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We examine the effect of the phase-resetting curve on the transfer of correlated input signals into correlated
output spikes in a class of neural models receiving noisy superthreshold stimulation. We use linear-response
theory to approximate the spike correlation coefficient in terms of moments of the associated exit time problem
and contrast the results for type I vs type II models and across the different time scales over which spike
correlations can be assessed. We find that, on long time scales, type I oscillators transfer correlations much
more efficiently than type II oscillators. On short time scales this trend reverses, with the relative efficiency
switching at a time scale that depends on the mean and standard deviation of input currents. This switch occurs
over time scales that could be exploited by downstream circuits.
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I. INTRODUCTION

Throughout the nervous system, neurons produce spike
trains that are correlated from cell-to-cell. This correlation or
synchrony has received major interest because of its impact
on how neural populations encode information. For example,
correlations can strongly limit the fidelity of a neural code as
measured by the signal-to-noise ratio of homogeneous popu-
lations �1–4�. However, the presence or stimulus dependence
of correlations can also enhance coding strategies that rely
on discriminating among competing populations �5–7�; in
general, the effects of correlation on coding are complex and
can be surprisingly strong �5–16�. In addition, stimulus-
dependent correlations can modulate or carry information di-
rectly �17–24�. Correlations also play a major role in how
signals are transmitted from layer-to-layer in the brain
�25–27�.

What is the origin of correlated spiking? One natural
mechanism is the overlap in the inputs to different neurons—
these common inputs can drive common output spikes. This
poses the question: how does the process of transferring of
input correlations to spike train correlations depend on the
nonlinear dynamics of individual neurons? Such correlation
transfer has been modeled in integrate-and-fire-type neurons
�20,27–31� and, very recently, in phase reductions in neural
oscillators �32,33�.

In particular, �32,33� contrast the correlated activity
evoked in neural oscillators with type I �i.e., always positive�
vs type II �i.e., positive and negative� phase-resetting curves
�PRCs�. When correlations are measured via equilibrium
probability distributions of pairs of neuron phases or via
cross-correlation functions of these phases over time, type II
oscillators display relatively higher levels of correlation
�32,33�. These results for phase correlation imply a similar
finding for spike train correlation in the limit of very short
time scales �the connection arises because the spike train
cross-correlation function at �=0 can be related to the prob-
ability that phases will be nearly coincident for the two cells
�34�.�

In this study, we also contrast correlation transfer in type
I and type II oscillators �as well as in a continuum of inter-
mediate models�. The primary extension that we make is to
study spike train correlation over a range of different time
scales. Specifically, we measure the correlation coefficient �T
between the number of spikes produced by a pair of neurons
in a time window of length T:

�T =
cov�n1,n2�

�var�n1��var.�n2�
. �1�

Here, n1 and n2 are the numbers of spikes output by neurons
1 and 2, respectively, in the time window; see Fig. 1 for an
illustration.

We first derive a tractable expression for �T in the long
time scale limit T→� �cf. �20,30��. This can be given in
terms of moments of an associated exit time problem. This
reveals a dramatically higher level of long-time scale corre-
lation transfer in type I vs type II neural oscillator models,
the opposite of what was found in the earlier studies over
short time scales �see Fig. 1�. Next, we study �T for succes-
sively shorter T, recovering the earlier findings of �32,33�,
and noting the critical time scale below which type II neu-
rons become more efficient at transferring correlations. Ad-
ditional results on how correlation transfer depends on neu-
rons’ operating range—that is, their spike rate and coefficient
of variation �CV� of spiking—are developed as we go along.

II. MODELS OF NEURAL OSCILLATORS
AND CORRELATION TRANSFER

A. Phase reductions

Neural oscillators can be classified into two types based
on their intrinsic dynamics. Both types have the feature that
as applied inputs �or “injected current”� increases, the system
transitions from a stable rest state to periodic firing through a
bifurcation, the nature of which defines the type �35�. Here,
as is often taken to be the case, type I neurons undergo a
saddle node on invariant circle bifurcation, in which two
fixed points collide and disappear, producing a periodic orbit
that can have arbitrarily low frequency. Type II neurons un-
dergo either a subcritical or supercritical Hopf bifurcation, in*akb6@washington.edu
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which a periodic orbit emerges at a nonzero minimum fre-
quency.

Once the oscillator has passed through this bifurcation, it
can be described by a single equation for its phase, in which
inputs are mediated through a PRC which indicates the de-
gree to which an input advances or delays the next spike. A
PRC is derived for a mathematical model by phase reduction
methods and determined experimentally by repeated pertur-
bations of a system by input “kicks” �36�. Several investiga-
tors have demonstrated a connection between the type of
bifurcation and the shape of the PRC: a type I oscillator PRC
is everywhere positive so that positive injected current ad-
vances the time of the next spike �37�, whereas a type II PRC
has both positive and negative regions, so positive inputs
advance or delay the next spike depending on their timing
��38�; see also �39��. Moreover, the form of type I and type
II phase-resetting curves near the bifurcation are given by
�1−cos �� and −sin��� respectively. We investigate these two
PRCs, together with a family of PRCs given by a linear
combination of these prototypical examples:

Z��� = − � sin��� + �1 − ���1 − cos����, 0 � � � 1.

�2�

Here � homotopes the PRC from “purely” type I to type II;
along the way, intermediate PRCs more representative of
phase reductions of biophysical models are encountered
�37,39,40�. For �=0, the phase model is exactly equivalent
to the theta model and to the superthreshold quadratic inte-
grate and fire model �38�.

The question of how oscillators with different PRCs syn-
chronize when they are coupled has been the subject of ex-
tensive study. Here, we ask about a different mechanism by
which such oscillators can become correlated. Specifically,
we consider an uncoupled pair of neurons receiving partially
correlated noise. The dynamics have been reduced to a phase
oscillator; each neuron is represented by a phase only. Each
phase �i is governed by the stochastic differential equation

d�i = �dt + 	Z��i� � ��1 − cdWt
i + �cdWt

c�, �i � �0,2
� ,

�3�

where � ,	�0, � denotes the Stratonovich integral, and

Z��� = − � sin��� + �1 − ���1 − cos���� .

Each �i receives independent white noise, dWt
i, and common

white noise dWt
c is received by both. The noises are weighted

so that the total variance of the noise terms in Eq. �3� is 	2.
For the remainder of the paper, we treat the equivalent Itô
integral

d�i = �� +
	2

2
Z��i�Z���i��dt + 	Z��i�dWt, �i � �0,2
� .

�4�

B. Measuring spike train correlation

We record spike times as those times ti
k at which �i crosses

2
 �37,38�. Because Z�2
�=0 and ��0 for all the models
we consider, � always continues through 2
 and begins the
next period of interspike dynamics. We consider the output
spike trains yi�t�=�i��t− ti

k�, where ti
k is the time of the kth

spike of the ith neuron. The firing rate of the ith cell, 	yi�t�
,
is denoted i. As a quantitative measure of correlation over a
given time scale T, we compute the following statistic:

�T =
cov�n1,n2�

�var�n1��var�n2�
,

where n1 and n2 are the numbers of spikes output by neurons
1 and 2, respectively, in a time window of length T; i.e.,
ni�t�=�t

t+Tyi�s�ds.
By writing ni in terms of a discretized spike train �i.e.,

ni=�t1=t
t+T/�tyi�t1�� we can write �T in terms of the autocorrela-

tion and cross-correlation functions of yi; specifically

�T =

�−T
T C12�t�

�T − �t��
T

dt

�
−T

T

C11�t�
�T − �t��

T
dt

−T

T

C22�t�
�T − �t��

T
dt

, �5�

where Cij���= 	yi�t�yj�t+��
−i j �see �41�; also Appendix A
in �4��. It will be convenient for us to analyze the system in
the Fourier domain. By the Wiener-Khinchin theorem, we
can write Eq. �5� in terms of the power spectra Pij �	ŷi

�ŷ j
 as

FIG. 1. �Color online� �a� A schematic of the setup and correlation metric used in this study. Two cells receive both common and
independent input, here modeled as white noise. Correlation of output spike trains is measured as the normalized covariance of spike counts
over a finite time window T �see Eq. �5��. �b� The principal result of our study; that correlation transfer efficiency depends on both internal
dynamics and time scale of readout, with relative efficiency between type I �red or light gray� and type II �blue or dark gray� switching as
readout time scale changes. The graph shows �T for a particular set of model parameters �� ,	� vs the measurement time window T �T is
shown on a logarithmic scale�. Insets show the phase-resetting curves used for the type I and type II models.
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�T =
�−�

� P12�f�KT�f�df

��−�
� P11�f�KT�f�df�−�

� P22�f�KT�f�df
, �6�

where the kernel KT is

KT�f� =
4

Tf2sin2�Tf

2
� .

III. CORRELATION IN THE LONG
TIME SCALE LIMIT

A. Linear-response theory for �T

In this section we recall a derivation for a linear-response
approximation to the spike train correlation; fuller discussion
can be found in �20,30,42�. Assume that the fraction of noise
variance c of the correlated input noise is small; then we treat
the system with common noise as a perturbation to the sys-
tem without common noise. Because the common noise is
small, we will assume that the response of the system can be
treated by linear-response theory; that is in the Fourier do-
main it can be characterized by a susceptibility function
A�,	�f� which gives the scaling factor between input and
response at frequency f .

Specifically, we make the ansatz �42� that the Fourier
transform can be written to lowest order in c

ŷi�f� = ŷ0,i�f� + �cA�,	�f�Q̂�f� ,

where y0,i is the spike output of the neuron without corre-

lated noise, Q̂�f� is the Fourier transform of the correlated
noise, and A is the susceptibility function. Then the cross-
spectrum of the two spike trains, P12�f�, satisfies

P12�f� = c�A�,	�f��2	Q̂�Q̂
 = c	2�A�,	�f��2

as the base spike trains are independent of each other and the
correlated noise Q, and taking the variance of Q to be 	2.
Then at any finite T, �T is linear in c, and �cf. �4,30��:

�T��,	� = cST��,	� �7�

=c
	2�−�

� �A�,	�f��2KT�f�df

��−�
� P11�f�KT�f�df�−�

� P22�f�KT�f�df
. �8�

Note that ST�� ,	� multiplies the input correlation c to yield
the spike train correlation; for this reason we refer to
ST�� ,	� as the correlation gain. We recover a simple expres-
sion for Eq. �6� in the limit T→�. In the numerator, we
converge to the value of the integrand at 0 as f →�:

c	2�A�,	�0��2.

As A�,	�0� is the limit of the susceptibility function as the
frequency becomes arbitrarily small, it must be equivalent to
the ratio of the dc response of the system �that is, the firing
rate � to the strength of a constant dc input. Later we will
use the symbol � to include a dc input explicitly for the
purposes of this computation. Therefore we define

d

d�
� A�,	�0� . �9�

The denominator converges to P11�0� �assuming the unper-
turbed oscillators to be statistically identical� which for re-
newal processes is simply CV2.

Putting these results together, as T→�, the finite-time
correlations satisfy

lim
T→�

�T = c

	2� d

d�
�2

CV2
� cS��,	� �10�

where  is the mean output firing rate, CV is the coefficient
of variation in the interspike intervals �ISIs�, 	 is the input
noise amplitude. Each quantity can be computed from statis-
tics of a single oscillator and combined to yield the long-time
correlation gain S�� ,	�.

B. Computing moments of the exit time problem

The quantities , CV, and d
d� are related by moments of

the ISIs and as such can be computed using the associated
exit time problem. Specifically,

 =
1

T1�0�
, �11�

CV =
��T2�0� − �T1�0��2�

T1�0�
, �12�

d

d�
= −

1

�T1�0��2

dT1�0�
d�

, �13�

where T1�0� is the average time to cross �=2
, given a start
at �0=0 �in other words, given a start at the last spike�, and
T2�0� is the second moment of this same quantity.

T1�x� and T2�x� are given by solutions of the adjoint equa-
tion �43�;

f i�x� = A�x��xTi +
1

2
B�x��x

2Ti, �14�

where

f1�x� = − 1, �15�

f2�x� = − 2T1�x� , �16�

A�x� = � +
	2

2
Z�x�Z��x� , �17�

B�x� = 	2Z�x�2, �18�

and boundary conditions are given by Ti�2
�=0, �Ti /�x
bounded at x=0. The solution can be obtained by integrating
Eq. �14� twice over the range �0,2
�, using the integrating
factor �:
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��x� = exp�x

dx�
2A�x��
B�x��

�, ��0� = 0. �19�

If �=0, then B�x� has no interior zero and we proceed as
follows:

��
�Ti

�x
��

=
2f i�x�
B�x�

��x� , �20�

�Ti

�x
=

1

��x�0

x 2f i�x��
B�x��

��x��dx�. �21�

If ��0 then B�x� has an interior zero at ����, and we inte-
grate separately on �0,����� and ����� ,2
�:

�Ti

�x
�x� = �

1

��x�0

x 2f i�x��
B�x��

��x��dx�, x � ����

1

��x�����

x 2f i�x��
B�x��

��x��dx�, x � ���� .�
�22�

Finally Ti�0� is given by a second integration

Ti�0� = 
2


0 �Ti

�x
�x�dx . �23�

Here, the argument of the exponential function in ��x� can
be any antiderivative of 2A�x�

B�x� . ��0� �and �������, if ��0�
is zero because the adjoint Eq. �14� has an irregular singu-
larity at x=0 �and at x=�����; consequently 2A�x�

B�x� →� and
�xdx 2A�x�

B�x� →−� as x→0+ �and as x→����+�. This accounts
for the difference between Eq. �23� and, for example, Eq.
�5.2.157� in �43� �44�. Note that, also because Z�0�=0 and
��0, x=0 is an entrance boundary so any exit must take
place at 2
 �i.e., an exit from the interval �0,2
� is equiva-
lent to a spike�.

For the class of PRCs that we consider, the antiderivative
in Eq. �19� can be evaluated symbolically, therefore ��x� can
be evaluated analytically. The integrals in Eqs. �21� and �23�
must be evaluated by numerical quadrature.

We next discuss the integrability of Eqs. �21� and �22�.
First, we consider the case of the theta neuron ��=0�, for
which B�x� has only two zeros; at 0 and 2
. We can confirm
the integrability by checking the following conditions:

lim
x→0+


0

x 2f�x��
B�x��

��x��dx� = 0, �24�

lim
x→0+

��x� = 0, �25�

lim
x→2
−


0

x 2f�x��
B�x��

��x��dx� = � � , �26�

lim
x→2
−

��x� = � . �27�

If these are satisfied then by l’Hôpital’s rule,

�Ti

�x
=

1

��x�0

x 2f i�x��
B�x��

��x��dx� �28�

is finite at the end points; in fact

lim
x→0

�Ti

�x
= lim

x→0

f i�x�
A�x�

, �29�

lim
x→2


�Ti

�x
= lim

x→2


f i�x�
A�x�

, �30�

and we can use a quadrature method that can handle inte-
grable singularities. For ��0, B�x� has one interior zero,
dividing the domain into two intervals on which Eq. �14� has
irregular singularities at each end. � must be computed
separately on each interval. Again we find that

�Ti

�x is finite on
each interval, permitting computation of Eq. �22� with a stan-
dard quadrature routine.

Finally, we compute the derivative of the firing rate with
respect to a dc input; i.e., �

�� for the system

d� = �dt + Z�����dt + 	 � dWt�, � � �0,2
� , �31�

which is equivalent to the Itô SDE

d� = �� +
	2

2
Z���Z���� + �Z����dt + 	Z���dWt,

� � �0,2
� . �32�

We wish to differentiate  with respect to � and evaluate at
�=0. According to Eq. �13� we must evaluate dT1 /d��0,��
where the drift term A�x ,��=�+	2 /2Z�x�Z��x�+�Z�x� is a
function of both x and �. In general, T1, T2, and � are also
functions of two arguments �e.g., T1�x ,���, and we have in-
dicated the arguments where needed for clarity. The notation
�
�x will refer to differentiation with respect to the first argu-
ment.

We first consider the case �=0. Rewriting Eq. �23�, we
have

T1�0,�� = 
2


0 1

��x,��0

x − 2

B�x��
��x�,��dx�dx , �33�

where

��x,�� = exp�x 2A�x�,��
B�x��

dx�� . �34�

Therefore,
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�T1

��
�0,�� =

d

d��2


0 
0

x − 2

B�x��
��x�,��
��x,��

dx�dx� = 
2


0 
0

x − 2

B�x��
���x�,����x,�� − ���x,����x�,��

��x,��2 dx�dx . �35�

We use the relationship

���x,�� = ��x,��
0

x 2

B�y�
�A�y,��

��
dy �36�

to find that

�T1

��
�0,�� = 

2


0 
0

x 2

B�x��
��x�,��
��x,�� x�

x 2

B�y�
�A�y,��

��
dydx�dx

= 
2


0 
0

x 
0

y 2

B�x��
��x�,��
��x,��

2

B�y�
�A�y,��

��
dx�dydx

�37�

assuming that the order of integration over x� and y can be
switched. By Tonelli’s theorem, this is valid if the integrand
is single signed. For �=0, the integrand is always nonnega-
tive �note that �A

�� �x�=Z�x� and that B�x� is non-negative�.
Next, we establish the integrability of expression �37�.

Rewriting, we have

�T1

��
�0,�� = 

2


0 1

��x,��0

x 2

B�y�
�A

��
��y,��

�
1

��y,��0

y 2

B�x��
��x�,��dx�dydx

= 
2


0 1

��x,��0

x 2

B�y�
�A

��
��y,��

�T1

�x
�y�dydx .

As �A
�� �x�=Z�x� and �T1 /�x are bounded, we can use the

same conditions for integrability unchanged from Eqs.
�24�–�27�.

A parallel derivation to Eqs. �33�–�37� can be made when
��0. In this case we have

�T1

��
�0,�� = 

2


0 �

��
� �T1

�x
�x,���dx , �38�

where we have used the boundary condition T1�2
 ,��=0.
The integrand is given by

�

��

�T1

�x
�x,�� = �0

x 
0

y 2

B�x��
��x�,��
��x,��

2

B�y�
�A�y,��

��
dx�dy , x � ����


����

x 
����

y 2

B�x��
��x�,��
��x,��

2

B�y�
�A�y,��

��
dx�dy , x � ���� .� �39�

Here, the switch in the order of integration is justified by the
fact that the integrand �A

�� is positive on �0,����� and nega-
tive on ����� ,2
�, while the range of integration in Eq. �39�
is always restricted to lie in one region or the other.

C. Patterns of correlation transfer over long time scales

Having derived and shown how to evaluate formula �10�,
we next use it to evaluate spike count correlations �. The
results are formally valid in the limits of time scale T→�
and input correlation c→0 so we also conduct Monte Carlo
simulations to reveal behavior of �T for large but finite T and
intermediate input correlation up to c=0.3 and to test the
applicability of our formula in these regimes.

We compute these spike correlations over a range of �
and 	 values that explores a full dynamical regime of the
model. By this we mean that the values we use span from
dominantly mean-driven firing �e.g., �=2.5, 	=0.4 at lower-
right white square in Fig. 2�, to dominantly fluctuation-

driven firing �e.g., �=0.4, 	=2.4 at upper-left white square�
and all intermediate possibilities.

The resulting output firing rate  for �=0, computed via
Eq. �11�, ranges from 0 to 0.9 �measured in spikes per time
unit�; see Fig. 2 �left panel�. Note that  increases strongly
with � and only weakly with 	 �see Sec. III D�. The CV �via
Eq. �12�� ranges from 0 to 0.55 �Fig. 2, right panel�. As noted
by �45,46�, the superthreshold quadratic integrate and fire
model—equivalent to our �=0 phase model—has an upper
bound on CV of 1 /�3� .577. By using a time change in the
equations, CV can be seen to depend on the input parameters
� and 	 only through the relationship 	̃=	 /�� �see later in
this section� and is therefore invariant on level curves of this
ratio. As Fig. 2 shows, CV increases with this ratio.

We first fix a moderately long time window T=32, corre-
sponding to 1.6–16 interspike intervals for the parameter
range at hand, and compute �T from Monte Carlo simulations
for a range of correlation strengths c� �0,0.3�; see Fig. 3
�right column�. We see that, for type I models, �T is close to
linear in this range of c, as for the linear-response theory. For
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FIG. 2. Firing rate �left� and CV �right� of the theta model neuron ��=0� over a range of intrinsic phase speed � and noise variance 	2.
Sample spike trains are illustrated for four sets of �� ,	� values �see white squares�, notably mean-driven �high �, low 	-bottom-most spike
train� and fluctuation-driven �low �, high 	-top-most spike train�. Level sets of 	̃� 	

��
are plotted �see text in Sec. III C�.

FIG. 3. �Left� Susceptibility S�� ,	� for global model parameter �=0 �top�, �=0.5 �middle�, and �=1 �bottom� over a range of intrinsic
phase speed � and noise variance 	2; lines are level sets of 	̃�	 /��. �Right� Spike count correlation �T vs fraction of correlated noise c
from Monte Carlo simulations for �=0 �top�, �=0.5 �middle�, and �=1 �bottom�. Error bars indicate the standard deviation over eight trials.
The specific �� ,	� values plotted are those shown in Fig. 2. �T is measured over a time window of T=32 ms.
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type II models, linearity holds over a decreased range of c.
Additionally, note that the limiting formula Eq. �10� for �
gives a close approximation to �T=32 for type I models in
more fluctuation-driven regimes. The approximation is worse
for dominantly mean-driven firing, and for type II models,
but the trend that correlations are lower for type II models is
correctly predicted by Eq. �10�.

Next, we discuss the trends in � predicted by the linear-
response theory. Two findings stand out in the left hand pan-
els of Fig. 3. First, values of S�� ,	� �and hence ��Sc� are
much larger for type I ��=0� than for type II ��=1� models.
Second, S�� ,	� is nearly constant as the input mean and
standard deviation � and 	 vary over a wide range, for both
the type I and type II models. In sum, type I models transfer
�66% of their input correlations into spike correlations over
long time scales; type II models transfer none of these input
correlations, producing long-time scale spike counts that are
uncorrelated. Additionally, an intermediate model ��=1 /2�
transfers an intermediate level of correlations, and these lev-
els do depend on � and 	. We will provide a partial expla-
nation for overall trends in correlation transfer with � in Sec.
III D.

Figure 4 provides an alternative view of these results by
plotting the correlation gain S vs the firing rate and CV that
are evoked by input parameters drawn from the whole range
of � ,	. First, note that S does not vary with firing rate for
the type I or type II models, as expected from the previous
plots. For the intermediate ��=1 /2� model, S does not dis-
play a clear functional relationship with firing rate, but there
is such a relationship with CV �Fig. 4�b��. We note that all of
these findings for the phase oscillators under study are in
contrast to the behavior of linear integrate and fire neurons,
which produce a strongly increasing, nearly functional rela-
tionship with firing rate �20,30�; we revisit this point in the
discussion.

Now, we discuss a scaling relationship for the underlying
equations that simplifies the parameter dependence and helps
to explain the plots of S vs  and S vs CV. This symmetry
�which was noted in �45� for the quadratic integrate and fire
model�, allows us to reduce the free parameters � ,	 to one
parameter 	̃�	 /��. The stochastic differential equation

d�t = �� +
	2

2
Z���Z���� + �Z����dt + 	Z���dWt

becomes, under a time change �=�t,

d�� = �1 +
	2

2�
Z���Z���� +

�

�
Z����d� +

	

��
Z���dW�

�40�

=�1 +
	̃2

2
Z���Z���� +

�

�
Z����d� + 	̃Z���dW�. �41�

Each exit time must scale identically under this transforma-
tion so that the exit time moments scale as

T̃1 = �T1 → ̃ =


�
, �42�

T̃2 = �2T2, �43�

and therefore the CV=�T̃2− T̃1
2 / T̃1 is invariant under the

time change. Thus, the CV, which is computed with �=0,
depends only on 	̃, not on � and 	 separately. Now consider
the two sets of parameters �� ,	� and �1, 	̃�, such that 	̃
=	 /��. According to Eq. �41�, the effect of � is scaled by
1 /� so that

d̃

d�
=

1

�

d

d�
. �44�

Therefore, the susceptibility

S��,	� =

	2� d

d�
�2

CV2
�45�

=

	2 1

�2� d̃

d�
�2

CV˜2 ̃

�

�46�

=
	2

�

� d̃

d�
�2

CV˜2̃
�47�

=S�1,	̃� �48�

is invariant under the change in parameters �� ,	�
→ �1,	 /���; exactly the same change in parameters under
which the CV is conserved. Therefore, if there is a single
contour for each value of CV �i.e., there are no disconnected
contours�, we expect that S will be a function of CV, as in
Fig. 4�b�. Conversely, note that the firing rate will vary
widely over any particular 	̃ contour so that many different
firing rates can be expected to yield the same S; unless S is
constant, we expect a given firing rate to be associated with
a range of S values, as also seen in Fig. 4�a�. The uniqueness
of CV level sets for �=0 is previously known �46�.

Finally, in Fig. 5, we demonstrate that the behavior of S
seems to roughly “interpolate” between the �=0,1 /2,1
cases considered here as it varies over the whole range of �.
S typically decreases as the total noise variance 	 increases.

FIG. 4. Scatter plots of susceptibility S�� ,	� vs firing rate  �a�
and susceptibility vs coefficient of variation �CV� �b� for global
model parameter �=0 �light gray�, �=0.5 �medium gray�, and �
=1 �black�. S�� ,	� was computed for the ranges of intrinsic phase
speed � and noise variance 	2 shown in Fig. 3.
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D. Analytical arguments for type I vs type II
difference in correlation gain S

We now seek to explain the drop in S�� ,	� �Eq. �10�� as
� increases, ranging from type I ��=0� to type II ��=1�
PRCs. There are two tractable limits in which explicit calcu-
lations can be performed. First, we show that S�� ,	�=0 for
“purely” type II models, for any values of � and 	. Next, for
arbitrary �, we derive an S�� ,	� valid to first order in
	2—this reveals a monotonic decrease in S with � and gives
a good description of correlation transfer even for 	�1. Fi-

nally, we give an intuitive argument to buttress these calcu-
lations.

1. S=0 for purely type II models

We start with �=1. It is straightforward to see that
d /d�=0 for any � ,	. Recall that d /d� is given by the
integral of a function over the interval �0,2
�, in Eq. �38�;
we will show this function integrates to zero. Rewriting Eq.
�39�, using ��1�=
,

�

��

�T1

�x
= �

1

��x,��0

x 2

B�y�
�A

��
�y,����y,�� �

�T1

�x
�y,��dy , x � 


1

��x,��


x 2

B�y�
�A

��
�y,����y,�� �

�T1

�x
�y,��dy , x � 
 .� �49�

��x ,��, B�x�, and
�T1

�x �x ,�� are each 
 periodic �i.e., f�x�
= f�x+
��. �A

�� �Z�x�=−sin�x�, however, is antiperiodic
�f�x�=−f�x+
��. Then

�

��

�T1

�x
�x,�� = −

�

��

�T1

�x
�x + 
,�� �50�

and integrating �
�� �

�T1

�x �x ,��� over a full period x� �0,2
�
yields zero. Plugging this into Eq. �10�, we see that
S�� ,	��0 for models with type II PRCs Z���=−sin��� �
and CV are always nonzero in this paper�.

2. Evaluation of S(� ,�) in the limit �\0

We next derive an analytical expression for S�� ,	� in the
limit 	→0. We will show that each relevant term T1�0�,
T2�0�, and

�T1

�� �0� admits an asymptotic expansion in the
small parameter 	2. We compute these terms explicitly and
combine them to get the first term of the associated expan-
sion for S�� ,	�.

If we examine the integral in Eq. �21� and the inner inte-
gral of Eq. �35� for �=0 or the integrals in Eq. �22� and Eq.
�39� for ��0, we see that we can write each of them in the
form

1

Z�y�a

y

f�x��exp� 1

	2 �F�x�� − F�y���dx�, �51�

where F�x�� is strictly increasing on �a ,y�. a may be either 0
or ��, depending on the circumstance. This integral admits
an asymptotic expansion in 	2, with successive terms essen-
tially given by integrating by parts and retaining only the
contribution from the end of the interval where F�x��−F�y�
=0. In the case of T1�x� we have

f�y� =
1

Z�y�
.

In the case of T2�x� we have

f�y� =
T1�y�
Z�y�

and for d /d�

f�y� =
�T1

�x
�y� .

In each case F�x�� is given by the antiderivative of
2� /Z�x��2; because this is a positive function on �0,�����
and ����� ,2
�, F�x�� must clearly be increasing on these
intervals. The integral


a

b

f�x��exp����x���dx� �52�

admits the following expansion for �→�, if ���0 on �a ,b�
and f meets certain conditions �see, for example, �47�, �:

FIG. 5. Susceptibility S�1,	� for a continuum of models speci-
fied by �� �0,1�.
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I��� � �
n=0

�
�− 1�n

�n+1 �exp����x��� 1

���x�
d

dx
�n f�x�

���x��a

b

.

�53�

If ��x�→−� as x→a, as is the case in our use of the for-
mula, only the right-hand end point makes a contribution to
the integral.

Substituting this contribution into the outer integral and
evaluating these quantities to the required order, we find

T1�0� =
2


�
+ O�	4� , �54�

T2�0� =
4
2

�2 + 	2� 


�3 �3 − 6� + 4�2�� + O�	4� , �55�

dT1

d�
�0� = −

2


�
�1 − �� + O�	4� . �56�

In passing, we note that the firing rate gain, d /d�, is given
by

d

d�
= −

1

T1�0�2

dT1

d�
�0� �57�

=
1 − �

2

+ O�	4� . �58�

Putting these results together we see that

S��,	� =
2�1 − ��2

3 − 6� + 4�2 + O�	2� . �59�

It can be readily checked that this function decreases mono-
tonically from a value of 2/3 at �=0, to a value of 0 at �
=1.

While this calculation is in the limit 	→0+, it in fact
remains a good approximation for moderate 	, in fact, even
for 	��. Figure 6 shows the limiting value as well as com-
puted S values at small �relative to �=1; 	=0.2� and mod-
erate �	=1� values of 	. The limiting value remains a good
approximation throughout this range.

3. Argument for general PRCs

We close this by section by noting that, for arbitrary PRCs
Z��� and small 	,

d/d� � 
0

2


Z���d� .

The calculations showing this are in the appendix. While
S�� ,	�=	2�d /d��2 /CV2 has other terms that depend on
the PRC, this calculation does suggest that S is likely to be
smaller for PRCs with lower means in general, and lends
some intuition to what drives the decrease in S with �.

IV. CORRELATION OVER SHORTER
TIME SCALES

Figure 7 shows �T computed for a sequence of finite time
windows T. We can characterize the nondimensional T in
terms of its length in terms of a typical interspike interval
�ISI� of the oscillator. The time window T=1 varies from
0.05–0.5 ISI, roughly, from left to right; the time window
T=32 varies from 1.6–16 ISI.

We see a striking dependence of transferred correlations
on T. �32 is larger for type I than for type II oscillators for
most parameter values, consistent with our long time results.

However, �1�� ,	� is smaller for type I than for type II for
95% of parameter pairs �� ,	�. This is consistent with recent
results on the response of phase oscillators to correlated
noise �32,33�; in particular �32�, study the distribution of
phase difference ����1−�2 between two oscillators driven
by common noise and find that the probability that ��=0 is
greater for type II than for type I. As noted in the Introduc-
tion, this metric can be shown to have a direct relationship
with our �T as T→0. To summarize, the “switch” in ST�� ,	�
�from higher correlation gain in type II models to higher
correlation gain in type I� occurs at time scales T over which
each cell fires several spikes; such time scales are biologi-
cally relevant, as we discuss in the next section.

V. SUMMARY AND DISCUSSION

We asked how correlated input currents are transferred
into correlated spike trains in a class of nonlinear phase mod-
els that are generic reductions in neural oscillators. Linear-
response methods, asymptotics, and Monte Carlo simulations
gave the following answers:

�1� Over long time scales, type I oscillators transfer 66%
of incoming current correlations into correlated spike counts,
while type II oscillators transfer almost none of their input
correlations into spike count correlations. Models with inter-
mediate phase response curves transfer intermediate levels of
correlations.

�2� Over long time scales, correlation transfer in type I
and type II models is independent of the rate and coefficient
of variation �CV� of spiking. For intermediate models, cor-
relation transfer decreases with CV and shows no clear de-
pendence on rate.

�3� That there is a time scale T beneath which these re-
sults reverse: type II neurons become more efficient at trans-

FIG. 6. lim	→0+ S�1,	� for a continuum of models specified by
�� �0,1� �dashed black line�. This is a good approximation for
small �	=0.2; dark gray line� and moderate �	=1; light gray line�
values of 	.
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ferring correlations than type I, there is an increasing depen-
dence of correlation transfer on spike rate, and the strong
dependence on CV weakens.

We note that results �1� and �2� are highly distinct from
findings for the leaky integrate-and-fire neuron model, for
which up to 90%–100% of correlations are transferred over
long time scales, with this level depending strongly on firing
rate but very weakly on CV �20,30�. This demonstrates a
strong role for subthreshold dynamics in determining corre-
lation transfer in the oscillatory regime �as seen for the qua-
dratic integrate-and-fire model in �30��.

What time scales of spike count correlation actually mat-
ter in a given application? This depends on the circuit that is
“downstream” of the pair �or, similarly, layer� of neural os-
cillators that we have studied in this paper; in other words,
on what system is reading out the neurons we study here.
Clearly, different neurons and networks are sensitive to input
fluctuations over widely varying time scales. For example,
some single neurons and circuits can respond only to events
in which many of the cells that provide inputs spike nearly
simultaneously. This is the coincidence detector mode of op-
eration �cf. �48� and references therein� and can result from
fast membrane time constants �as occur in high-conductance
states �49��; circuit mechanisms, such as feed-forward inhi-
bition �50�, can also play a role. For such systems, short-time
scale correlations among upstream cells are relevant—small
window lengths T. On the opposite extreme, networks oper-
ating as neural integrators will accumulate inputs over arbi-
trarily long time scales �see �51� and references therein�; in
this case, spike-time correlations over large windows T are

reflected in circuit activity. In general there is a range of
possible behaviors, and the time scales over which inputs are
integrated can differ among various components of a net-
work, among components of an individual cell �48,50� or
among different times in a cell lifetime, depending on back-
ground input characteristics �49�.

One domain in which different levels of correlation
transfer—and different dependences of this correlation trans-
fer on neurons’ operating ranges—can have a strong effect is
the population coding of sensory stimuli. For example, if
neurons are read out over long time scales, then type I vs
type II populations offer a choice between relatively high
and low levels of correlation across the population. Depend-
ing on heterogeneity of the population response to the stimu-
lus at hand, one or the other of these choices can yield dra-
matically greater �Fisher� information about the encoded
stimulus �1,5,15�. The opposite choice of neuron type would
be preferred for readout over short time scales, where trends
in correlation transfer reverse. Beyond averaged levels of
correlation, a separate question that can affect encoding is
whether correlations depend on the stimulus �24,52�. A natu-
ral way that this can occur is when correlations depend on
the evoked rate or CV of firing. We demonstrate that such
dependencies are present in phase models over short time
scales and, over long time scales, that they are present in
intermediate but not “purely” type-I or type-II models. Once
again, depending on details of stimulus encoding, these de-
pendencies can either enhance or degrade encoding. