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Rapid experimental advances now enable simultaneous electrophysiological recording of neural
activity at single-cell resolution across large regions of the nervous system. Models of this neural
network activity will necessarily increase in size and complexity, thus increasing the computational
cost of simulating them and new challenges in analyzing them. Here we present a novel approx-
imation method to approximate the activity and firing statistics of a general firing rate network
model (of Wilson-Cowan type) subject to noisy correlated background inputs. The method requires
solving a system of algebraic equations and is fast compared to Monte Carlo simulations of cou-
pled stochastic differential equations. We implement the method with several examples of coupled
neural networks and show that the results are quantitatively accurate even with moderate coupling
strengths and an appreciable amount of heterogeneity in many parameters. This work should be
useful for investigating how various neural attributes qualitatively effect the spiking statistics of
coupled neural networks. Matlab code implementing the method is freely available at xxx.

I. INTRODUCTION

With advances in neural recording technologies, ex-
perimenters can now record simultaneous activity across
multiple brain regions at single cell resolution [1–4]. How-
ever, it is still a technical challenge to measure the inter-
actions within and across brain regions that govern this
multi-region activity. This challenge is heightened by the
fact that cortical neurons are heterogeneous and show
substantial trial-to-trial variability [5]. Numerous theo-
retical studies have examined how neural networks can
lead to cortex-like dynamics [6–14]; however, most have
been limited to a single region, leaving open the ques-
tion of how inter-region connection strengths contribute
to network processing.

One challenge presented by analyzing multi-region
neural networks, is the increased number of parameters
which must be specified. To survey a high-dimensional
parameter space, one must have a way to efficiently sim-
ulate (as in [15]) or approximate network statistics (as in
[16]). Here we present a novel approximation method for
calculating the statistics of a general coupled firing rate
model (based on [17]) of neural networks where we: i) as-
sume the activity (not the firing) is pairwise normally dis-
tributed, ii) take the entire probability distribution of the
presynaptic neurons/populations (providing input) into
account. Our method is fast, requiring only solving alge-
braic equations self-consistently rather than simulating
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stochastic differential equations. Several example neu-
ral networks are considered and compared with Monte
Carlo simulations. A specific version of this method was
presented in [18] to model the olfactory sensory pathway;
here, we derive formulas in a general way which is easy to
evaluate and can accommodate heterogeneous networks.
We also demonstrate the method’s efficacy on several ex-
ample networks with much larger dimension (than the
networks examined in the previous work).

II. NEURAL NETWORK MODEL

Each cell (or homogeneous population) has a pre-
scribed activity xj that is modeled by the following equa-
tion [17] for j = 1, 2, . . . , Nc:

τj
dxj
dt

= −xj + µj + σjηj(t) +
∑
k

gjkFk(xk(t)) (1)

where Fk(·) is a transfer function mapping activity to
firing rate (related to the so-called F-I curve) for the kth

cell/population. Thus, the instantaneous firing rate of
the jth neuron is:

Fj(xj(t)). (2)

This type of equation has historically been used to cap-
ture the average activity of a population of neurons but
from here on out we will use the term “cell” for expo-
sition purposes. All cells receive background noise ηj ,
the increment of a Weiner process, uncorrelated in time
but potentially correlated at each instant: 〈ηj(t)〉 = 0,
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〈ηj(t)ηj(t′)〉 = δ(t − t′), and 〈ηj(t)ηk(t′)〉 = cjkδ(s) for
j 6= k with cjk ∈ (−1, 1). The parameters µj and σj are
constants that give the background input mean and input
standard deviation, respectively. The parameter gjk rep-
resents coupling strength from the presynaptic kth cell
and is a signed quantity; gjk < 0 represents inhibitory
coupling.

