cause them to occur earlier than they
would in the absence of inputs. This is reflected in the negative
and positive lobes in the STA � K(�) for the gA � 0 cases (see
Fig. 11): recall that the STA is the filter applied to incoming
currents to determine firing rates.

Fig. 8. Spike count covariances and their
relationship to spike triggered averages
(STAs). Each row compares data collected
at a comparison point for the input current
statistics (�, �); see text. From top, super-
threshold current with high noise (square),
superthreshold with low noise (circle), and
subthreshold (diamond). Left: actual (thin
lines) and predicted (heavy solid lines) spike
count covariances [Cov(n1, n2)/T] for repre-
sentative points and all gA values. Colors
identify gA values, which range from gA � 0
(dark blue), through gA � 30 (light blue), to
gA � 60 (red) mS/cm2. Right: select STAs
(right) and one-sided cross-covariance func-
tions (left derived from the STA using Eq. 5)
used to compute predicted spike count cova-
riances. Colors identify gA � 0 (dark blue),
gA � 30 (light blue), and gA � 60 (red); see
text for definitions.
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By contrast, for large gA  58 mS/cm2, a saddle-node on
invariant circle bifurcation occurs. As sketched in Fig. 2, top right,
in this case there is a pair of fixed points that form a “barrier” to
spike generation for subthreshold values of �, and the shadow, or
“ghost” of these fixed points still affects dynamics for super-
threshold �, producing slow dynamics in their vicinity. The inputs
that will elicit or accelerate spikes are those that will push
trajectories past the fixed points, or their ghost, in a distinguished
direction. These inputs therefore tend to have a single (positive)
sign. This is referred to as an integrator property and gives rise to
the mostly positive STAs seen in Fig. 8 for the gA � 60 cases.
[This argument breaks down for very low-variance (low �) inputs,
as we will see in a later section.]

Between these two extremes in gA, the minimum frequency
in response to a ramp current decreases steadily, creating a
gradual shift between type I and type II behavior. This gradual
shift is mirrored in the neural dynamics, in which the slow
regions in the state space become increasingly dominant. This
transition is clear in the STAs, and therefore spike count
covariances, shown in Fig. 8. For example, for gA � 30, we
find both distinctly “type II”-like and “type I”-like aspects in
the high noise (Fig. 8A) and subthreshold (Fig. 8C) covariance
trends, respectively. In the former, spike count covariance
increases, then decreases, with T; reflecting an oscillating STA;
the end result is that the (normalized) covariance at T � 200 ms
is lower than the covariance at T � 1 ms. In the latter, the
normalized covariance steadily increases with T, reflecting a
nonnegative STA.

Readout of correlated spiking by downstream cells. How
could the difference in spike count correlation between type
I and type II cells impact neural circuits? We explore this
impact in a simple network, in which correlated type I or

type II cells collectively converge to drive a neuron down-
stream (see Fig. 10A).

In more detail, the drive comes from a population of N � 200
identical type I (gA � 60 mS/cm2) or type II (gA � 0 mS/cm2)
upstream neurons; we refer to these as population I and
population II, respectively. The upstream populations receive
correlated inputs with c � 0.5 and values of � and � that yield
matched levels of variability, as for the parameter set identified
with asterisks in Fig. 4 (for population I, � � 18 �A/cm2 and
� � 5 �A·ms1/2/cm2; population II, � � �6 �A/cm2 and � �
5 �A·ms1/2/cm2). This yields firing rates of 
I � 63.5 Hz for
neurons in population I and 
II � 113 Hz in population II. Each
upstream neuron has a single, instantaneous (delta function)
synapse onto the downstream neuron of strength gI or gII; the
relative size of the excitatory postsynaptic potentials are cho-
sen so that the mean driving current is equal for each popula-
tion (
IgI � 
IIgII, so that gI � 0.825 mV, gII � 0.5 mV).

The total input received by the downstream neuron, Ids, is
thus the weighted sum of N upstream spike trains yj(t):

Ids(t) � gI	
j

yj(t) or Ids(t) � gII	
j

yj(t). (8)

When the population size N is large, the summed signal has the
same temporal characteristics as the cross-covariance between
neuron pairs. Specifically, the autocovariance of the summed
input is

Ads(�) � E ��Ids(t) � �Ids���Ids(t � �) � �Ids��
�N(N � 1) E ��yi(t) � vi��yj(t � �) � vj�

� N E ��yi(t) � vi��yi(t � �) � vi� (9)

�N2 E ��yi(t) � vi��yj(t � �) � vj�
�N2C12(�). (10)

Fig. 9. Spike count covariances and their
relationship to STAs. Input current parame-
ters have been chosen to match output spik-
ing characteristics across different gA values.
Left: actual (thin lines) and predicted (heavy
solid lines) spike count covariances [Cov(n1,
n2)/T], for representative points. Right: STAs
(right column) and one-sided cross-covari-
ance functions (left column, derived from the
STA using Eq. 5) used to compute predicted
spike count covariances. Colors identify gA � 0
(dark blue), gA � 30 (light blue), and gA �
60 (red) mS/cm2. A: high noise, superthresh-
old, matched variability. B: high noise, super-
threshold, matched variability, and firing rate.
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This relationship is evident in the peristimulus time histograms
in Fig. 10B. For population II, fast fluctuations above and
below the mean population output reflect the negative lobe in
C12(�) adjacent to its large peak. Meanwhile, fluctuations in the
output of population I are less extreme and more gradual in
time.

The downstream cell integrates Ids(t) via leaky integrate-
and-fire (LIF) voltage dynamics (Dayan and Abbott 2001):

�LIF

dV

dt
� �(V � Vr) � Ids(t)

where �LIF is the membrane time constant and Vr � �60 mV
is the rest voltage. Spikes are produced when the voltage V
crosses Vthresh � �45 mV, at which point V is reset to Vr.

For the parameters we have chosen, the downstream neuron
is driven subthreshold, so that �Ids(t)� is not sufficient to excite
a spike; any spikes must be driven by fluctuations in Ids(t).
Thus the variance of fluctuations in V(t) should give a rough
estimate of how often membrane voltage will exceed the
threshold and consequently the downstream firing rate. This
variance is easy to compute for a passive membrane (i.e.,
neglecting spike-reset dynamics). First, note that

V(t) � Vr � ��	

t
Ids(s)L(t � s)ds

where L is a one-sided exponential filter

L(t) �
1

�
exp(�t ⁄ �LIF), t � 0

�0, t � 0.

We compute the variance as follows, using the causality of L to
take each upper limit of integration to infinity:

E [V(t)2] � E ���	

t
�Ids(s) � �Ids�L(t � s)ds

� ��	

t
�Ids(r) � �Ids�L(t � r)dr

���	

	 ��	

	
ds drL(t � s)L(t � r)E[I(s)I(r)]

���	

	 ��	

	
ds drL(t � s)L(t � r)Ads(s � r)

���	

	
dz Ads(z)(L � L̃)(�z) (11)

where L̃�t� � L(�t); the last step involved the substitution
z � s � r and switching the order of integration. This final
interior integral can be evaluated in the Fourier domain: using

Fig. 10. A: schematic of “upstream” type I or type II neuron population receiving common and independent inputs and converging to a leaky integrate-and-fire
(LIF) cell downstream. B: peristimulus time histograms from type I and type II upstream populations. C: predicted power of the voltage fluctuations in the LIF
cell, using STA (see text). D: actual firing rates of the LIF cell, showing similar trends with LIF time scale �LIF. E: same as D, but for upstream populations with
higher Fano factor for individual cells (see text).
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the properties that F �L̃��� � F �L(��) and the fact that for

real functions F[f](��) � F�f���� , we find

F�(L � L̃)(�) � �F[L](�)�2

�
1

1 � �2�LIF
2 .

Therefore (for example by consulting a transform table)

(L � L̃)(t) �
1

2�LIF
exp(��t� ⁄ �LIF).

Substituting into Eq. 11, we see that the variance of the down-
stream cell’s voltage is given by a formula similar to that for the
spike count covariances (Eq. 3): both involve integrating the
cross-covariance function against a (roughly) triangular-shaped
kernel, with time scale �LIF in the former case and T in the latter.

