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Abstract

We examine a family of random firing-rate neural networks in which we enforce the neurobiological
constraint of Dale’s Law — each neuron makes either excitatory or inhibitory connections onto its post-
synaptic targets. We find that this constrained system may be described as a perturbation from a system
with non-trivial symmetries. We analyze the symmetric system using the tools of equivariant bifurcation
theory, and demonstrate that the symmetry-implied structures remain evident in the perturbed system.
In comparison, spectral characteristics of the network coupling matrix are relatively uninformative about
the behavior of the constrained system.
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1 Introduction

Networked dynamical systems are of growing importance across the physical, engineering, biological and
social sciences. Indeed, understanding how network connectivity drives network functionality is critical for
understanding a broad range of modern-day systems including the power grid, communications networks, the
nervous system and social networking sites. All of these systems are characterized by a large and complex
graph connecting many individual units, or nodes, each with its own input–output dynamics. In addition to
the node dynamics, how such a system operates as a whole will depend on the structure of its connectivity
graph [49, 35, 24], but the connectivity is often so complicated that this structure-function problem is difficult
to solve.

Regardless, a ubiquitous observation across the sciences is that meaningful input/output of signals in
high-dimensional networks are often encoded in low-dimensional patterns of dynamic activity. This suggests
that a central role of the network structure is to produce low-dimensional representations of meaningful
activity. Furthermore, since connectivity also drives the underlying bifurcation structure of the network-
scale activity, and because both this activity and the relevant features of the connectivity graph are low-
dimensional, such networks may admit a tractable structure-function relationship. Interestingly, the presence
of low-dimensional structure may run counter to the intuition provided by the insights of random network
theory, which has otherwise proven to be a valuable tool in analyzing large networks.

In considering an excitatory-inhibitory network inspired by neuroscience, we find a novel family of periodic
solutions that restrict dynamics to a low-dimensional attractor within a high-dimensional phase space. These
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solutions arise as a consequence of an underlying symmetry in the mean connectivity structure, and can be
predicted and analyzed using equivariant bifurcation theory. We then show that low-dimensional models of
the high-dimensional network, which are more tractable for computational bifurcation studies, preserve all
the key features of the bifurcation structure. Finally, we demonstrate that these dynamics differ strikingly
from the predictions made by random network theory, in a similar setting.

Random network theory — in which one seeks to draw conclusions about an ensemble of randomly-
chosen networks, rather than a specific instance of a network — is particularly relevant to neural networks
because such networks are large, under-specified (most connections cannot be measured), and heterogenous
(connections are variable both within, and between, organisms). It is particularly tempting to apply the
tools of random matrix theory to the connectivity graph, as the spectra of certain classes of random matrices
display universal behavior as network size N → ∞ [47]. The seminal work of Sompolinsky et al. [43]
analyzes a family of single-population firing-rate networks in which connections are chosen from a mean zero
Gaussian distribution: in the limit of large network size (N → ∞), they find that the network transitions
from quiescence to chaos as a global coupling parameter passes a bifurcation value g∗ = 1. This value
coincides with the point at which the spectrum of the random connectivity matrix exits the unit circle
[19, 42, 3], thereby connecting linear stability theory with the full nonlinear dynamics.

Developing similar results for structured, multi-population networks has proven more challenging. One
natural constraint to introduce is that of Dale’s Law : that each neuron makes either excitatory or inhibitory
connections onto its post-synaptic targets. For a neural network, this constraint is manifested in a synaptic
weight matrix with single-signed columns. If weights are tuned so that incoming excitatory and inhibitory
currents approximately cancel (i.e.

∑
j Gij ≈ 0), such a network may be called balanced (we note that our use

of the word “balanced” is distinct from the dynamic balance that arises in random networks when excitatory
and inhibitory synaptic currents approximately cancel, as studied by [48, 39] and others). Rajan and Abbott
[37] studied balanced rank 1 perturbations of Gaussian matrices and found that, remarkably, the spectrum
is unchanged. More recent papers have addressed the spectra of more general low-rank perturbations [50,
46, 33], general deterministic perturbations [1], and block-structured matrices [2].

However, the relationship between linear/spectral and nonlinear dynamics appears to be more compli-
cated than in the unstructured case. Aljadeff et al. [2] indeed find that the spectral radius is a good
predictor of qualitative dynamics and learning capacity in networks with block-structured variances. Others
have studied the large network limit, but when mean connectivity scales like 1/N (smaller than the standard
deviation 1/

√
N): therefore as N →∞, the columns cease to be single-signed [23, 10, 25]. In a recent paper

which studies a balanced network with mean connectivity 1/
√
N , the authors find a slow noise-induced syn-

chronized oscillation that emerges when a special condition (perfect balance) is imposed on the connectivity
matrix [17]. As a growing body of work has continued to connect qualitative features of nonlinear dynamics
and learning capacity [45, 38, 34], it is crucial to continue to further develop our understanding of how
complex nonlinear dynamics emerges in structured, heterogenous networks.

In this paper, we study a family of excitatory-inhibitory networks in which both the mean and variability
of connection strengths scale like 1/

√
N . In a small, but crucial difference from other recent work [37, 17], we

reduce self-coupling. We will show that with this change, these networks exhibit a (heretofore unreported)
family of periodic solutions. These solutions arise as a consequence of an underlying symmetry in the
mean connectivity structure, and can be predicted and analyzed using equivariant bifurcation theory. We
show through concrete examples that these periodic orbits can persist in heterogeneous networks, even for
large perturbations. Moreover, we demonstrate that low-dimensional models (reduced order models) can
be generated to characterize the high-dimensional system and its underlying bifurcation structure; we use
the reduced model to study these oscillations as a function of system size N . Thus the work suggests both
how biophysically relevant symmetries may play a crucial role in the observable dynamics, and also how
reduced-order models can be constructed to more easily study the underlying dynamics and bifurcations.
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2 Mathematical Model

We consider a network in which each node represents the firing rate of a single neuron, connected by sigmoidal
activation functions through a random weight matrix. This is the model studied in Refs. [43, 37, 17], with
some important modifications which we detail below. Specifically, we analyze the family of random networks:

ẋ = −x + G tanh (g x) (1)

where
√
NG = H + εA. (2)

H is an N ×N matrix s.t.

Hij =


µE , j ≤ nE , j 6= i
bEµE , j ≤ nE , j = i
µI , nE < j ≤ N, j 6= i
bIµI , nE < j ≤ N, j = i

(3)

and

Aij ∼

 N(0, σE), j ≤ nE , j 6= i
N(0, σI), nE < j ≤ N, j 6= i
0, j = i

(4)

We will use the parameter f to identify the fraction of neurons that are excitatory; i.e. f = nE/N . The
parameter α characterizes the ratio of inhibitory-to-excitatory synaptic strengths: µI = −αµE . We refer to
the network as balanced (the mean connectivity into any cell is zero) if α = f

1−f ; it is inhibition-dominated

if α > f
1−f . In all cases below, f = 0.8 reflecting the approximately 80 % / 20 % ratio observed in cortex;

the corresponding value of α for a balanced network is α = 4. Finally, we choose σE , σI so that the variance
of excitatory and inhibitory connections into each cell is equal; i.e. σ2

Ef = σ2
I (1− f).

The matrix H has constant columns, except for the diagonal, which reflects self-coupling from each cell
onto itself. The parameters bE and bI give the ratio of self- to non-self connection strengths, for excitatory
and inhibitory cells respectively. We will assume that the effect of self-coupling is to reduce connection
strengths; that is, 0 ≤ bE , bI ≤ 1.

We note that as in [43] — but in contrast to later work [37, 17] — self-interactions can differ from
interactions with other neurons: i.e. Gjj 6= Gij . This is a reasonable assumption, if we conceptualize
each firing rate unit xj as corresponding to an individual neuron; while neurons can have self-synapses (or
autapses [12]), refractory dynamics would tend to suppress self-coupling from influencing the firing rate.

We will find that many features of the resulting dynamics may be connected to an approximate symmetry
of the system. Specifically, if you remove the “noise” from the connectivity matrix G — so that Gij =

µE/
√
N if j ≤ nE , i 6= j, and Gij = µI/

√
N if j > nE , i 6= j — then the subspace in which all E neurons

have the same activity, and all I neurons have the same activity;

xj = xE , j ≤ nE
xj = xI , j > nE

is invariant under the dynamics ẋ = −x + G tanh(gx). To be precise, the system of equations is equivariant
under the group of permutation symmetries (SnE

⊕SnI
), which contains any permutation of the nE excitatory

neurons and any permutation of the nI inhibitory neurons.
We will begin by considering the “noise-less” system in (1), where

√
NG = H. The solutions that arise

in this system can be readily identified because of the underlying symmetries of the network. We will find
that these solutions actually do arise in numerical simulations: furthermore, they persist even when the
symmetry is perturbed (

√
NG = H + εA).
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2.1 Some preliminary analysis: spectrum of H

To analyze stability and detect bifurcations, we will frequently make reference to the Jacobian of (1), (2);
when ε = 0, we will find that this always takes on a column-structured form. We begin by summarizing
some facts about the spectra of these matrices.

Let KN be the matrix of all ones except for on the diagonal; i.e.

KN = 1N1N
T − IN (5)

Lemma 1. KN has the following eigenvalues: λ0 = N − 1, and λj = −1 with geometric and algebraic
multiplicity N − 1.

Proof. By inspection, 1 is an eigenvector with corresponding eigenvalue N − 1 (as each row sums to N − 1).
The remaining eigenvectors must satisfy∑

j 6=i

vj = λvi →∑
j

vj = λvi + vi

= (λ+ 1)vi = 0,

since each such eigenvector is orthogonal to 1.

The Jacobian of (1) has the following special structure: except for its diagonal, the entries in column j
depend only on the j-th coordinate (and are all equal). This leads to a simplification of the spectrum when
the cells are divided into synchronized populations. To be precise, we can make the following statement.

Lemma 2. Assume we can divide our cells j = 1, · · · , N into K + 1 populations, where Ik identifies the
index set of population k, for k = 0, · · · ,K. Let J be −I + KNΛ + B, where Λ and B are diagonal matrices
with

Λjj = ak, j ∈ Ik (6)

Bij = bk, j ∈ Ik (7)

That is, J has constant columns (except for the diagonal), with the value in each column determined by the
population identity. Then the eigenvalues of J are:

1. For each k = 0, ...,K: −1− ak + bk, with multiplicity nIk − 1

2. The K + 1 remaining eigenvalues coincide with the eigenvalues of the matrix J̃:

J̃ij =

{
nIjaj , j 6= i
−1 + (nIj − 1)aj + bj , j = i

(8)

where nIj is the number of cells in population j. We note that the size of J̃ is set by the number of

subpopulations; that is, J̃ ∈ R(K+1)×(K+1).

Proof. This can be checked by direct computation:

1. For k = 0, ...,K: there are nIk − 1 linearly independent eigenvectors given by vectors that (a) have
support only on Ik and that (b) sum to zero: i.e. vkj = 0 if j /∈ Ik; and vk ⊥ 1.

2. The remaining eigenvectors are given by vectors that are constant and non-zero on each index set:
vj = ck if j ∈ Ik, and

[
c0 c1 · · · cK

]
is an eigenvector of J̃.
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We consider specific examples that are of particular importance:

Example 1: We consider a balanced network with (possibly) reduced self-coupling: α = nI

nE
and 0 ≤

bE , bI ≤ 1. The origin x = 0 is a fixed point of (1) for all g. Therefore, we can think of the population as
consisting of two synchronized populations, excitatory and inhibitory: i.e. n0 = nE and n1 = nI ; a0 = gµE√

N
,

a1 = −αgµE√
N

, b0 = bEa0, and b1 = bIa1. Then the Jacobian has eigenvalues

1. λE = −1− gµE√
N

(1− bE), with multiplicity nE − 1;

2. λI = −1 + gαµE√
N

(1− bI), with multiplicity nI − 1;

3. 2 remaining eigenvalues given by the 2× 2 matrix J̃:

J̃ = −I +
gµE√
N

[
nE − (1− bE) −nE

nE −nE + α(1− bI)

]
(9)

This will be a complex pair as long as nE > (α(1− bI) + 1− bE) /4, so λ1,2 = λ± iω where

λ = −1 +
gµE√
N

α(1− bI)− 1 + bE
2

ω =
gµE√
N

√
α(1− bI) + 1− bE

√
nE −

α(1− bI) + 1− bE
4

We note that λE < λ ≡ <(λ1,2) < λI . The eigenvalue associated with the excitatory population,
λE < 0 for any value of g.

The corresponding eigenvectors are:

1. vE = span {

vnE
0 · · · 0︸ ︷︷ ︸

nI

}, vnE
⊥ 1nE

;

2. vI1 = span {

0 · · · 0︸ ︷︷ ︸
nE

vnI1

}, vnI
⊥ 1nI

;

3. vJ̃ = span {

cE · · · cE︸ ︷︷ ︸
nE

cI · · · cI︸ ︷︷ ︸
nI

}
We pause to consider two special cases of Example 1. The first is no self-coupling — bE , bI = 0 — which

we will examine in detail in the rest of this paper. The second is full self-coupling — bE , bI = 1 — which
has been studied previously by many authors [37, 17, 25].

Example 1.1: We consider Example 1, but with no self-coupling: bE , bI = 0. Then at the origin x = 0, the
Jacobian has eigenvalues

1. λE = −1− gµE√
N

, with multiplicity nE − 1;

2. λI = −1 + gαµE√
N

, with multiplicity nI − 1;
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3. 2 remaining eigenvalues given by the 2× 2 matrix J̃:

J̃ = −I +
gµE√
N

[
nE − 1 −nE
nE −nE + α

]
(10)

which will be a complex pair as long as nE > (α+ 1)/4, so λ1,2 = λ± iω where

λ = −1 +
gµE√
N

α− 1

2

ω =
gµE√
N

√
α+ 1

√
nE −

1 + α

4

We note that λE < λ ≡ <(λ1,2) < λI . The eigenvalue associated with the excitatory population,
λE < 0 for any value of g. In the (un-cortex-like) situation that the excitatory population were smaller
than the inhibitory population (α < 1), then the complex pair would also be stable for all λ < 0.

Example 1.2: We consider Example 1, but where self-coupling is not reduced: bE , bI = 1. Consider the
eigenvalues at the origin x = 0 described in Example 1:

1. Since bE = 1, λE = −1 with multiplicity nE − 1;

2. Since bI = 1, λI = −1, with multiplicity nI − 1;

3. 2 remaining eigenvalues given by the 2× 2 matrix J̃:

J̃ = −I +
gµE√
N

[
nE −nE
nE −nE

]
(11)

which also has the (repeated) eigenvalue −1.

Thus, every eigenvalue of H is −1; crucially, this does not depend on the coupling parameter g. In §3, we
describe how by varying g, bifurcations will occur at the origin; these cannot occur if self-coupling is not
reduced, as the eigenvalues of the Jacobian cannot pass through the imaginary axis.

(Another way reach the same conclusion, is to notice that H is a rank-one matrix [37]:

H = u1T , where u =

µE . . . µE︸ ︷︷ ︸
nE

µI . . . µI︸ ︷︷ ︸
nI


T

(12)

with at most one non-zero eigenvalue; since µEνE + µIνI = 0, this last eigenvalue is zero as well.)

Example 2: Next, suppose that the cells have broken into three synchronized populations: the excitatory
cells (nE cells with activity xE(t)) and two groups of inhibitory cells (nI1 and nI2 cells with activities
xI1 and xI2 respectively). Then n0 = nE , n1 = nI1 and n2 = nI2 ; a0 = gµE√

N
sech 2(gxE), and a1,2 =

− gαµE√
N

sech 2(gxI1,2); b0 = bEa0 and b1,2 = bIa1,2. Therefore the Jacobian has eigenvalues

1. λE = −1− gµE√
N

sech 2(gxE)(1− bE), with multiplicity nE − 1;

2. λI1 = −1 + gαµE√
N

sech 2(gxI1)(1− bI), with multiplicity nI1 − 1;

3. λI2 = −1 + gαµE√
N

sech 2(gxI2)(1− bI), with multiplicity nI2 − 1;
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4. three (3) remaining eigenvalues given by the 3× 3 matrix J̃ described earlier.

We note that λE < 0 always, as long as bE ≤ 1. The corresponding eigenvectors are:

1. vE = span {

vnE
0 · · · 0︸ ︷︷ ︸

nI1

0 · · · 0︸ ︷︷ ︸
nI2

}, vnE
⊥ 1nE

;

2. vI1 = span {

0 · · · 0︸ ︷︷ ︸
nE

vnI1
0 · · · 0︸ ︷︷ ︸

nI2

}, vnI1
⊥ 1nI1

;

3. vI2 = span {

0 · · · 0︸ ︷︷ ︸
nE

0 · · · 0︸ ︷︷ ︸
nI1

vnI2

}, vnI2
⊥ 1nI2

;

4. vJ̃ = span {

cE · · · cE︸ ︷︷ ︸
nE

cI1 · · · cI1︸ ︷︷ ︸
nI1

cI2 · · · cI2︸ ︷︷ ︸
nI2

}

3 Solution families found in deterministic network (ε = 0)

In this section, we use equivariant bifurcation theory to identify which solutions we expect to arise in the
system (1), where G = H/

√
N . We will also demonstrate that these solutions actually arise in a small

network where it is tractable to do numerical continuation to verify our calculations. Our main tool is the
Equivariant Branching Lemma, which tell us what type of solutions will arise at bifurcation points, when
symmetries are present.

Before stating this result, we introduce some terminology: Let Γ be a compact Lie group acting on RN ;
then we say that a mapping F : RN → RN is Γ-equivariant if F (γx) = γF (x), for all x ∈ RN and γ ∈ Γ. A
one-parameter family of mappings F : RN → RN is Γ-equivariant, if it is Γ-equivariant for each value of λ.

We say that V , a subspace of RN , is Γ-invariant if γv ∈ V , for any v and γ ∈ Γ. We furthermore say
that the action of Γ on V is irreducible if V has no proper invariant subspaces; i.e. the only Γ-invariant
subspaces of V are {0} and V itself.

For a group Γ and a vector space V , we define the fixed-point subspace for Γ, denoted Fix(Γ), to be all
points in V that are unchanged under any of the members of Γ; i.e. Fix(Γ) = {x ∈ V : γx = x,∀γ ∈ Γ}.
The isotropy subgroup of x ∈ V , denoted Σx, is the set of all members of Γ under which x is fixed; i.e.
Σx = {γ ∈ Γ : γx = x}. An isotropy subgroup of Γ is a subgroup Σ which is the isotropy subgroup, Σx, for
some x ∈ V .

Suppose we have a one-parameter family of mappings, F (x, λ), and we wish to solve F (x, λ) = 0. For
any (x, λ) ∈ Rn × R, let (dF )x,λ denote the N ×N Jacobian matrix(

∂Fj
∂xk

(x, λ)

)
j,k=1...N

Then the Implicit Function Theorem states that we can continue to track a unique solution branch as a
function of λ, as long as the Jacobian remains invertible. When this ceases to be true — when (dF )x,λ has
a nontrivial kernel — we have the possibility for a bifurcation. At this point the number of zero eigenvalues
(whether there are one, or two, etc..) and a menagerie of further conditions, will determine the qualitative
properties of the structural change that occurs.
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What complicates this situation for Γ-equivariant mappings — i.e. F is Γ-equivariant for any value of the
parameter λ — is that because of symmetries, multiple eigenvalues will go through zero at once; however,
the structural changes that occur are qualitatively the same as those that occur in a non-symmetric system,
with a single zero eigenvalue. What changes is that we now have multiple such solution branches, each
corresponding to a subgroup of the original symmetries. The following Lemma formalizes this fact:

Theorem 1. (Equivariant Branching Lemma: paraphrased from [22], pg. 82, see also pg. 67-69 ): Let
F : RN × R → RN be a one-parameter family of Γ-equivariant mappings with F (x0, λ0) = 0. Suppose that
(x0, λ0) is a bifurcation point and that, defining V = ker(dF )x0,λ0

, Γ acts absolutely irreducibly on V . Let
Σ be an isotropy subgroup of Γ satisfying

dim Fix(Σ) = 1, (13)

where Fix(Σ) is the fixed-point subspace of Σ: that is, Fix(Σ) ≡ {x ∈ V | σx = x, ∀σ ∈ Σ}. Then there
exists a unique smooth solution branch to F = 0 such that the isotropy subgroup of each solution is Σ.

A similar statement holds for Hopf bifurcations, which we state here because we will appeal to its
conclusions regarding the symmetry of periodic solutions:

Theorem 2. (Equivariant Hopf Theorem: paraphrased from [22], pg. 275) Let F be a one-parameter family
of Γ-equivariant mappings with F (x0, λ0) = 0. Suppose that (dF )x0,λ0 has one or more pairs of complex
eigenvalues ρ± iω, which satisfy ρ(λ0) = 0 (i.e. the eigenvalues are pure imaginary at λ0) and ρ′(λ0) 6= 0.
Define V to be the corresponding real (i.e. not generalized) eigenspace. Let Σ be an isotropy subgroup of Γ
satisfying

dim Fix(Σ) = 2. (14)

where Fix(Σ) is the fixed-point subspace of Σ: that is, Fix(Σ) ≡ {x ∈ V | σx = x, ∀σ ∈ Σ}. Then there
exists a unique branch of small-amplitude periodic solutions (with period 2π/ω), having Σ as their group of
symmetries.

Here, the family of mappings is the right-hand side of Eqn. (1), with ε = 0; i.e. F (x, g) = −x +
H tanh(gx)/

√
N (our parameter is denoted g rather than λ). Let Γ = SnE

⊕SnI
, where Sn is the symmetric

group on n symbols; that is, we are allowed to permute the labels on the excitatory cells, and/or to permute
the labels on the inhibitory cells.

It is straightforward to check that F is Γ-equivariant 1. Each permutation on N objects can be represented
as an element in GL(N), the group of invertible N ×N matrices; Γ is a finite subgroup of such matrices and
thus has the structure of a Lie group [22]; since it has a finite number of elements it is also bounded and
thus compact.

