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I. Introduction

In many systems in the brain, computation requires the persistence of information beyond 

the time of sensory input. Other computations require information to be accumulated over 

a period of time before a decision or action can be made. Both of these situations can be 

thought of as examples of integration in the sense of calculus; to be concrete, the 

transformation of a signal by

� 

S(t)→ S( ′ t )d ′ t 
0

t∫          (1)

or more generally integration against a kernel

� 

S(t)→ S( ′ t )K(t − ′ t )d ′ t 
0

t∫ .        (2)

Many working memory tasks can be interpreted as “integration” operations. For 

example, the neural correlate of a remembered sensation can be thought of as the 

integration of a brief sensory input which is thereafter stored, as has been found in 

primate pre-frontal cortex (Romo et al. 1999). In area LIP during motion discrimination 

tasks, firing rates increase at a rate proportional to motion strength (Shadlen and 

Newsome 2001). In the oculomotor system, a mechanism is needed to maintain eye 

position after a shift in gaze to an object of interest. This same system also helps to 

compensate for involuntary head movements, stabilizing our vision during head rotations, 



breathing, and walking. In all of these cases, this system must translate sensations of eye 

velocity into estimates of eye position; this is precisely performed by  the operation of 

mathematical integration.

This system is known as the oculomotor integrator and is present in all 

vertebrates. It has perhaps been studied most extensively  in the goldfish, which performs 

a sequence of automatic saccades while swimming in order to scan its environment, 

providing a convenient experimental protocol.  Two brainstem nuclei, area I and area II, 

have been identified as coding for eye position or velocity; area II modulates with eye 

velocity  whereas area I codes for eye position. Single neuron recordings in area I show 

that the firing rates of neurons in this area have a threshold linear relationship to eye 

position, with the position threshold and slope varying among individual neurons (Aksay 

et al. 2000). 

The situation in mammals is similar; in this case two brainstem nuclei, the nucleus 

prepositus hypoglossi and medial vestibular nucleus, have been identified as involved in 

integrator function. A subpopulation of these neurons have a threshold-linear relationship 

with eye position (McFarland and Fuchs 1992), as in goldfish area I. In addition, 

connections with the mammalian cerebellum are necessary; lesions in the flocculus 

region of the cerebellum are known to compromise integrator function (Nagao and 

Kitazawa 2003; Zee et al. 1981). 

Although the nuclei that are involved in oculomotor integration have been 

identified in lesion studies, the mechanisms by which it is performed are still unresolved. 

Authors have proposed a variety  of mechanisms that range from single cells to large 



networks. The most common idea is that integration is performed by excitatory recurrent 

connections in a network, which effectively lengthen the time constant (equivalently, 

decrease the rate of decay) so that a signal is held for a longer time. Alternatively, a 

network connected by bilateral inhibition can perform the same function, with the added 

bonus that  it explains the bilateral push-pull behavior observed in integrator neurons, 

while not integrating a background input (Cannon et al. 1983). Whether the integration 

occurs via excitatory or inhibitory connections, the principle is the same: tune the 

dominant eigenvalue of the linear network so that  it is very close to zero and the firing 

rate persists for a time that is long relative to the intrinsic membrane time constant of the 

individual neurons. These networks are prone to instability, because a small change in 

network parameters could push the eigenvalue over the boundary  of stability  and produce 

an exponentially growing response. This has been proposed as a mechanism for the slow 

phase of jerk nystagmus. 

For some time, positive feedback integrator models have been dismissed as a 

source for congenital nystagmus (CN) because they lack linear oscillatory  behavior and 

therefore cannot produce pendular nystagmus. Instead, authors have proposed 

abnormalities in the saccadic (e.g. Akman et al. 2005) or smooth pursuit (Jacobs and 

Dell’Osso 2004) systems. However, a critical look at the integrator models used by these 

authors reveals why they are not sufficient to encompass both jerk and pendular 

nystagmus; the connections in these models are symmetric (the synaptic weight from A to 

B is equal to the synaptic weight from B to A). In the most pared-down case, a one-

dimensional integrator is used, which has only one eigenvalue which must be real. 



Relaxing this constraint to include asymmetric - or more broadly non-normal - linear 

systems opens up the possibility for more flexible integrator models. Recently, there have 

been a number of works on the impact of non-normality  on neural integration (Ganguli et 

al. 2009). While non-normal operators have a long history in the applied mathematics 

literature (in areas such as fluid dynamics and mathematical physics – see Trefethen and 

Embree 2005), their use in neuroscience is relatively new to this author’s knowledge.

In this paper, we review an integrator model that exploits non-normality both for 

gain modification and to generate pendular CN (Barreiro et al. 2009). We also review 

some of the other recent work in non-normal integrators, not specific to CN, and provide 

some thoughts on how this work might be relevant to future CN research. 

II. Integrator models for CN

Several authors have proposed models for CN that rely on a malfunction of the neural 

integrator. An early  idea, based on the model that the integrator functions though positive 

feedback, is that an inappropriately large gain in this feedback loop can produce jerk 

nysgamus (Dell’Osso and Daroff 1981, Arnold and Robinson 1991). While these models 

give a mechanism to produce jerk nystagmus with a perturbation of a normal oculomotor 

system, they do not supply a mechanism for pendular nystagmus.

As an alternative to linear recurrent feedback models, Optican and Zee (1984) 

proposed a non-linear model that incorporates two feedback loops, one on eye position 

and another on eye velocity. The eye position feedback loop is positive and serves to 

lengthen the time constant of what would otherwise be a quickly decaying signal. The eye 

velocity  feedback is negative and also helps to lengthen the integrator time constant; its 



inclusion means that tuning of the position feedback loop can be less precise. CN arises 

when the eye velocity feedback loop switches sign and becomes sufficiently positive. 

This model can predict many waveforms of CN; however it predicts only  small 

amplitude, low frequency pendular nystagmus, and that only close to the null position. 

The amplitude and frequency are limited because the oscillation depends on an 

interaction between eye position and a nonlinearity in the position feedback loop. Tusa et 

al. (1992) modifies this model to include a loop under voluntary control, to account for 

the fact that some patients can suppress their nystagmus.

Harris (1995) proposes that a co-operation between smooth pursuit and integrator 

malfunctions can produce CN. Later, Harris and Berry (2006) suggest that CN arises as 

an adaptive response to delayed sensory  development, and identify integrator malfunction 

as being present in at least jerk nystagmus (C.M. Harris, personal communication), but do 

not yet present a network mechanism for producing the waveform.

In the context of modeling central myelin disorders, Das et al. (2000) generated 

pendular nystagmus by  including an asymmetric proprioceptive feedback loop to a neural 

network model of the integrator. 

Recently  Anastasio and Gad (2007) proposed a linear integrator network that can 

produce both jerk and pendular nystagmus, as well as normal function. One characteristic 

that they sought to include was plasticity; a mammalian integrator generally maintains a 

time constant of about 20 seconds, but can be trained to become leaky  or unstable. The 

integrator can also adjust  its gain in reponse to vestibulo-ocular stimuli by a factor of two 

when trained with visually  conflicting stimuli (Tiliket et al. 1994). Anastasio and Gad’s 



integrator included connectivity with cerebellar Purkinje cells, motivated by the 

observation that cerebellar lesions abolish VOR plasticity (Nagao and Kitazawa 2003). 

Their goal was to understand how sparse cerebellar connections can regulate the two 

basic characteristics of the integrator: time constant and gain. They  started with a 

symmetric brainstem network based on Cannon et al.’s model of reciprocal inhibition 

across the midline and added asymmetric connections to cerebellar Purkinje cells. The 

resulting network, properly tuned, could independently  regulate time constant and gain 

by tuning cerebellar connection weights.

Anastasio and Gad also note that mistuning can produce oscillations; in a sample 

survey of changes to a properly  functioning network, the authors altered one brainstem-

to-cerebellum connection, readjusted the cerebellar weights to regain the correct 20 

second time constant, and tested the reponse of the network. In roughly one half (18 out 

of 40) the network became oscillatory; in the remaining networks gain was reduced.  

These two observations (gain plasticity and oscillations) are intimately connected, 

as a full analysis in a later paper by Barreiro et al. (2009) would show. Cerebellar 

connections introduce network asymmetry  to the model; while projections from the 

brainstem to the cerebellum are dense, projections from the cerebellum to the brainstem 

are sparse (Babalian and Vidal 2000). In addition, each side of the cerebellar flocculus  

receives input from both sides of the brainstem, but projects only  to its own side of the 

brainstem (Büttner-Ennever 1988). So any particular Purkinje cell may receive input 

from many vestibular neurons from both sides of the brainstem, but will only output onto 

a few (in Anastasio and Gad’s model, only one) ipsilateral vestibular neurons. 



We can write a general system of linear differential equations as

  

� 

d v 
dt

= A v ,  v (0) =
 
b .         (3)

Assuming that the eigenvalues are distinct, the behavior of a linear system of differential 

equations is governed by its eigenvalues and eigenvectors:

  

� 

 v (t) =
 e i

〈
 
f i ,
 
b 〉

〈
 
f i ,
 e i 〉i

∑ eλi t          (4)

where the left (f) and right (e) eigenvectors are defined by

  

� 

A e i = λi
 e i

AT
 
f i = λi

 
f i

          (5)

where (•)T denotes the transpose and 〈•, •〉 denotes the dot product. If there are repeated 

eigenvalues, a modified expression holds.

A real n x n matrix is normal if it commutes with its adjoint:

� 

AAT =ATA .          (6)

In the case of a normal matrix, we are guaranteed to have n true eigenvalues (both real 

and complex) and the eigenvectors are guaranteed to be orthogonal to one another (and as 

a consequence, the right and left eigenvectors coincide;   

� 

 e i =
 
f i).  

Nonnormal matrices do not satisfy  Eq. 6, and while their eigenvectors have a 

property  called bi-orthogonality  (ei is orthongonal to fj), they  do not have to be 

orthogonal to one another. In fact, a system could have two eigenvectors very close 



together; in this case, the scalar product 
  

� 

 
f 1,
 e 1  - the denominator of one of the terms in 

Eq. 4 - must be close to zero. 

An example is the following:

� 

M =
−0.05 10
0 −0.06

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ .         (7)

The eigenvalue and eigenvectors are given by

  

� 

λ1 = −0.05, λ2 = −0.06
 e 1 =

1
0
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,
 
f 1 =

0.001
1

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,
 e 2 =

−1
0.001
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,
 
f 2 =

0
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ 
      (8)

If we solve the corresponding differential equation with the initial condition 

  

� 

 
b =

1
1
⎡ 

⎣ 
⎢ 
⎤ 

⎦ 
⎥ ,           (9)

and look at the first component of the result, we get the blue curve in Figure 1. What we 

observe is that although the system is linear, and all the eigenvalues are negative, and the 

initial condition is small, there is a dramatic transient growth: a “gain”.

Figure (1) here

One important aspect of this observation is that it requires the two eigenvalues to be close 

together; if we try the same exercise with the matrix 



� 

M2 =
−0.05 10
0 −1.05

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,         (10)

we will find the gain to be substantially reduced. 

This same mechanism is operating in the model of Anastasio and Gad (2007).  

Anastasio and Gad originally considered relatively  large networks (20-400 vestibular 

neurons on each side of the midline). Barreiro et al. (2009) considered a smaller version 

that retained the essential properties:  

  

� 

A =
T −ρ1

 u 1 −ρ2
 u 2 w 1

T −1 0
 w 2
T 0 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
        (11)

where T is a 6 x 6, negative definite symmetric matrix and   

� 

 u 1,
 u 2 ,
 w 1,
 w 2  are 6 x 1 column 

vectors; u vectors represent cerebellum-to-brainstem weights, and w vectors represent 

brainstem-to-cerebellum weights.

The model is tuned by  varying the parameters ρ1 and ρ2, which represent the 

weights of connections from the cerebellum. It is straightforward to see that this matrix is 

non-normal, as the matrices ATA and AAT will only be equal under very special 

circumstances; this would require, for example, that w2Tw2 = ρ22. Because only  two 

parameters are allowed to change, this system admits an analysis by viewing the 

cerebellar connections as perturbations to an underlying system in which these 

connections are set to zero. The characteristic polynomial of the matrix can be written as 

a polynomial in ρ1, ρ2  as follows:



� 

det(A − λI) = D(λ) + P1(λ)ρ1 + P2(λ)ρ2 + Q(λ)ρ1ρ2        (12)

where D, P1, P2, and Q are polynomials in the variable λ. 

The unassuming equation 

� 

det(A − λI) = 0           (13)

turns out  to give a lot of information about the qualitative behavior of this linear system, 

which can be viewed in a nice graphical way. For each fixed value of λ, that equation 

describes a curve (or pair of curves) in the (ρ1, ρ2) plane. For example, an integrator with 

a 20 second time constant must  have an eigenvalue of 

� 

λ = −0.05 ; input that projects onto 

the corresponding eigenvector will be maintained with the correct  decay rate (see Eq. 4). 

Therefore properly  functioning integrators should live on, or near (if we tolerate some 

variation in the time constant), the curve in Eq. 12 with parameter 

� 

λ = −0.05 .  

If I want to know where I have a double eigenvalue of value λ, I look for the 

simultaneous solution of Eq. 12 and its derivative with respect to λ; 

� 

D(λ) + P1(λ)ρ1 + P2(λ)ρ2 + Q(λ)ρ1ρ2 = 0
′ D (λ) + ′ P 1(λ)ρ1 + ′ P 2(λ)ρ2 + ′ Q (λ)ρ1ρ2 = 0

      (14)

This yields a curve (or set of curves) in the (ρ1, ρ2) plane.  We refer to this as the 

“envelope” because it  is the classic envelope of a family of curves (here, the constant 

eigenvalue curves).

A third curve which will be useful is the location of purely  imaginary eigenvalues. 

Because our matrix A is real, complex eigenvalues must occur in complex conjugate 



pairs (example). They are purely imaginary if the following equations are satisfied 

simultaneously for some real ω:

� 

Re det A − iωI( )( ) = 0

Im det A − iωI( )( ) = 0
         (15)

On one side of this curve, the eigenvalues have negative real part  (stable); on the other 

side they  have positive real part (unstable); therefore we refer to this curve as the “Hopf 

curve” in reference to a dynamical bifurcation in which, among other things, an 

equilibrium point changes stability.

Also of interest are points where a real eigenvalue switches dominance with a 

complex pair. We refer to this as the “dominance curve”. We don’t have a nice way to 

compute it analytically but we can compute it  numerically and have shown it on the 

following diagrams.

Because we are only changing two parameters, we can look at these curves in the 

two-dimensional plane, as in Figure 2:

(Figure (2) here) 

Each of the curves that we described is important because there is a qualitative change in 

the spectrum as the curve is crossed; in crossing the envelope, a pair of real eigenvalues 

must come together and split off into the complex plane (or a complex pair must merge 

onto the real axis, in the other direction); in crossing the Hopf curve a pair of complex 

eigenvalues must change stability. In the open regions bounded by a set of curves, the 



relative positions of the eigenvalues can be mapped onto the complex plane as in the 

insets in Figure 2: each inset shows a cartoon of the complex plane and the “x”s shows 

the locations of the three dominant eigenvalues. The information preserved in each region 

is the relative ordering of the real parts of the eigenvalues, and whether each one is in the 

left- or right-hand plane.

Three sets of parameters are identified with colored dots; systems with these 

parameters generated the traces shown in Figure 3. Note the intersection of the 

eigenvalue line (red dashed) with the envelope curve (blue dotted); this is the location of 

a double eigenvalue of the appropriate value. As the parameters are varied to approach 

this point, the gain increases. If the network strays to the left on this parameter plane, it 

will become unstable (showing the slow phase of jerk nystagmus); if it strays to the right 

it becomes oscillatory.

(Figure (3) here)

Recall that Anastasio and Gad perturbed their network, readjusted their 

parameters so that the dominant eigenvalue was reset to the correct value, and evaluated 

the network again. They found either reduced gain or oscillations, each for roughly half 

of the perturbations. This can be readily  understood from the figures we have seen: one of 

their perturbations – adding or removing a vestibular-to-cerebellar connection – is 

equivalent to a subtle shift of the curves we have described under a fixed (ρ1, ρ2) value 

pair. The curves might just be distorted, without topological change, or there could be a 



modest topological change. In the former case, the new point would be found further 

down on the dashed line, at a more distant point from the double eigenvalue point – 

hence a decreased gain. In the latter case, the topology  of the graph could be shifted so 

that the dashed line makes a short excursion across the Hopf curve, representing a regime 

in which we have, simultaneously an integrating eigenvalue as well as a pair of 

oscillating eigenvalues. Such a phase plane might look like the following:

(Figure (4) here)

As in the previous parameter space diagram (Figure 2), the Hopf curve and 

eigenvalue line intersect the envelope at nearby points. However, instead of continuing in 

different directions, these curves have a second intersection in the lower left quadrant of 

the diagram; this intersection represents a point  where there is an integrating eigenvalue, 

as well as a superimposed, non-decaying oscillation. 

(Figure (5) here) 

If a controller attempts to increase gain in this network, the response will be very 

different than that displayed in Figure 3. The colored dots in Figure 4 mark parameter 

settings that generated the traces. As the parameter settings approach the intersection 

point with the Hopf curve, a complex pair will approach the integrating eigenvalue from 

the left-hand side. At first this will result in a transient, quickly  decaying oscillation, and 



eventually a steady oscillation riding on top  of the otherwise normal integrator response. 

The system cannot increase gain arbitrarily without activating this oscillation.

In the network we have just described, non-normality comes from the anatomical 

asymmetry of the brainstem-cerebellar conections. In fact, just  about feedback loop that 

makes an excursion outside the brainstem would be likely to add network asymmetry  

because it  generally  won’t originate and terminate on the same cell, for example in the 

proprioceptive feedback loop of Das et al. (2000). However, our current understanding of 

the oculomotor integrator – at least in the goldfish – confirms that there are asymmetric 

structures in the brainstem itself. Aksay  et al. (2007) propose that there are two separate 

excitatory populations, one that governs each side of the visual plane, each with an 

associated inhibitory population that inhibits the opposite side, so that  only one 

population is active at a time.  Because inhibitory cells on the right (left) side projects to 

excitatory cells on the left (right) side but there is clearly not a returning inhibitory 

connection, the system seems asymmetric. However, because of nonlinear cut-offs in the 

system, the system appears to perform as though the right side excitatory population 

drives the right side inhibitory population, which suppresses the left side excitatory 

population; but without a feedback connection (M.S. Goldman, personal 

communication). In other words, the three populations may act like a chain of three 

(normal) networks, with the identity of the active networks shifting as the eyes move 

from left to right, rather than an asymmetric feedback network.

III. Other non-normal integrator models



The linear integrator models that we have considered remember through recurrent 

feedback. Generally, such models require precise tuning of the dominant eigenvalue of 

the system to a number close to zero (or even two eigenvalues, as in Barreiro et al. (2009) 

in high gain regimes). As such the models must  be very finely  tuned; synaptic weights in 

a recurrent network model such as Cannon et al. (1983) must be tuned to within a 

fraction of a percent. This has motivated criticism that these models are simply not 

biologically plausible. In contrast, some interesting recent work has identified the ability 

of “functionally  feedforward” networks to do integration. These networks can exhibit 

enhanced robustness to mistuning and noise when compared to recurrent networks; these 

properties are ultimately due to their non-normal linear dynamics.

An equivalent definition of an n x n normal matrix (defined in Eq. 6) is that it has 

a complete set of orthogonal eigenvectors; in other words it can be written as follows:

� 

A = VDVT           (16)

where the columns of V are orthogonal and D is diagonal. In the differential equation

  

� 

d x 
dt

= A x , each eigenvector acts on its own with no interaction with the others, which we 

can check by looking at  the evolution of   

� 

 v i
T  x , the coefficient of projection of x onto the 

ith eigenvector. This is illustrated in Figure 6a.

A nonnormal matrix cannot be diagonalized in this way; it will look more like

� 

A =UDVT           (17)

where U and V are different (this is equivalent to having “different left and right 

eigenvectors”) and it is not obvious how to disentangle the contribution of one 



eigenvector with another. However, a nonnormal matrix can be treated with a Schur 

decomposition, where instead of a diagonal matrix we have an lower (or upper)-

triangular matrix. 

� 

A =UTUT           (18)

Now the evolution of x can be cleanly separated into n distinct modes, although modes 

can interact through the matrix T.

(Figure (6) here)

For example, consider the matrix

� 

T =

−1 0 0 0
1 −1 0 0
0 1 −1 0
0 0 1 −1

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 

        (19)

where there are ones along the off-diagonal. This is a network in which the output of cell 

1 feeds into cell 2, the output of cell 2 feeds into cell 3, and so forth, illustrated in Figure  

6b. Goldman (2009) identifies this as a “pure” feedforward network, in which activity 

propagates from one pattern to the next, in contrast with the feedback network of Figure 

6a. Goldman (2009) analyzes this network (with arbitrary  size) and finds that this 

network can integrate a pulse for a time proportional to the size of the network. This is 

possible despite the fact that  the eigenvalues of this system are all far from zero (in (19), 

all eigenvalues of T are -1).



We can easily imagine transforming by some orthogonal matrix U to yield a dense 

matrix in which all the cells interact superficially; however the essential dynamics remain 

the same. Mathematically, this is a matrix which has one true eigenvector and n-1 

generalized eigenvectors which behave like the following:

  

� 

A v i−1 = λ
 v i           (20)

 Goldman’s pure feed-forward integrator has several advantages for integration. The 

degenerate structure of its eigenspace allows it to lengthen the time an input is stored 

without fine-tuning the dominant eigenvalue of the integrator. In addition, because 

information is not stored in a single eigenvector, each neuron in the integrator has a 

complex time-varying response.  This opens the possibility to match experiments which 

show time-varying persistent activity  during working memory tasks (for example Batuev 

(1994)). 

One might notice that the presence of a degenerate eigenspace, itself, requires 

some careful tuning, because the network must have multiple identical eigenvalues. 

However, Goldman shows that the pure feed-forward network described above is very 

robust to mistuning when compared with a feedback network (see Figure 7 in Goldman 

2009); a perfect feedforward structure does not  seem to be necessary. Among other 

reasons, the feedforward network cannot sustain exponentially growing activity because 

its eigenvalues are far from the boundary of stability. Another attractive feature of  

feedforward architecture is that it  can be created by architectural constraints (for 

example, the fact that nucleus A projects to nucleus B but  not vice-versa), rather than 

mediation of the parameters in all-to-all circuitry. 



Ganguli et al. (2008) identify another attractive characteristic of functionally 

feed-forward networks: robustness to noise. They  examine the information carrying 

capacity of a general discrete time network, in which the dynamics are given by acting on 

the network states with a linear transformation followed by a sigmoidal nonlinearity. 

They  contrast  normal and non-normal networks and find that non-normal matrices, and 

especially the pure feedforward network (which they refer to as a “delay  line”) can 

maintain a signal-to-noise ratio (SNR) for a time proportional to the number of states of 

the network; in contrast a network with normal linear dynamics maintains this ratio for a 

period of time which does not increase as the number of network states increase.

While these other nonnormal network models have computational benefits for 

integration, it remains to be seen whether such a model – say a oculomotor integrator 

model relying primarily  on feed-forward structure to produce persistent input – can be 

adapted to produce CN waveforms. One natural idea is to use the network of Anastasio 

and Gad (2007) and Barreiro et al. (2009), replacing the vestibular connections with a 

feedforward chain. Because the spectrum no longer determines the interesting feature of 

the response (maintenance of input for a time longer than the intrinsic time scale of 

individual cells), a different method of analysis will be needed. Another possibility is to 

construct a network with two feedforward chains; one that performs integration and 

another that oscillates. 
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Figure 1: Response of a non-normal network to an impulsive input at time zero (blue). A 
transient gain drives the system response to 70 times the input strength. The magnitude of 
this gain depends on the proximity of two eigenvalues; a system with more widely spaced 
eigenvalues will show lesser gain (magenta).



Figure 2: Parameter space of a network that performs integrator function correctly.

Figure 3: Response of the first network as gain is increased.



Figure 4: Parameter space of a network that displays pendular nystagmus as gain is 
increased. (The “low gain” location is located off the diagram). 



Figure 5: Response of second network to an impulse at time zero, as gain increases, at 
parameter choices shown in Figure 4. As the parameters ascend the 20 second time 
constant curve, the integrating eigenvalue exchanges dominance with a complex pair and 
the network response becomes oscillatory.

Figure 6: Schematic of dynamics in a feedback (a) vs. feedforward (b) network. In a 
feedback (specifically a normal) network, the vector space of possible network responses 
can be divided into n orthogonal modes, each of which acts independently of the others. 
In a nonnormal network, different eigenvectors interact; (b) shows a pure feedforward 
network.