Figure 10C shows the by-now familiar trends that this
predicts. For short membrane time scales �LIF, type II popula-
tions drive greater voltage variance; this is precisely analogous
to the finding that spike-count correlations are greater for type
II cells over short time scales T. For long �LIF, type I popula-
tions drive greater voltage variance, just as type I spike trains
are more correlated over long time scales T. In Fig. 10D, we
compare this trend with actual firing rates elicited in the
downstream cell (from numerical simulation). The general
trends match, validating our simple prediction.

In sum, downstream neurons with short membrane time scales
(�LIF  5 ms) are preferentially driven by type II cells upstream;
for longer time scales, the preference shifts to type I cells. The
effects are substantial. For example, for a downstream neuron
with time constant �LIF � 4 ms, the type II population elicits fir-
ing rates that are �20% larger than for the type I population; for
�LIF � 10 ms the trend reverses, with the type II populations
producing firing rates that are doubled compared with the type I.
Some implications are noted in the DISCUSSION.

We note that this result is not limited to the particular choices
of operating point (i.e., � and �) for the upstream populations in
Fig. 10, A–D. For example, Fig. 10E demonstrates an analogous
finding for upstream type I and type II cell populations with lower
values of the DC input � and hence greater variability in single-
cell spiking (specifically, matched Fano factors of 0.5). Here, we
used the same values of gA and � as above, but for population I,
took � � 13.7 �A/cm2 (barely superthreshold); for population II,
� � �12.45 �A/cm2 (subthreshold).

Phase-response curves (PRCs) predict common-input STAs.
Finally, we focus on superthreshold operating points, and show
how the key properties of type I vs. type II spike generation
that determine the filtering of common inputs in this regime
can be understood via a commonly used and analytically
tractable phase model for tonically spiking neurons. This
provides a connection to previous results on correlation trans-
fer (see below, and DISCUSSION).

The response of phase neurons to an additional small-
amplitude current I(t) can be described by a phase model, a
one-dimensional description which keeps track only of the
progress of neuron along its periodic spiking orbit (or limit
cycle). Identifying progress along the cycle with a phase � �
[0, 2�), this model is completely determined by a single
function of phase Z(�), called a phase response curve or PRC

(Ermentrout and Kopell 1984; Winfree 2001; Ermentrout and
Terman 2010; Reyes and Fetz 1993):

d�

dt
� � � Z(�)I(t). (12)

We can interpret the meaning of this function by considering its
effects on the timing of the next spike delivered at a particular
phase of the limit cycle �. If Z(�)  0, then a positive input
delivered at that particular phase will push the neuron further
along, advancing the time of the next spike; if Z(�) 	 0, the same
input would delay the time of the next spike.

Neurons that display type I spiking have a purely positive (or
type I) PRC, while type II neurons show a PRC that has both
positive and negative lobes (Ermentrout and Kopell 1984;
Ermentrout 1996; Hansel et al. 1995; Brown et al. 2004). A
purely positive PRC is characteristic of dynamics near a saddle
node bifurcation, in which the system lingers near the ghost of
its fixed points (as described previously in Trends in spike-
generating dynamics); input in a specific direction is needed to
force the system away and elicit a spike. A biphasic PRC
reflects oscillatory structure in the phase space, in which
correctly timed negative and positive inputs can cooperate to
elicit a spike (as with a Hopf bifurcation).

Strong relationships between the PRC and the STA have
been found for neurons close to the threshold for periodic
spiking (i.e., � � Ibif , see METHODS). Spike-triggered covari-
ance analysis of both a type I phase model and the Wang-
Busaki model show that the dominant linear “feature” (corre-
sponding to the STA) qualitatively resembles the PRC (Mato
and Samengo 2008) in the presence of sufficient current noise.
In the (type II) Hodgkin-Huxley model, the two dominant
“spike-associated” features identified through covariance anal-
ysis closely resemble the STA and its derivative; the STA, in
turn, closely resembles the PRC (Agüera y Arcas et al. 2003).

In contrast, phase models in the oscillatory regime (far from
the excitability threshold) are known to have an STA propor-
tional to the derivative of the PRC (Ermentrout et al. 2007). In
the APPENDIX, we generalize this result to the case of Fig. 1,
where the relevant signal �c is delivered on top of a noisy
background (see Eq. 17): STA(t) � �Z=(�t).

In Fig. 11, we test the accuracy of these relationships for the
superthreshold points considered above. We show results for type
I (gA � 60, left) and type II neurons (gA � 0, left) and compare
the STA computed at two different noise levels to the shape of the
PRC [Z(�)] and its (negative) derivative, labeled dPRC [�Z=(�)].
The time argument of the STA has been scaled so that one period
(T) maps onto the unit interval; likewise, the PRC is mapped onto
the unit interval. At the lower level of noise, we have good
correspondence between the STA and the dPRC in both cases.
Notably, both type I and type II neurons have biphasic STAs. At
high noise levels, while there is not a strong quantitative relation-
ship between the STA and the PRC itself (unlike in the excitable
regime explored by Agüera y Arcas et al. 2003), the PRC carries
important clues about the qualitative behavior of the STA. The
type II neuron retains the biphasic shape reflective of its PRC,
while the type I neuron has shifted to a purely positive STA. In
sum, by predicting the STA shape, the PRC gives important clues
to the linear response (and hence common input transfer) that we
observe in Fig. 8.
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Finally, we test an alternate result (cf. Barreiro et al. 2010;
Abouzeid and Ermentrout 2011) that, in limited cases, relates
PRCs to spike count correlations directly. For long T and
reasonably small � and c

� � c
� 1

2�
�0

2�
Z(x)dx�2

1

2�
�0

2�
(Z(x))2dx

� O(�2). (13)

In Fig. 12, we show that this gives a close approximation to
simulation results for T � 200 ms in the superthreshold,
high-noise case (see Table 1). Moreover, we can gain insight
into the limitations of this asymptotic approximation by com-
paring with the superthreshold, low-noise case. The results of
Barreiro et al. (2010) and Abouzeid and Ermentrout (2011) are
derived by taking the asymptotic limit T ¡ � before consid-
ering � finite but small; in practice, the smaller the noise
variance �, the longer T must be to see this effect. For our
low-noise points, the asymptotic behavior has not been recov-
ered even at T � 1000 ms (as may be seen in Fig. 5B). By using
a very large (but probably biologically irrelevant) time window
(data not shown), we eventually recover results consistent with
the asymptotic prediction (Eq. 13).

DISCUSSION

Diverging connections, leading to overlapped input shared
across multiple neurons, are a ubiquitous feature of neural anat-
omy. We study the interplay between this connectivity pattern and
basic properties of spike generation in creating collective spiking
across multiple neurons. We range spike generation over the

fundamental categories of type I to type II excitability (Rinzel and
Ermentrout 1998; Hodgkin 1948). The transition in excitability is
produced by varying the A-current conductance gA within the
well-studied Connor-Stevens neuron model.

Our principal finding is that excitability type plays a major role
in how shared, i.e., correlated, input currents are transformed into
correlated output spikes. Moreover, these differences depend
strongly on the time scale T over which correlations are assessed.
At short time scales T, type II neurons tend to produce relatively
stronger spike correlations for comparable input currents (Marella
and Ermentrout 2008; Galán et al. 2007). At longer time scales,
the opposite is generally true: for a broad range of input currents,
type I neurons transfer most of the shared variance in their inputs
(�80%) into shared variance in output spikes, while type II
neurons transfer less than half (�40%).

We show that these results have direct implications for how
downstream neurons with different membrane time constants
will respond to type I vs. type II populations. Specifically,
downstream neurons preferentially respond to populations that
are strongly correlated on time scales similar to their mem-
brane time constant. Interestingly, for the case we study, we
find that the breakpoint between selectivity to type I vs. type II
populations was for downstream membrane time constants of
�5 ms, easily within the ranges found experimentally.

This raises interesting possibilities for neuromodulation. The
membrane time constant of the downstream cell could be changed
by shunting effects of additional background inputs, leading to a
switch in its sensitivity to different upstream populations. Alter-
natively, modulators applied to the upstream populations them-
selves could change their excitability from type I to type II (Stiefel
et al. 2008, 2009), adjusting their impact on a downstream cell
with a fixed membrane time constant.

Overall, we demonstrate and apply a general principle: the
presence and balance among different membrane currents con-
trols not only single-cell dynamics but also the strength and
time scales of spike correlations in cell groups receiving
common inputs. We show how this relationship can be under-
stood. As a membrane current (here, gA) is adjusted, the firing
rate-current curves progressively transition (here, from type I
to type II). At the same time, there is a transition in periodic
orbit types that neural trajectories visit (here, ranging from
orbits “near” a fixed point to relatively “isolated” orbits; Rush
and Rinzel 1995). In turn, this produces a steady progression of
STAs and hence the filters that neurons apply to shared input
signals (here, from primarily integrating to primarily differen-

Type I (gA= 60) Type II (gA= 0)A B

Fig. 11. Comparison of phase-response curves (PRCs) to spike STAs com-
puted for both low and high noise, for both type I (left) and type II (right)
neurons. For simplicity of visualization, each curve has been normalized by its

maximum; that is Z
�

(t) � Z(t)/max[Z(t)], STA� (t) � STA(t)/max[STA(t)], and

� Z'�(t) � �Z=(t)/max[�Z=(t)]. In addition, the time axis has been scaled by the
mean period in each case. Top: PRC, showing monophasic and biphasic shape
for type I and type II neurons, respectively. Middle: high noise STA; the type
I neuron has lost the negative lobe in its STA, while the type II neuron retains
a negative component. Bottom: comparison of (dashed line) derivative PRCs
with STA for the low noise (solid line) case. Both STAs have negative
components.

Fig. 12. Correlation coefficient � at time window T � 200 ms, as gA is varied.
Data (gray solid) are from high-noise, superthreshold points and are the same
as reported in Fig. 8. Prediction (black solid with diamonds) uses Eq. 13. These
data show the increase in long time scale correlation as the model transitions
from type II to type I.
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tiating modes; Mato and Samengo 2008; cf. Agüera y Arcas
et al. 2003). Basic formulas can then be used to translate these
filtering properties into predictions for correlated spiking in
neural pairs and populations (Ostojic et al. 2009) as well as the
downstream impact of this cooperative activity. We anticipate
that this approach will bear fruit in studies of the collective
activity of a wide variety of neuron types.

Relationship with prior work. A number of prior studies
have considered the problem of how spike-generating dynam-
ics affect the transfer of incoming current correlations into
outgoing spike correlations (Binder and Powers 2001; de la
Rocha et al. 2007; Shea-Brown et al. 2008; Rosenbaum and
Josíc 2011; Tchumatchenko et al. 2010; Marella and Ermen-
trout 2008; Vilela and Lindner 2009; Barreiro et al. 2010;
Ostojic et al. 2009; Tchumatchenko et al. 2010; Hong and De
Schutter 2008). In particular, the studies (de la Rocha et al.
2007; Shea-Brown et al. 2008; Rosenbaum and Josíc 2011)
show that LIF neurons can transfer up to 100% of current
correlations into spike count correlations. The level transferred
increases with the firing rate at which single neurons are
operating and the time scale T. These findings are simpler to
state compared with the present results for conductance-based
neuron models, for which 100% correlation transfer is never
obtained, and trends with T differ depending on gA.

Other works (Hong and De Schutter 2008; Shea-Brown et al.
2008; Vilela and Lindner 2009) investigate correlation transfer
in more complex spiking models. In particular, Shea-Brown
et al. (2008) and Vilela and Lindner (2009) explore the full
parameter space of input currents for the quadratic integrate-
and-fire model, arguably that with the next level of complexity
beyond the LIF model. These authors find similar trends in
correlation transfer as the neurons’ operating points change but
a limitation to 66% rather than 100% in correlation transfer.
Meanwhile, Hong and De Schutter (2008) show complex
dependencies on neural operating point for the Hodgkin-Hux-
ley model. Taken together, these studies suggested that corre-
lation transfer depends on spike-generating dynamics in rich
and diverse ways.

This opened the door to a broader study, but exploring
correlation transfer for the full space of possible spike-gener-
ating dynamics in neural models is a daunting task. The axis
that spans from type I to type II excitability provides a natural
focus. This has been explored using sinusoidal “normal form,”
phase-reduced models (Marella and Ermentrout 2008; Galán
et al. 2007; Barreiro et al. 2010; Abouzeid and Ermentrout
2011). These studies used simulations in the superthreshold
regime, together with analysis in the limits of very short or
very long time scales T, to show the same trend in correlation
transfer over short vs. long T that we find here for conductance-
based models. A greater frequency of instantaneous (small T)
spikes for type II vs. type I neurons was predicted using these
simplified models (Marella and Ermentrout 2008; Galán et al.
2007); later, Barreiro et al. (2010) predicted the switch in
relative correlation transfer efficiency from type II to type I
models as T increases.

The present study confirms the resulting predictions for the
superthreshold, oscillatory firing regime using biophysical, con-
ductance-based models. Here, we also explore correlation transfer
for subthreshold, flucutation-driven firing. For both cases, we
explain the origins of variable correlation transfer via filtering
properties of type I vs. type II cells, and demonstrate the impact on

downstream neurons. The very recent study by Hong et al. (2012)
uses the related (but not identical) characterization of cells as
“integrators” vs. “coincidence detectors” and shows how the
measures of synchrony and firing rate correlation differ for each
model and depend on the mean input current they receive.

Scope, limitations, and open questions. The circuit model that
we have studied, as illustrated in Fig. 1, is limited to a single,
idealized feature of feedforward connectivity: overlapping inputs
to multiple recipient cells. More realistic architecture could in-
clude delays in incoming inhibitory vs. excitatory inputs (Gaber-
net et al. 2005). Interactions of shared-input circuitry with recur-
rent connectivity also pose important questions (Ly and Ermen-
trout 2009). This is especially so given the distinct properties of
type I vs. type II cells in synchronization due to reciprocal
coupling (Rinzel and Ermentrout 1998; Ermentrout and Terman
2010).

Other aspects of our biophysical and circuit dynamics are
also idealized. For one, individual input currents fluctuated on
arbitrarily fast time scales (i.e., as white noise processes).
Relaxing this would be an interesting extension. While prior
studies (de la Rocha et al. 2007) suggest that trends will persist
for inputs with fast (but finite) time scales, new effects could
arise for slower-time scale inputs representative of slower
synapses or even network-level oscillations. Another addition
would be for inputs to arrive via excitatory and inhibitory
conductances, rather than currents; while previous studies with
integrate-and-fire cells (de la Rocha et al. 2007) have found
that this yields qualitatively similar results, there could be
interesting interactions with underlying filtering properties in
biophysical models. The same holds true for inputs that arrive
at dendrites in multicompartment models. Finally, our focus on
type I vs. type II dynamics captures some, but not all, relevant
dynamical features: for the related coincidence detector models
of (Hong et al. 2012), accurate predictions require second-
order terms from the spike-triggered covariance.

Likewise, the circuitry of Fig. 10A that we used to investi-
gate the impact of correlated spiking on downstream neurons
was highly idealized. An especially appealing extension would
be to note that inhibitory and excitatory neurons often have
different excitability types. Thus downstream cells could re-
ceive input from both excitatory type I and inhibitory type II
populations. Our results suggest that sensitivity to excitatory
vs. inhibitory afferents would vary with membrane time con-
stants downstream, possibly amplifying the modulatory effects
identified here.

APPENDIX: RELATING STAS AND SPIKE-GENERATING
DYNAMICS IN THE PRESENCE OF COMMON AND
INDEPENDENT NOISE

To relate the common input STA to spike-generating dy-
namics, we extend a result in the literature to derive an explicit
formula for the common input STA of a phase model, which
captures the response of a tonically spiking neuron to a small-
amplitude current I(t). We emphasize that the resulting for-
mula, and the calculation that yields it, are very similar to a
relationship previously derived (Ermentrout et al. 2007) for the
STA of a phase oscillator without background noise.

We consider a model that tracks only the phase of a neuron
as it progresses along its periodic spiking orbit:
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d�

dt
� � � Z(�)I(t), � � [0, 2�) (14)

The function Z(�), called a PRC (Ermentrout and Kopell
1984; Winfree 2001; Ermentrout and Terman 2010; Reyes
and Fetz 1993), determines how a brief current injection
applied at a specific phase of the cycle affects the timing of
the next spike. By convention, the neuron is said to “spike”
when � crosses 2�.

To begin, we assume that the phase model is forced by
scaled zero-mean, stationary stochastic processes, which we
also label �c(t) and �i(t). For now, �c(t) and �i(t) have unit
variance and are differentiable with some finite correlation
time �, although we will consider the limit � ¡ 0 (i.e., the
white noise limit). We are interested in the average value of
�c(t) that precedes a spike; the term �i(t) will play the role of a
background noise. Assuming that the background noise pro-
cess is scaled by a small constant �, and that �c is scaled by an
order of magnitude � smaller still, we write the evolution
equation of the phase model as

d�

dt
� 1 � Z(�)���i(t) � ���c(t) , � � [0, T)

where �, � 		 1. Note that we have chosen our phase
variable to have unit speed; i.e � � [0, T], where T is the
period of the unperturbed (� � 0) oscillator. We proceed as
in Ermentrout et al. (2007): writing � as a series in the small
parameters � and �

�(t) � �0(t) � ��10(t) � ��01(t) � �2�20(t) � ���11(t)
� �2�02(t) � . . .

and matching terms of same order in the evolution equation,
we find �0(t) � t. We additionally find that �01 � 0, �02 � 0,
and

�'10 � Z(t)�i(t)
�'20 � Z'(t)�i(t)�10(t)
�'11 � Z(t)�c(t)

so that

�10(t) � �0

t
Z(s)�i(s)ds

�20(t) � �0

t
Z'(s)�i(s)�0

s
Z(r)�i(r)dr ds

�11(t) � �0

t
Z(s)�c(s)ds .

To compute the STA, we need to find the time of the next
spike, assuming the neuron has just spiked [�(0) � 0]; in other
words, the time � when �(�) � T. As above, we expand

� � T � ��10 � �2�20 � ���11 � . . . (15)

Using our previous expressions for �(�), and using the fact that
� � T � ��10 � O(�2, ��) to decompose the stochastic
integrals, we find

�10 � ��0

T
Z(s)�i(s)ds

�20 � ��T

T���10 Z(s)�i(s)ds � �0

T
Z'(s)�i(s)�0

s
Z(r)�i(r)dr ds

�11 � ��0

T
Z(s)�c(s)ds .

Next, we use Taylor’s theorem for smooth functions to expand
�c about T � t to compute

STA(t) � �Ic(� � t)�
�����c(T � ��10 � �2�20 � ���11 � t)�

�����c(T � t) � (��10 � �2�20 � ���11) �'c(T � t)

�
1

2
(��10 � �2�20 � ���11)

2��c(T � t)�
�����c(T � t) � (��10 � �2�20 � ���11) �'c(T � t)

�
1

2
�2�10

2 ��c(T � t) � �O(�3, �2�)

where we have kept terms up to second order both in our
expression for �, and in our Taylor expansion of �c. We can use
the independence of �c and �i to eliminate a large number of
terms, as

��c(t)�i(t � s)� � ��c(t)���i(t � s)� � 0.

Similarly,

��c(t)�'i(t � s)� � ��c(t)���'i(t � s)� � 0, (16)

and so forth for expressions with higher derivatives. The only
term that survives is

STA(t) � ����'c(T � t) � ����0

T
Z(s)�c(s)ds�

��(��)2�0

T
Z(s)��'c(T � t)�c(s)�ds

��(��)2�0

T
Z(s)A'c(T � t � s)ds

��(��)2�0

T
Z'(s)Ac(T � t � s)ds ,

where Ac is the autocovariance function of �c and we used
integration by parts in the final step. Taking the white noise
limit [Ac(T � t � s) ¡ �(T � t � s)] and using the periodicity
of the PRC [Z(T � t) � Z(�t)], we recover a very similar
expression as Ermentrout et al. (2007):

STA(t) � �(��)2Z'(�t). (17)
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