Since our model satisfies the assumptions of the Equivariant Branching Lemma, it remains for us to
identify potential bifurcation points (we concentrate on absent self-coupling, i.e. bE , bI = 0). From the
trivial solution (x = 0), we expect solutions to arise when the eigenvalues of −I + gH/

√
N cross the

imaginary axis. In particular, we expect, in order of increasing g,

• A branch of fixed-point solutions when g∗ =
√
N/α/µE : where the eigenvalues corresponding to the

inhibitory population cross zero: here the I cells break into 2 groups of size nI1 and nI2. Along this
fixed point branch, the two groups remain clustered; the excitatory cells also remain clustered, i.e. the
solution branch can be characterized by (xE , xI1, xI2). We refer to this as the “I1/I2 branch”.

1For example, consider k ≤ nE ; then Fk(x, g) = −xk − µE√
N

tanh(gxk) +
∑
j≤nE

µE√
N

tanh(gxj)−
∑
j>nE

αµE√
N

tanh(gxj) =

−xk − µE√
N

tanh(gxk) +C, where C is the same for any cell. C is clearly unchanged under any permutation of the labels of the

excitatory cells, or any permutation of the inhibitory cells.
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• A branch of limit cycles emerging from a Hopf bifurcation when g = 2
√
N/µE/(α−1): here a complex

pair cross the imaginary axis.

From each I1/I2 branch, we find:

• A branch of limit cycles from a Hopf bifurcation (at gH) in which the three cluster pattern is maintained:
i.e. activity can be characterized by (xE , xI1, xI2).

• If nI1 = nI2, then the excitatory activity along this branch is zero: there may be a further branch
point, in which xE moves away from the origin, while I cells remain in their distinct clusters.

• (Possibly) other fixed point branches, in which one inhibitory cluster (xI1) breaks into further clusters.

3.1 Branch of fixed points (from trivial solution)

The first opportunity for a bifurcation from the trivial solution occurs when g∗ =
√
N/α/µE : at this value

of g, nI − 1 eigenvalues pass through zero: the corresponding eigenspace (from Example 1) is the set of all
zero-sum vectors with support in the inhibitory cells only; i.e.

V ≡ ker(dF )0,g∗ = span {

0 · · · 0︸ ︷︷ ︸
nE

vnI

}, vnI
⊥ 1nI

.

To check that Γ acts irreducibly on V it is sufficient to show that the subspace spanned by the orbit of a
single vector v (defined as the set of all values γv, for all γ ∈ Γ) is full rank; this can be readily confirmed
for vnI

=
[

1 −1 0 ... 0
]
, for example.

Suppose we break the inhibitory cells up into precisely two clusters; we allow all permutations within
each cluster, but no longer allow mixing between the clusters. This describes a subgroup of Γ, Σ = SnE

⊕
SnI1

⊕ SnI2
, nI1 + nI2 = nI . Assuming that (without loss of generality) the I1 neurons have the indices

nE + 1, ..., nE + nI1 , and so forth, Σ has the fixed point subspace

Fix(Σ) = span {

0 · · · 0︸ ︷︷ ︸
nE

1 · · · 1︸ ︷︷ ︸
nI1

−nI1

nI2
· · · −nI1

nI2︸ ︷︷ ︸
nI2

} (15)

We can check that Fix(Σ) is a subspace of V ; furthermore dim Fix(Σ) = 1 because it can be described as
the span of a single vector.

Thus, the Equivariant Branching Lemma tells use that we can expect a new branch of fixed points in
which the inhibitory cells break up into two groups (therefore we refer to this as the “I1/I2 branch”).

If the clusters are of equal size (nI1 = nI2), then the solution branch shows the pattern (0, xI1 ,−xI1) (by
uniqueness, it suffices to show that such a branch exists). To see this, first observe that

dxE
dt

= −xE −
µE√
N

tanh(gxE) + C,
dxI1,2
dt

= −xI1,2 +
αµE√
N

tanh(gxI1,2) + C

where

C =

√
NµEα

α+ 1
(tanh(gxE)− (1/2) tanh(gxI1)− (1/2) tanh(gxI2)) .

If xI2 = −xI1 , then tanh(gxI2) = − tanh(gxII ) and therefore

dxI1
dt

+
dxI2
dt

= −xI1 − xI2 +
αµE√
N

(tanh(gxI1) + tanh(gxI2)) + 2C

= −xI1 + xI1 +
αµE√
N

(tanh(gxI1)− tanh(gxI1)) + 2C = 2C

9



while

C =

√
NµEα

α+ 1
(tanh(gxE)− (1/2) tanh(gxI1) + (1/2) tanh(gxI1)) =

√
NµEα

α+ 1
tanh(gxE)

Since
dxI1

dt +
dxI2

dt = 0, tanh(gxE) = 0⇒ xE = 0.
Returning to the inhibitory degrees of freedom, we see their equations are now decoupled:

dxI1,2
dt

= −xI1,2 +
αµE√
N

tanh(gxI1,2)

a fixed point has three possible solutions, if g > g∗; one is xI1,2 = 0, while the others can be found by
inverting a simple expression relating g and xI1 along the solution branch:

−xI1 +
αµE√
N

tanh(gxI1) = 0 ⇒ g =
1

xI1
tanh−1

(√
NxI1
αµE

)
(16)

Thus, we can solve for g as a function of xI1 > 0 and set xI2 = −xI1 ; checking the Taylor expansion of Eqn.
(16) will confirm that xI1 → 0 as g → g∗.

3.2 Hopf bifurcation (on trivial solution) leading to limit cycles

The trivial solution is next expected to have a bifurcation when the complex pair of eigenvalues of −I +
gH/
√
N crosses the imaginary axis: that is, when

g =
2
√
N

µE(α− 1)

This is a simple eigenvalue pair, with real eigenspace (again by Example 1) consisting of vectors with all
E cells synchronized and all I cells synchronized. This is a two-dimensional vector space: therefore, we
expect a branch of periodic solutions to arise in which the excitatory neurons and inhibitory neurons are
each synchronized. Here Σ = Γ = SnE

⊕ SnI
.

3.3 Hopf bifurcation (on I1/I2 branch) leading to limit cycles

On the branch (xE , xI1 , xI2) we find two singularities that lead to new structures. Most significantly we find
a supercritical Hopf bifurcation that leads to a branch of limit cycles, when a pair of complex eigenvalues
crosses the imaginary axis. By Example 2, the corresponding eigenspace is fixed under Σ = SnE

⊕SnI1
⊕SnI2

.
Thus, it is a two-dimensional subspace of Fix(Σ); therefore, by the Equivariant Hopf Theorem, the family
of periodic solutions that emerges here also has Σ as its group of symmetries 2.

In general it is not feasible to solve for gH symbolically: this requires us to solve for the roots of a cubic
polynomial involving exponential functions (e.g. tanh(gxE)) of implicitly defined parameters xE , xI1 , and
xI2 . However, we can identify the bifurcation numerically (all continuations were performed with MATCONT
[13]), and we have found this bifurcation on every specific I1/I2 branch in every specific system we have
investigated.

We can also track the branch of Hopf points numerically in the reduced system (xE , xI1 , xI2) (described
in §4.2), which has the added benefit that the complexity of the system does not increase with N (rather N
is a bifurcation parameter). Here again, we can confirm that the Hopf bifurcation is present in the system
for any N , and have done so for several example nI1/nI2 ratios in §4.3.

2While we do not need this theorem to tell us that a Hopf bifurcation occurs, as the eigenvalue pair is simple, it does
guarantee that the resulting solutions have the same symmetry group
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3.4 Branch points (on I1/I2 branch) leading to new fixed point branch

We may also find branch points on the (xE , xI1 , xI2) curve, in which one of the inhibitory clusters breaks
into a further cluster. This will occur if the eigenspace corresponding to xI1 , say, has a real eigenvalue going
through zero. Because these did not appear to play a significant role in our simulations, we will consider
them no further here.

3.5 Reduced self-coupling

For the remainder of the paper, we will focus on absent self-coupling (bE , bI = 0); here we note how our
conclusions would be modified, in the more general case. At the origin, the locations — but not the qualitative

behavior — of the bifurcations will change. In Example 1.1, a branch point occurs at g∗ =
√
N

αµE
; in Example

1, the location is now g∗,b =
√
N

αµE(1−bI) . Since bI ≤ 1, g∗,b ≥ g∗ always.

Similarly the Hopf bifurcation which occurs at

gH =
2
√
N

µE(α− 1)

with no self-coupling will now occur at

gH,b =
2
√
N

µE (α(1− bI)− (1− bE))

provided that α(1− bI)− (1− bE) > 0 (see the formula for λ below Eqn. (9)).
The relative ordering of gH and gH,b would depend on the relative values of bE and bI ; if bE − αbI ≤ 0,

then gH,b ≥ gH ; otherwise gH,b < gH . However, we can check that the branch point will almost always occur
for a smaller coupling value (than the Hopf point); that is g∗,b ≤ gH,b, with equality if and only if bE = 1.

3.6 Inhibition-dominated networks

In this paper we have focused on balanced networks (α = nI/nE). We briefly summarize how our conclusions
would change, in inhibition-dominated networks (α > α̃ ≡ nI/nE). At the origin, the location of g∗ would

still be given by
√
N

αµE(1−bI) , although now since α > α̃, the critical coupling value would decrease; i.e.

g∗,b,in < g∗,b.
In Eqns. (9) and (10), the condition that nE = αnI has been used; to remove this restriction, replace

any instance of nE in the right column of J̃ with αnI . The condition for a Hopf bifurcation to occur at the
origin would now be (using the trace of J̃ from Eq. 9):

nE − αnI + α(1− bI)− (1− bE) > 0⇒ (α̃− α)nI + α(1− bI)− (1− bE) > 0

or
α(1− bI)− (1− bE) > (α− α̃)(1− f)N

Thus the Hopf bifurcation will still occur as long as inhibition is not too strong (as measured by α − α̃);
however, this depends on N .

4 A bifurcation-preserving reduced-order model

In this section, we show that we can construct a reduced-order model that preserves the dynamics and bifur-
cation structure of the full system, but with a dramatic reduction in the number of degrees of freedom. For
a cortex-like ratio of E to I cells, the interesting bifurcations occur surrounding the eigenvalues associated
with the inhibitory cells or the complex pair. As a result, all the “action” is in the I cells, with the E cells
perfectly synchronized always. In fact, we can formalize this as follows:

11



Lemma 3. Any fixed point or periodic solution of (1), (2) with ε = 0 has a synchronized excitatory popu-
lation: i.e. xj(t) = xk(t), for any j, k ≤ nE.

Proof. Consider the activity of two distinct E cells, say x1 and x2. Then

d(x1 − x2)

dt
= ẋ1 − ẋ2

= −x1 +
µE√
N

tanh(gx2)− (−x2 +
µE√
N

tanh(gx1)) (17)

= −(x1 − x2)− µE√
N

(tanh(gx1)− tanh(gx2))

= −(x1 − x2)− µE√
N

tanh (g(x1 − x2))
(

1− tanh(gx1) tanh(gx2)
)

(18)

The first numbered line, (17), contains so few terms because everything depending on other variables (x3,
and so forth) cancels out; the second line, (18), uses a sum identity for the tanh function. Then

d‖x1 − x2‖2

dt
= 2(x1 − x2)×

[
−(x1 − x2)− µE√

N
tanh (g(x1 − x2))

(
1− tanh(gx1) tanh(gx2)

)]
= −2‖x1 − x2‖2 −

µE√
N

(
(x1 − x2) tanh (g(x1 − x2)

)(
1− tanh(gx1) tanh(gx2)

)
≤ −2‖x1 − x2‖2

with equality if and only if x1 = x2. In the last line, we use the facts that x tanh(gx) ≥ 0 and (1 −
tanh(gx) tanh(gy)) ≥ 0 for any real numbers x and y, and g > 0. Therefore the distance ‖x1 − x2‖ will
always decrease along a trajectory, unless x1 = x2 already.

As a consequence, any fixed point or period solution present in the full system is also present in the
following reduced system, where we collapse all of the excitatory degrees of freedom into one xE :

ẋE = −xE +

(
Nα

α+ 1
− 1

)(
µE√
N

)
tanh(gxE)−

nI∑
j=1

(
αµE√
N

)
tanh(gxIj ) (19)

ẋIi = −xIi +
Nα

α+ 1

(
µE√
N

)
tanh(gxE)−

nI∑
j=1,j 6=i

(
αµE√
N

)
tanh(gxIj ), i = 1, ..., nI (20)

Here, nI is fixed, while N = (α + 1)nI is a parameter of the system. This allows us to explore solutions in
a nI + 1 dimensional system rather than a (α+ 1)nI dimensional system.

We first demonstrate the bifurcation structure on a small network, N = 20, in which we can comfortably
confirm our findings on the full system with numerical continuation (all diagrams shown here were computed
using MATCONT [13]). We treat the global coupling strength, g, as our bifurcation parameter: the origin
is an equilibrium point for all g. At g∗ =

√
N/α/µE , nI − 1 eigenvalues pass through the origin (ε = 0).

This is a branch point: because of symmetry, there exists a branch corresponding to each possible split of
the I cells into two clusters. In Fig. 1A, we show the solution branches that arise in the N = 20 system
(up to symmetry, that is: while there are four possible 3-1 splittings, we display only one here). Because
there are four inhibitory cells, there are two possible splits: 3-1 and 2-2. Both have a branch that originates
from the branch point on the origin g∗ =

√
N/α/µE (in Fig. 1B, these are labeled as “3-1” and “2-2, e=0”

respectively). Along the 2-2 branch, the E cells have zero activity (this is generally the case when the I cells
split into two equal clusters). Both branches then have a Hopf bifurcation from which a branch of limit cycles
emerges; unstable in the 3-1 case, stable in the 2-2 case. The resulting limit cycle respects the clustering,
but the E cell activity is no longer zero in the 2-2 case.

The 2-2 branch has a further branch point, at which the new branch breaks the i1/i2 odd symmetry and
E cell activity moves away from zero. One further branch occurs, in which one of the 2 cell clusters breaks
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Figure 1: Solution branches from symmetry, in the N = 20 system. (A) Solution branches (up to symmetry)
in (g, xI1 , xI3) coordinates. (B) Same figure, viewed in the (g, xI3) plane. (C) Solution branches from the
reduced nI + 1-dimensional system, with nI = 4 and α = 4. Up to symmetry, this figure depicts identical
solutions as the left and center panels. Markers indicate: Hopf bifurcations (red asterisks); branch points
(black triangles); neutral saddles (green crosses).

3.5

g

3

2.5

1.5

2

1
2 4 6 8 10 12

P
e
ri
o
d

A

2.5

g

P
e
ri
o
d

2.4

2.3
2.6 2.8 3 3.2

B

Figure 2: Limit cycles in the N = 20 system. (A) Period vs coupling parameter g. (B) Closeup of period
vs. g, near a stability change in the 3-1 curve. Colors are: 3-1 (blue), 2-2 (green), E/I (orange). Markers
indicate: Neiman-Sackler (red asterisk), limit point of cycles (magenta square), branch pt. of cycles (black
triangle)

apart resulting in a 2-1-1 clustering. Why did the 2-1-1 branch come off of the 2-2 branch, rather than the
3-1 branch? At this time, we don’t have a principled answer. Finally, the origin has a Hopf bifurcation in
which the E cells and I cells separately cluster (we will refer to this as the “E/I” limit cycle).

We next perform the same continuation on the corresponding reduced (5-dimensional: xE and xI1 −xI4)
system. The equilibrium branch structure is shown in Fig. 1C. Up to a permutation of the inhibitory
coordinate labels (we did not force the same cell cluster identities to be tracked in both continuations), the
curves are identical.

Returning to the full system, we now consider the limit cycles which emerge from the three Hopf bifur-
cations we identified (on the 3-1 branch, 2-2 branch, and the origin). In Fig. 2A, we plot the period vs. the
coupling parameter g. In Fig. 2B we can see that the 3-1 branch is stable for g >≈ 2.8; the 2-2 branch, for
g <≈ 3. We note that the 3-1 and 2-2 branches appear to terminate on the E/I branch, shown in Fig. 3A.
Indeed, at this point all three limit cycles coincide, as we can see in Fig. 3B.

4.1 A larger system: nI = 10

The real power of the reduced-order model becomes evident when we increase population size. We now show
results for nI = 10: note that for α = 4, we reduce the dimensionality of the system from 50 to 11. In
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Fig. 4A we show the equilibrium branches found in this system; the same diagram is plotted in the (g, xI10)
plane, with labeled curves, in Fig. 4B. As expected, a branch point occurs on the origin at g =

√
N/αµE .

From this point we see 5-5, 6-4, 8-2, and 2-3-5 solutions emerge. The 5-5 branch has zero activity in the
excitatory cells; as in the previous example, a further branching point yields 5-5 solutions where xE 6= 0.
A further branch point gives a curve of 1-4-5 cluster solutions. There are Hopf bifurcations on each of the
branches that appear at the origin.

We note that most of these branches are cases where splitting is minimal; that is, a single cluster breaks
into two (rather than into three). This confirms our intuition from the Equivariant Branching Lemma,
which guarantees the existence of a unique branch of solutions for each subgroup Σ for which the fixed point
subspace on the kernel of the Jacobian at the bifurcation point has the right dimension: dim Fix(Σ) = 1.
(A more general result extends a version of this result to cases of odd dimensions [28].) At the origin, for
example, the kernel at the branch point is nI − 1 dimensional:

v =
[
0 u

]
, u ∈ RnI , uT1 = 0 (21)

In this case,

v =
[
0 v1 · · · v10

]
, v1 + · · ·+ v10 = 0 (22)

14



Figures/Fig5a_small-eps-converted-to.pdfFigures/Fig5b_small-eps-converted-to.pdf

Figure 5: Limit cycle branches in the “xI + 1” system. (A) Period vs coupling parameter g. (B) Closeup of
period vs. g, near the point where several limit cycle branches collide. Colors are: 5-5 (blue), 6-4 (green), 8-2
(orange), 2-3-5 (red), 2-3-5 secondary (pink), E/I (purple). Markers indicate: Neiman-Sackler (red asterisk),
limit point of cycles (magenta square), branch pt. of cycles (black triangle)

However, this lemma does not exclude the possibility of other solution types, and little is known in general
about fixed point subspaces of even dimensions: such solutions have been found in some systems (for example,
[28]), but there is currently not a general theory guaranteeing or ruling out such solutions [29]. In this system,
at least one branch corresponds to a subgroup Σ for which dim Fix(Σ) = 2: the 2-3-5 branch.

We next look at the limit cycles that arise on from Hopf bifurcations on each branch from the origin.
Period decreases with g (Fig. 5A). As in the N = 20 system, each branch terminates where it collides with
the E/I limit cycle branch that comes off the Hopf point at the origin (Fig. 5B).

4.2 Reduced system: 3-cluster (xE, xI1 , xI2)

We can gain additional insight into arbitrarily large systems by reducing (1) using the assumption of a
three cluster grouping into populations of nE , nI1 , and nI2 , whose activities are given by xE , xI1 and xI2
respectively. The reduced system is

ẋE = −xE + (nE − 1)(µE/
√
N) tanh(gxE) + nI1(µI/

√
N) tanh(gxI1) + nI2(µI/

√
N) tanh(gxI2)

ẋI1 = −xI1 + nE(µE/
√
N) tanh(gxE) + (nI1 − 1)(µI/

√
N) tanh(gxI) + nI2(µI/

√
N) tanh(gxI2)

ẋI2 = −xI + nE(µE/
√
N) tanh(gxE) + nI1(µI/

√
N) tanh(gxI1) + (nI2 − 1)(µI/

√
N) tanh(gxI2).

We can also parameterize the clustering with α and β such that nE = α
α+1N , nI1 = β

β+1
α
α+1N , and

nI2 = 1
β+1

1
α+1N ; that is, β gives the ratio of nI1 to nI2 , just as α gives the ratio of nE to nI . Then the
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equations become (also using the relationship µI = −αµE):

ẋE = −xE +

(
Nα

α+ 1
− 1

)(
µE√
N

)
tanh(gxE)− Nβ

(β + 1)(α+ 1)

(
αµE√
N

)
tanh(gxI1)

− N

(β + 1)(α+ 1)

(
αµE√
N

)
tanh(gxI2) (23)

ẋI1 = −xI1 +
Nα

α+ 1

(
µE√
N

)
tanh(gxE)−

(
Nβ

(β + 1)(α+ 1)
− 1

)(
αµE√
N

)
tanh(gxI1)

− N

(β + 1)(α+ 1)

(
αµE√
N

)
tanh(gxI2) (24)

ẋI2 = −xI2 +
Nα

α+ 1

(
µE√
N

)
tanh(gxE)− Nβ

(β + 1)(α+ 1)

(
αµE√
N

)
tanh(gxI1)

−
(

N

(β + 1)(α+ 1)
− 1

)(
αµE√
N

)
tanh(gxI2); (25)

Here, we can treat N , α and β as continuously varying bifurcation parameters. When N , N
α+1 , and

N
(β+1)(α+1) are all positive integers, the reduced system (23)-(25) lifts onto an N -cell network.

4.3 Scaling with system size

We can use this reduced system to explore how the system behaves as N increases. The system in Eqn.
(23)-(25) allows N to be a continuously varying parameter; therefore, we can vary N while holding all other
parameters fixed. Notably, we will keep β fixed; thus, we will track the behavior of a specific partition ratio
of inhibitory cells (such as 1-to-1 or 3-to-1), as N increases. When N , N

α+1 , and N
(β+1)(α+1) are all positive

integers, the reduced system lifts onto an N -cell network; at each such N , we can track the I1/I2 fixed point
branch from the known bifurcation point g∗ =

√
N/α/µE .

In Figure 6A, we show (xE , xII , xI2) as a function of g for the partition nI1 = nI2 . Colors cycle through
N ; for each N , the curves from top to bottom indicate xI1 , xE , and xI2 . We can also locate the Hopf
bifurcation along this branch, at gH , and measure the frequency of the periodic solutions that emerge at
that point. We plot these quantities in Figure 6B: we can see they each scale like

√
N . In Figure 7, we show

the same quantities computed for two more examples: 1-to-4 and 2-to-3 partitions respectively: the
√
N

scaling of both gH and ω(gH) persists for these different partitions.
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Figure 6: Behavior of three-cluster solutions, for equal-size inhibitory clusters (nI2 = nI1). (A) Activ-
ity levels on the I1/I2 solution branch. Colors cycle through N = 10, 20, 30, 40, 50, 60, 80, 100, 120, 140,
160, 200, 240, 280, 300, 400, 500, 600, 700, 800, and 1000 (note: nI = N/5 must be a multiple of 2). (B)
Bifurcation values g∗, gH , and Hopf frequency ω(gH), as a function of N .

The
√
N scaling of g∗, gH , and ω(gH) yields insight into the expected behavior of these solutions.

First, we should expect these oscillations to become less observable, as N increases; g∗ will eventually reach
unphysical values. Second, we should expect the oscillations to become faster as N increases, also eventually
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Figure 7: Behavior of three-cluster solutions as system size N increases. (A-B) clusters where inhibitory cells
break into groups with size ratio 1 to 4 (nI2 = 4nI1). (A) Activity levels on the I1/I2 solution branch. Colors
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branch in which inhibitory cells break into groups with size ratio 2 to 3 (nI2 = (3/2)nI1). (C) Activity
levels on the I1/I2 solution branch. Colors cycle through N = 25, 50, 75, 100, 125, 150, 200, 250, 300, 400,
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frequency ω(gH), as a function of N .

reaching an unphysical frequency. Thus, we expect the phenomenon we describe here, to be most relevant
for small-to-medium N . In the next section, we will show that we can easily find an example for N = 200;
the oscillation period in that example is comparable to the membrane time constant, which is a reasonable
upper bound for frequency.
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5 Demonstration of relevance to random networks (ε > 0)

We next demonstrate that the bifurcation structure we have described can explain low-dimensional dynamics
in example random networks. We return to equations (1), (2) but now let ε > 0. The right-hand side of Eqn.
(1) can be readily shown to be locally Lipschitz continuous in RN ; thus, solutions will vary continuously as
a function of parameters (such as ε). In particular, we can expect a hyperbolic periodic orbit at ε = 0 to
persist for some range of ε ∈ [0, ε0); here, we will demonstrate this persistence numerically.

We chose parameters µE = 0.7, σ2
E = 0.625 and σ2

I = 2.5. (For ε = 1, the off-diagonal entries of the
resulting random matrices are chosen with the same means and variances as in [37].) We performed a series
of simulations in which we fixed A, and computed solution trajectories for a range of ε in between 1 and 0.
As ε decreases, the network connectivity matrix transitions from full heterogeneity (similar to [37]), to the
deterministic case studied earlier.
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Figure 8: (A-B) Solutions for two different networks of size N = 20: g = 3. Here,
√
NG ≡ H + εA1,2. From

top to bottom: ε2 = 1, 2−1, 2−2, 2−3, 2−4, 2−5, 2−6, and 0. (C) Solutions for a network of size N = 200. The
connectivity matrix is given by

√
NG ≡ H+ εA, for a single A. From top to bottom: ε2 = 1, 2−1, 2−2, 2−3,

2−4, 2−5, 2−6, and 0) (D) Solutions for a network of size N = 200, but where
√
NG ≡ εA (i.e. no mean).

The random connectivity matrix A is the same as in panel (C). In (A-B), the traces of nE excitatory (blue)
and nI inhibitory (red) neurons are shown. In (C-D), only a subset (twenty E and six I cells) is displayed.
(E,F) Eigenvalues of the connectivity matrices

√
NG ≡ H + εA (E) and

√
NG ≡ εA (F) used in panels (C)

and (D).

In Fig. 8(A, B) we show two examples of random networks of size N = 20 and g = 3. For ε = 0 (bottom
panel), we indeed see a three cluster solution as predicted. Consistent with our earlier results on limit cycle
stability, we see the 3-1 rather than the 2-2 clustering here (in both examples here, nI1 = 1 and nI2 = 3).
The same periodic solution persists as ε increases and is still recognizable at ε = 1, illustrated in the top
panel (we note that because of the odd symmetry of the governing equations, −x is also a valid trajectory
and would appear as a reflection across the time axis). In Fig. 8B, the period of the oscillations discernibly
increases with ε.

In Fig. 8C, we show an example from a larger system, with N = 200. Here g = 6; note that a larger
coupling value is needed to exceed the bifurcation of the origin at g∗ =

√
N/α/µE . A periodic trajectory is

evident in all panels. As in the smaller examples, the period of oscillations increases with ε.
To highlight that this structure is caused by the mean connectivity H, we repeat the sequence of simu-

lations, but integrating the system without the mean matrix H. The results are shown in Fig. 8D: here the
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same A, initial condition x0, values of ε, and coupling parameter g were used; therefore the only difference
between each panel in Fig. 8D vs. its counterpart in Fig. 8C is the absence of the mean connectivity matrix
H. Without H, the origin is stable for ε sufficiently small (for g = 6, ε2 < 1/36); hence the zero solutions
in the bottom two panels. As ε2 increases beyond that value we see a fixed point, followed by periodic and
then apparently chaotic solutions (for ε2 > 2−2, a decomposition of the trajectories in terms of principal
components a large number of orthogonal modes (in excess of 25) ). In addition, the characteristic timescale
is much longer than in Fig. 8C (note the difference in the time axes).

Finally, we can contrast the nonlinear behavior with the predicted linear behavior by examining the
spectra of the connectivity weight matrices. In Figures 8E and 8F, we plot the eigenvalues of (H + εA)/

√
N

and εA/
√
N respectively, for the specific networks shown in Figure 8C-D, and for several values of ε. When

ε = 0, the eigenvalues in Fig. 8E cluster into two locations on the real axis, with the exception of one
complex pair, as discussed in Example 1 (Fig. 8E). In contrast, the eigenvalues in Fig. 8F all lie at zero for
ε = 0. As ε increases, the eigenvalues “fan out” from their point locations until they fill a disc of radius g
(here, g = 6). At ε = 1, both matrices have dozens of eigenvalues in the right-half plane.

6 Discussion

In summary, we studied a family of balanced excitatory-inhibitory firing rate networks that satisfy Dale’s Law
for arbitrary network size N . When there is no variance in synaptic connections — each excitatory connection
has strength µE√

N
and each inhibitory connection has strength µI√

N
— we find a family of deterministic

solutions whose existence can be inferred from the underlying symmetry structure of the network. These
solutions persist in the dynamics of networks with quenched variability — that is, variance in the connection
strengths — even when the variance is large enough that the envelope of the spectrum of the connectivity
matrix approaches that of a Gaussian matrix. This offers a striking example in which linear stability
theory is not useful in predicting transitions between dynamical regimes. Given the increasing interest in
network science, and networked dynamical systems in particular, such observations concerning the impact of
symmetry of connectivity can be extremely valuable for studying stability, bifurcations, and reduced-order
models.

Role of the deterministic perturbation H

Gaussian matrices are a familiar object of study in the random matrix community, where Hermitian random
matrices are motivated by questions from quantum physics. Rajan and Abbott [37] studied balanced rank
1 perturbations of Gaussian matrices and found that the spectrum is largely unchanged. These results
have since been extended to more general low-rank perturbations [50, 46]. More recently, Ahmadian et al.
[1] study general deterministic perturbations in the context of neural networks. Similarly, recent work has
studied extremal values of the spectrum of matrices with modular structure similar to that found here[33].
Our system is not low-rank: in fact, the (seemingly trivial) removal of self-coupling makes the deterministic
weight matrix full rank, as we see from Lemma 2. Using the procedure developed in Ahmadian et al. [1], we
can numerically compute the support of spectrum for ε > 0 (not shown): as ε grows, this spectral support
appears to approach that predicted by a Gaussian matrix or a low-rank perturbation.

However, the more fundamental issue here is that — except for predicting when the origin becomes
unstable — the spectrum of the full connectivity matrix is not particularly informative about nonlinear
dynamics. Instead, it is the spectrum of the deterministic perturbation that emerges as crucial here: the
location of the eigenvalues of this matrix can be used to predict the existence of a family of steady states
and limit cycles with very specific structure. In the examples presented here (Fig. 8), these low-dimensional
solutions persist even when ε is large enough that the spectrum of G is visually indistinguishable from the
spectrum of a Gaussian matrix.

It is instructive to compare our findings here with the recent results of del Molino et al. [17], who
consider a balanced excitatory-inhibitory system with a similar 1/

√
N scaling of the mean weights. The

authors find a slow, noise-induced oscillation; similar to our results here, this oscillation arises despite an
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unstable connectivity matrix. Where the two systems differ, is in the deterministic perturbation: del Molino
et al. include self-coupling (their deterministic matrix is rank 1), which yields trivial deterministic dynamics
without a driving current (in the sense of Example 1.2); thus, they do not see the dynamics described here.
Conversely, we do not enforce “perfect balance”

∑
j Gij = 0, which they find is a necessary condition for the

slow oscillation to exist; thus we do not see the oscillations described in that paper. Thus, del Molino et al.
[17] and the current work present two distinct examples of dynamics that arise in an excitatory-inhibitory
system with 1/

√
N scaling of the mean weights, where linear stability of the connectivity matrix is not

informative of the nonlinear dynamics.

Relationship to other work

The reduced system described in §4.2 is similar to a simple version of the Wilson-Cowan equations [51,
52](recently reviewed in [16, 5]). These equations can be interpreted in terms of coupled neural populations
and can be derived as a mean field limit from large networks. A bifurcation analysis of such a mean-field
model was performed recently by Hermann and Touboul [23]. Our system differs in two important ways:
first, the strong coupling (1/

√
N) means that a factor of

√
N remains in the reduced equations. Hermann

and Touboul, in contrast, pick Jij ∼ N
(
J̄
N ,

σ√
N

)
; therefore the mean connection strength ( J̄N ) goes to zero

faster than the typical deviation from this mean ( σ√
N

): as N becomes large, outgoing synapses are no longer

single-signed, in violation of Dale’s Law. Similarly, Kadmon and Sompolinsky [25] analyze random diluted
networks; they show equivalence to all-to-all Gaussian networks with non-zero mean connections that scale
like ( J̄N ). If the number of synaptic connections per population is held constant, dynamic mean field theory
yields predictions for stability which are valid as N →∞.

In contrast, the reduced system in §4.2 does not have a nontrivial limit as N →∞, and is not necessarily
a limit or a system average; rather, it simply gives reduced dynamics in a specific invariant subspace.
Ultimately, every solution of the reduced system is also a perfectly accurate solution of the original system.
The parameter β allows a single equation to capture arbitrary bisections of the inhibitory population; in
principle, adding more equations would allow further branches to be captured. As another consequence of
this scaling, the location of bifurcations g∗ and gH and the expected frequency of oscillations ω(gH), will
scale like

√
N ; arguably, g∗ and ω(gH) will reach unphysical levels, as N becomes large.

Finally, stronger mean scaling may underlie another difference from previous work; analyzing networks
with 1/N scaling, other authors have found population-level oscillations via Hopf bifurcations in reduced
equations for mean activity [18, 7]. However, in those works the oscillations are not necessarily observable at
the level of individual cell activity (particularly strikingly in [7]); here, we have distinct cell-level oscillations
as well as population-level oscillations.

Analysis of spontaneous symmetry breaking enjoys a rich history in mathematical biology, and in math-
ematical neuroscience in particular. However, the literature we are aware of identifies symmetry-breaking
in a structured network dominated by deterministic behavior. For example, symmetry breaking has been
hypothesized to underlie the dynamics of visual hallucinations [15] and ambiguous visual percepts [14]; cen-
tral pattern generators which govern rhythmic behaviors of breathing, eating and swimming [9, 32, 36]; and
periodic head/limb motions [21, 8, 20]. Most recently, Kriener et al. [26] investigate a Dale’s Law-conforming
orientation model, and find that the dynamics are affected by a translation symmetry imposed by the reg-
ularity of the cell grid. In contrast, the present paper identifies an important role for symmetry in a family
of networks usually thought of as dominated by randomness.

Future directions

In this paper, we have focused on analyzing the deterministic system underlying a family of Dale’s Law-
conforming networks. However, our ultimate interest is in the perturbation away from this system: a full
characterization of the dynamics still remains to be completed. Thus far, we have observed more variable
behavior in constrained vs. Gaussian networks: at the same coupling parameter g, individual networks
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display behavior ranging from periodic (as in Fig. 8C) to chaotic, suggesting that this task will be more
subtle than for Gaussian networks (also see [17]). Future work will examine this in more detail.

Recent research has focused on the computational power of random networks in the (nominally unpre-
dictable) chaotic regime. Such networks enjoy high computational power because their chaotic dynamics
give them access to a rich, complicated phase space, which can be exploited during training to perform
complex tasks [45, 44]. It is an open question as to whether the structure of the networks examined here
affects their computational performance on tasks that have been previously studied in Gaussian or other
random ensembles. One preliminary study has yielded intriguing results [4]: we integrated networks with
one of two oscillatory forcing terms I1(t) and I2(t), as described in [34], and compared the performance of
these networks on two computational tasks: encoding network-averaged firing rate with a sub-population,
and discriminating the two inputs in phase space. As expected Gaussian networks performed worse than
constrained networks in encoding population firing rates (similar to what was observed in the balanced net-
works studied by [34]). However, this difference could not be explained solely by the dimensionality of the
solution trajectories (as measured by principal component analysis): constrained networks performed better
than Gaussian networks, that required an equal number of principal components to explain their solution
trajectories. For the second task, we observed that for constrained networks, the trajectories associated with
I1 and I2 appeared to cluster in distinct regions of principal component phase space; this clustering was not
observed for Gaussian networks.

Finally, the ideas explored here can be applied to more general network symmetries: for example, a
network with several excitatory clusters and global inhibition, or several weakly connected balanced networks
[30]. This will both introduce realism, and allow the exploration of whether there are some universal
features that are implied by the broad features of realistic neural network symmetries such as cortex-like
excitatory/inhibitory ratios, spatial range specificity of excitatory vs. inhibitory connections, and so forth.
We look forward to reporting on this in future work.

This last direction, in particular, promises to provide further insight into the study of stability and
bifurcations in reduced-order models. The work in this paper has highlighted how low-dimensional models
of high-dimensional networks can be used to understand the underlying bifurcation structures resulting from
network connectivity. Such studies are directly relevant to neuroscience, where input-output functionality of
extremely high-dimensional networks have been demonstrated to be encoded dynamically in low-dimensional
subspaces [27, 6, 53, 31, 11, 41, 40]. We hope that studies such as this can help highlight both methods for
characterizing the collective behavior of networked neurons as well as the limits of traditional mathematical
methods in determining stability of such systems. In either case, the results suggest that further study is
needed to understand the role of connectivity in driving network level dynamics.
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