We would like to compute the following statistics:

µ(j) := 〈xj〉,mean activity (3)

σ2(j) := 〈x2j 〉 − µ2(j), variance of activity (4)

Cov(j, k) := 〈xjxk〉 − µ(j)µ(k),

covariance of activity (5)

νj := 〈Fj(xj)〉,firing rate (6)

V ar(νj) := 〈F 2
j (xj)− ν2j 〉, variance of spiking (7)

Cov(νj , νk) := 〈Fj(xj)Fk(xk)〉 − νjνk,
covariance of spiking (8)

ρ(νj , νk) :=
Cov(νj , νk)√
V ar(νj)V ar(νk)

,

correlation of spiking (9)

where the angular brackets 〈·〉 denote averaging over time
and realizations [19]. We will use the following definitions
for the following Normal/Gaussian probability density
functions (PDF):

%1(y) :=
1√
2π
e−y

2/2, (10)

the standard normal PDF, and

%j,k(y1, y2) :=
1

2π
√

1− c2jk
exp

(
− 1

2
~yT
(

1 cjk
cjk 1

)−1
~y
)
,

(11)

a bivariate normal distribution with ~0 mean, unit vari-
ance, and covariance cjk.

In the absence of coupling, i.e. gjk = 0, Eq (1)
would describe a multi-dimensional Ornstein-Uhlenbeck
process. Such a process is well-understood: any pair of
activity variables, (xj , xk), are bivariate normal random
variables [20]. To see this, consider the following two
equations without synaptic coupling:

τj
dxj
dt

= −xj + µj + σj
(√

1− cjkξj(t) +
√
cjkξc(t)

)
(12)

τk
dxk
dt

= −xk + µk + σk
(√

1− cjkξk(t) +
√
cjkξc(t)

)
.

(13)

Note that we have re-written ηj/k(t) as sums of in-
dependent white noise processes ξ(t). Since xj(t) =
1
τ

∫ t
0
e−(t−u)/τ

[
µj + σjηj(u)

]
du, we calculate marginal

statistics using Itô isometries:

µ(j) ≡ 〈xj〉 = µj (14)

σ2(j) ≡ 〈(xj − µ(j))2〉

=

〈
σ2
j

τ2j

∫ t

0

∫ t

0

e−(t−u)/τjηj(u)e−(t−v)/τjηj(v) du dv

〉

=
σ2
j

τ2j
lim
t→∞

∫ t

0

e−2(t−u)/τj du =
σ2
j

2τj

A similar calculation shows in general we have:

Cov(j, k) =
cjk

τj + τk
σjσk (15)

Thus, (xj , xk) ∼ N

( µjµk ) ,

 σ2j

τ2
j

σjσk
cjk
τj+τk

σjσk
cjk
τj+τk

σ2k
τ2
k

.

Statistics for the firing rates, F (xj), are inherited from
this normal distribution, since the firing rate F (xj) is
simply a nonlinear function of the activity xj .

When coupling is included, i.e. gjk 6= 0 for some in-
dices j and k, it may no longer be true that the activity
variables xj remain normally distributed. However, it is
reasonable to suppose that, for sufficiently weak coupling,
the deviations from a normal distribution will be small.
Furthermore, if the firing rate function F has threshold-
ing and saturating behavior (as does a sigmoidal func-
tion), then higher moments of xj have limited impact on
statistics of F (xj). Thus, our first assumption will be
that each pair of activity variables (xj , xk), can be ap-
proximated by a bivariate normal, even when coupling
is present. We can think of this as a weak coupling as-
sumption, as it holds exactly only with no coupling.

III. REDUCTION METHOD

To compute statistics, we start by writing Eq. (1) as a
low-pass filter of the right-hand-side:

xj(t) =
1

τj

∫ t

0

e−(t−u)/τj
[
µj + σjηj(u) +

∑
k

gjkFk(xk(u))
]
du,

(16)

used as the basis for calculating the desired moments
of xj . For example, when 〈xjxk〉 is desired, we use the
previous equation for j and k, multiply, then take the
expected value 〈·〉 while letting t→∞. The exact statis-
tic is complicated because of the network coupling, so we
simplify the calculation(s) as follows:

We only account for direct connections in the formu-
las for the first and second order statistics, assuming the
terms from the indirect connections are either small or
already accounted for in the direct connections. For ex-
ample: although Fk(xk(u)) on the RHS of Eq. (16) itself
depends on coupling terms of the form gklFl(xl), etc.., we
will neglect such terms. We further make the following
assumptions:
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TABLE I. For readability, we define the following quantities. Whenever j = k in the double integrals (e.g., in NF ,S), the
bivariate normal distribution %j,k is replaced with the standard normal distribution %1. Note that order of the arguments
matters in NF : NF (j, k) 6= NF (k, j) in general; all of these quantities depend on the statistics of the activity µ(·), σ(·).

Abbreviation Definition

E1(k)

∫
Fk(σ(k)y + µ(k))%1(y) dy

E2(k)

∫
F 2
k (σ(k)y + µ(k))%1(y) dy

V(k)

∫
F 2
k (σ(k)y + µ(k)) %1(y) dy −

(∫
Fk(σ(k)y + µ(k))%1(y) dy

)2

= E2(k)− [E1(k)]2

NF (j, k)

∫∫
Fk(σ(k)y1 + µ(k))

y2√
2
%j,k(y1, y2) dy1dy2, if j 6= k∫

Fj(σ(j)y + µ(j))
y√
2
%1(y) dy, if j = k

S(j, k)

∫∫
Fj(σ(j)y1 + µ(j))Fk(σ(k)y2 + µ(k))%j,k(y1, y2) dy1dy2

CV(j, k) S(j, k)− E1(j)E1(k)

〈∫ t

0

Fk(xk(u))e−(t−u)/τl du

∫ t

0

Fk(xk(v))e−(t−v)/τm dv

〉
≈ τlτm
τl + τm

E2(k) (17)〈∫ t

0

σjηj(u)e−(t−u)/τl du

∫ t

0

Fk(xk(v))e−(t−v)/τm dv

〉
≈ τlτm
τl + τm

σjNF (j, k) (18)〈∫ t

0

Fj(xj(u))e−(t−u)/τl du

∫ t

0

Fk(xk(v))e−(t−v)/τm dv

〉
≈ τlτm
τl + τm

S(j, k) (19)

See Table I for the definition of the symbols:
E2(k),NF (j, k),S(j, k).

Each assumption is equivalent to the assumption that
two of the random variables of interest are δ-correlated
in time; thus avoiding the need to compute autocorrela-
tion functions explicitly. The first assumption, Eq (17),
states that F (xj(t)) is δ-correlated with itself; the sec-
ond, Eq (18), addresses Nj and F (xk(t)), where Nj de-

notes the random variable
∫ t
0
σjηj(u)e−(t−u)/τl du, which

is by itself normally distributed with mean 0 and vari-
ance σ2

j τl/2. The final assumption, Eq (19), states
that F (xj(t)) and F (xk(t)) are δ-correlated. Finally,
we make the assumption of ergodicity, that averaging
over realizations is the same as averaging over time; e.g.

〈xj〉 = limT→∞
1
T

∫ T
0
xj(t) dt.

We arrive at the following (approximation) formulas

for the statistics of the activity:

µ(j) = µj +
∑
k

gjkE1(k) (20)

σ2(j)τj =
σ2
j

2 + σj
∑
k

gjkNF (j, k) +
1

2

∑
k

g2jkV(k)

+
∑
k 6=l

gjkgjlCV(k, l) (21)

Cov(j, k)
τj+τk

2 = 1
2cjkσjσk + 1

2σj
∑
l

gklNF (j, l)

+ 1
2σk

∑
l

gjlNF (k, l) +
1

2

∑
l1,l2

gj,l1gk,l2CV(l1, l2).(22)

See Table I for the definition of the symbols:
E1,NF ,V, CV , which all depend on the statistical quan-
tities µ(·) and σ(·) of the activity xj . Our approxima-

tion formulas form a system of
1

2

(
N2
c + 3Nc

)
equations

in µ(j), σ(j), Cov(j, k) (in the activity only Eqs. (3)–
(5), not the firing) when considering all possible (j, k) ∈
{1, 2, . . . , Nc}. This large system of equations, although
nonlinear, is simple to solve because it only requires a se-
ries of algebraic steps (matrix-vector multiplication with
numerical integration, and calculating Fk(σ(k)y+µ(k))).

Note that the normal distribution assumptions allow
us to conveniently write the average quantities as inte-
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grals with respect to standard normal distributions but
with shifted integrands, which leads to faster calculations
because one does not have to calculate new probability
density functions at each step of the iteration.

The resulting formulas can be written compactly with
matrices; Eq. (20) for the mean activity µ(j) can eas-
ily be written as a matrix-vector equation and is thus
omitted. Let Cov denote the Nc × Nc covariance ma-
trix of the activity with Cov(j, k) = Cov(j, k), G rep-
resent the coupling strengths G(j, k) = gjk, and Cr de-
note the correlation matrix of the background noise (i.e.
Cr(j, k) = δjk + cjk(1− δjk)). Then we have

Cov = IT. ∗
(
Cov0 + GMNF + M′NFG

′ + GMFSqG
′
)

(23)

where .∗ represents element-wise multiplication, ′ denotes
matrix transposition, and

IT(j, k) = 1
τj+τk

(24)

Cov0(j, k) = σjσk [δjk + (1− δjk)cjk] (25)

MNF(j, k) = σkNF (k, j) (26)

MFSq(j, k) = CV(j, k). (27)

The matrix I is the Nc ×Nc identity matrix. Note that
the matrices MNF and MFSq have the same nonzero
entries as Cr. The unperturbed covariance (Eq. (25))
can also be expressed in matrix form as:

Cov0 = (I~σ)Cr(I~σ)

Once the statistics of the activity: µ(j), σ2(j), and
Cov(j, k) are solved for self-consistently, the firing statis-
tics are solved as follows.

νj =

∫
Fj(σ(j)y + µ(j))%1(y) dy (28)

V ar(νj) =

∫
F 2
j (σ(j)y + µ(j))%1(y) dy − ν2j (29)

Cov(νj , νk) =

∫∫
Fj(σ(j)y1 + µ(j))Fk(σ(k)y2 + µ(k))Pj,k(y1, y2) dy1dy2 − νjνk (30)

where Pj,k is a bivariate normal PDF with zero mean and

covariance:

(
1

Cov(j,k)
σ(j)σ(k)

Cov(j,k)
σ(j)σ(k)

1

)
. The off-diagonal terms

are obtained from the second order statistics of the ac-
tivity, Eq. (21)–(22).

IV. EXAMPLE NETWORKS AND RESULTS

Network I. We first consider two cells (Nc = 2)
that are reciprocally coupled without autaptic coupling.
For simplicity, we set the intrinsic parameters in the
two equations to be identical, with τj = 1, Fj(x) =
0.5(1 + tanh((x − 0.5)/0.1)) ∈ [0, 1], but the mean and
variance of the background input differ: µ1 = 0.15,
µ2 = 4/15 ≈ 0.2667, σ1 = 2, σ2 = 3. To illus-
trate the accuracy of our method, we vary two parame-
ters: g12 ∈ [−2, 2] (input strength from x2 to x1), and
c12 = c21 ∈ [0, 0.8], with g21 = 0.4 fixed.

In Fig. 1, we see that all of the activity and firing statis-
tics are accurate compared to Monte Carlo simulations.
Fig. 1a shows the mean of x1 as the input strength g12
varies from negative (inhibitory) to positive (excitatory);
this statistic is independent of background correlation.
Fig. 1b shows the variance of x1; deviations are apparent
when the magnitude of the coupling g12 is large. The
covariance of the activity (Fig. 1c) is also accurate. Even

the statistics of the firing rate are relatively accurate; the
mean firing rate F (x1) (Fig. 1d) is only weakly dependent
on background correlation whereas the variance of F (x1)
(Fig. 1e) appears to vary more with background correla-
tion. In Fig. 1f, the strong dependence of the covariance
of the firing rate on background correlation is captured
by our method. For brevity, we omit the corresponding
statistics for x2; the method performs equally well there.

Network II. We next consider an all-to-all coupled
network of Nc = 50 neurons with heterogeneity in all
parameters. The parameter values were selected from
specific distributions and gave rise to quenched variabil-
ity. The transfer function was set to Fj(•) = 0.5(1 +
tanh((• − xrev,j)/xsp,j)) ∈ [0, 1], where xrev,j and xsp,j
are fixed parameters that depend on the the jth neuron.
The distributions of the parameters for this network are:

τj ∼ N(1, 0.052) (31)

µj ∼ 2U− 1 (32)

σj ∼ U + 1 (33)

xrev,j ∼ N(0, 0.12) (34)

xsp,j ∼ 0.35U + 0.05 (35)

where U ∈ [0, 1] is a uniform random variable, and N is
normally distributed with the mean and variance as the
arguments. The covariance matrix Cr of the background
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FIG. 1. Illustration of the method on a network with 2 neurons. In all panels, the Monte Carlo simulation results are the thin
black solid lines, and the result of the analytic method (Eq. (20)–(22) solved self-consistently, and Eq. (28)–(30)) are the dashed
colored lines representing different background correlation levels. All parameters are fixed except g12 and c12 = c21 =: c; see
main text (Network I) for values. (a) The average activity x1 (top), x2 (bottom) as a function of g12 match very well; here
the analytic method is in 1 color (brown) because the result is independent of background correlation. (b) The variance of
x1, σ2(1), varies with both background correlation and input strength. The match is very good around g12 = 0 and starts to
deviate as |g12| → 2 because with stronger coupling the normal distribution assumption is severely violated. (c) The covariance
of the activity Cov(1, 2). (d) Mean firing rate: F (ν1) slightly depends on c; inset is a zoomed-in picture to show that the
method captures the relationship of the curves. (e) Variance of F (ν1). (f) The covariance of the firing rate Cov (F (ν1), F (ν2)).
The corresponding plots for x2 (i.e., panels (b), (d), (e)) are not shown because they do not vary as much, however the analytic
method accurately captures the results from Monte Carlo simulations.

noise was randomly selected as follows:

Cr = (I ~ds)A
′A(I ~ds) (36)

where the entries of the Nc × Nc matrix A are inde-
pendently chosen from a normal distribution: aj,k ∼
N(0, 0.82) and ~ds is the inverse square-root of the diag-
onal of A′A; i.e., if we set B := A′A with entries bjk,

then ds(j) = 1/
√
bjj . By construction, Cr is symmetric

positive semi-definite with 1’s on the diagonal.
Finally, the entries of the coupling matrix Gm is ran-

domly chosen, but the parameters of the distribution
were varied:

Gm(j, k) ∼ N(0, vl) (37)

where vl = (l/10)2 for l = 1, 2, 3, 4. There are no zero
entries in Gm (i.e. coupling is all-to-all), with both in-
hibition, excitation, and autaptic (self) coupling.

For each of the four values for the variance of the nor-
mal distribution, we chose a single realization of a cou-
pling matrix Gm and computed first and second-order
statistics of xk and F (xk). In Fig. 2 we compared an-
alytic vs. Monte Carlo results for each cell or cell pair.
Each realization is identified by a different color; in Fig.
2a for example, there are Nc red data points, correspond-
ing to each µ(j) for j = 1, ..., Nc. Points that are on the

black diagonal line represent perfect matching between
Monte Carlo simulations and our method.

First-order statistics µ(j) and νj are well-captured
by the analytic method, even for the largest coupling
strength (Fig. 2a,b). This excellent agreement is present
despite the substantial amount of heterogeneity in these
networks: note that xj = O(1) and that Fj ∈ [0, 1],
and thus that single-cell firing rates in Fig. 2b have a
relatively large range. Second-order statistics (variances
and covariances: Fig. 2c-f) are captured well for smaller
coupling values (blue and cyan) but become less accu-
rate for the largest coupling value (red). In particular,
the analytic method appears to overestimate variance for
the largest coupling strength (Fig. 2c).

Network III. Finally we consider a moderately sized
network of Nc = 100 neurons with quenched heterogene-
ity in all of the intrinsic parameters, but with more phys-
iological connectivity structure (than Network II). The
first 50 neurons are excitatory (E) (gjk ≥ 0 for k =
1, 2, . . . , 50) and the last 50 are inhibitory (I) (gjk ≤ 0
for k = 51, 52, . . . , 100). We choose a sparse (random)
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FIG. 2. A network of Nc = 50 neurons with heterogeneity in all parameters and all-to-all coupling (Network II). See
Eq. (31)–(37) for the distributions of the randomly selected parameters. In each panel, four different values of the variance of
the distribution of the coupling matrix entries are shown, while the other parameters are held fixed. (a) Comparison of the
mean activity µ(j) calculated via Monte Carlo simulations (horizontal axis) and our reduction method (vertical axis), showing
all 50 values for each color (coupling matrix distribution). (b) Similar to (a) but for mean firing rate νj . (c) Variance of
activity σ2(j). (d) Variance of firing rate V ar(νj). (e) Covariance of activity Cov(j, k), showing all 50*49/2=1225 values for
each coupling matrix. (f) Covariance of the firing rate Cov(νj , νk). The method is accurate but starts to deviate as the overall
coupling strength ‖Gm‖ increases (from blue to red, more deviations from diagonal line).

background correlation matrix via:

cjk =


1, if j = k
N(0.1, 0.12), if k = j + 1 and j = 1, . . . , 49
N(0.12, 0.12), if k = j + 1 and j = 51, . . . , 99
N(0.3, 0.12), if k = 101− j and j = 1, . . . , 100
0 otherwise

(38)

where as before N is a Gaussian random variable. That
is, each cell shares correlated input with its nearest-
neighbors of the same type (excitatory vs. inhibitory),
and a single cell of the opposite type, where cell loca-
tion varies along a one-dimensional line. In a variety of
cortical areas, there is evidence that the correlation of
neural activity within a population is on average positive
with a wide distribution [21–23]; thus we set the distribu-
tions of excitatory and inhibitory correlation coefficients
to N(0.1, 0.12) and N(0.1, 0.122) respectively (second and
third lines of Eq. (38)). Also, there is evidence that E
and I neurons are positively correlated (i.e., the synaptic
currents are negatively correlated) [24–26], so we set the
average background E-I correlation (N(0.3, 0.12), fourth
line of Eq. (38)) to a higher value than correlations
within E or I (second and third lines respectively). The
correlation matrix is tridiagonal with another diagonal
band for the E and I correlation; see Fig.3(a) for the

sparsity structure of Cr.
In order to capture some realistic features of cortical

neural networks, we impose sparse but clustered con-
nectivity. Specifically, we have 5 clusters of E cells
of size 10 with all-to-all connectivity and no autap-
tic (self-coupling) connections, and sparse random cou-
pling within the I population (no autaptic connections)
and between E and I cells (35% connection probability).
See Fig.3(b) for the sparsity structure of Gm. This is
motivated by experimental evidence that E cells show
clustered connectivity [27–29], while inhibitory connec-
tions have less structure [30].

Synaptic connection strengths were chosen randomly
for each realization with the following distributions:

gEE = U/10,

gEI = −12

35
U− 4

35
,

gIE =
12

35
U +

4

35
,

gII = −12

35
U− 4

35
, (39)

where again U ∈ [0, 1] is a uniform random variable.
The value gEE is used for all nonzero E to E connec-
tions: gjk with j, k ∈ {1, . . . , 50}; gEI is used for all
nonzero I to E connections: gjk with j ∈ {1, . . . , 50}
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and k ∈ {51, . . . , 100}; gIE for all nonzero E to I:
j ∈ {51, . . . , 100} and k ∈ {1, . . . , 50}; similarly for gII .

The distributions for the rest of the parameters were
similar to Network II, with only inconsequential differ-
ences:

τj ∼ N(1, 0.0752) (40)

µj ∼ 2U− 1 (41)

σj ∼ U + 1 (42)

xrev,j ∼ N(0, 0.12) (43)

xsp,j ∼ 0.4U + 0.05 (44)

In Fig. 3(c) and (d) we show the results of the analytic
approximation compared to Monte Carlo simulations for
both the activity and firing rates, respectively. In each
panel, we have combined the mean, variance and covari-
ance and, as in Fig. 2, a data point is plotted for each cell
(for means and variances) or cell pair (for covariances).
Also, we show data from two (2) instances of the network,
labeled A and B; for each instance a new realization of
the coupling matrix Gm and the coupling parameters
(Eq. (39)) are generated (see Fig. 3 caption for values),
but each of the other randomly selected parameters were
kept fixed. Points that are on the black diagonal line
represent a perfect match between Monte Carlo simula-
tions and our method. As with Network II, the analytic
method accurately captures the statistics cell-by-cell, de-
spite an appreciable degree of heterogeneity.

Finally, we test how well our method approximates
firing rate correlation, which is an important normalized
measure of trial-to-trial variability (or noise correlations).
The Pearson’s correlation coefficient is the predominant
measure: ρ(νj , νk) = Cov(νj , νk)/

√
V ar(νj , νk), i.e. the

ratio of two quantities which we must estimate using the
analytic method. In Fig. 4, we show comparisons be-
tween the analytic method and Monte Carlo simulations
for Network II and Network III. The method is ac-
curate for a wide range of correlations; Fig. 4a shows
correlations as low as −0.3 and as high as 0.3. Thus, the
viability of our approximation is not limited to small cor-
relation values, but can robustly capture the full range
of correlation values observed in cortical neurons [5, 31].

V. DISCUSSION

There has been a long history of analytic reduction
methods for neural network models, both to enhance ef-
ficiency in simulation and to aid mathematical analyses.
Here, we summarize some of this literature and its rela-
tionship to the work presented here.

Many authors have analyzed mean-field equations, in
which they derive equations for population-averaged ac-
tivity, usually in the limit of large system size. The dy-
namics of single neurons within such a population may be
described either by master equations [12, 32, 33], stochas-
tic differential equations [14, 34], or generalized linear
models [35]. We have not attempted that here, in that we
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FIG. 3. A network of Nc = 100 neurons with heterogeneity in
all parameters, but sparse background correlation and clus-
tered and random connectivity (Network III). See Eq. (38)–
(44) for the distributions of the randomly selected parameters.
Sparsity structure of the background correlation matrix Cr
(a) and coupling matrix Gm (b). (c) Comparing all of the
statistics of the activity for 2 realizations of the network: cou-
pling parameters for network A are: (gEE , gEI , gIE , gII) =
(0.079,−0.24, 0.17,−0.31) and coupling parameters for net-
work B are: (gEE , gEI , gIE , gII) = (0.049,−0.38, 0.16,−0.17).
As in Fig. 2, all 100 mean and variance values are plotted, as
well as all 4950 covariance values. (d) Similar to (c) but for
the firing rates.

have made no attempt to reduce the number of degrees
of freedom. Rather, we start with a system of coupled
stochastic differential equations, each of which may rep-
resent either a single neuron or a population, and sought
to quickly and accurately estimate statistics of the cou-
pled system. Importantly, the unperturbed state in our
system is not one in which all neurons are independent;
instead we perturb from a state with background noise
correlations. Thus, we anticipate this approximation can
be used to probe a range of neural networks, in which
correlations can be significant and activity-modulated.

While the coupled firing rate models we study here
were not derived as a mean field limit of a spiking net-
work, our results presented can still yield insight into
spiking networks. Our previous work [18] used the qual-
itative principles and intuitions gained from a simple fir-
ing rate model to characterize relationships between the
analogous parameters in a full spiking model of a multi-
region olfactory network. In that paper, a small system
with simple coupling and background correlations was
studied, whereas this paper treats networks of arbitrary
size, and arbitrary coupling and input correlation struc-
tures. The work here is thus a generalization of the cal-
culations in [18].
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FIG. 4. Comparisons of the spike count correlation computed
by our method and Monte Carlo simulations. (a) Comparing
the 4 regimes in Network II. The results are accurate be-
cause the points predominately lie on the diagonal line. As
we saw in Fig. 2, as the relative coupling strength increases,
the estimation of the spike count correlation is not as ac-
curate. (b) Comparing the 2 networks in Network III. In
both cases, the method performs well even though both the
numerator and denominator are estimated via the method.
All Nc(Nc− 1)/2 firing rate correlation values are plotted for
each network.

In other models, F (·) represents the function that
maps firing rate to synaptic input. Here, we assume that
the effective synaptic input gjkFj is a fixed scaling of the
firing rate Fj . In other biophysical models the effective
synaptic input may be a more complex transformation
of the firing rate (e.g., an alpha function convolved with
firing rate): the methods presented here can easily be
altered to account for this. To do this, the only change
would be to use Sj(Fj) in Eq. (1) instead of Fj .

Our method relies on the assumption that statistics are
stationary in time; this assumption allows a set of statis-
tics to be solved self-consistently. Thus we have not ad-
dressed complex network dynamics, such as oscillations.
However, this limitation is not specific to our method,
but is also in related work. Previously developed approx-
imation methods may fail when the system undergoes a
bifurcation [32, 33], and truncation methods (or moment
closure methods) are known to fail in certain parameter
regimes [36]. When the set of self-consistent equations
cannot be solved, there may be other methods available
to characterize the oscillatory dynamics (see [37] where
this is done for the adaptive quadratic integrate-and-fire
model). Considering how to accurately and quickly cap-
ture firing statistics when in this regime is an important
topic of future work.

Time-varying statistics are not considered here and is
beyond the scope of this study. Such an approach often
requires deriving an ODE of the desired quantities [33–
35, 38] or some other dynamical equation(s) [39] that
must be solved numerically.
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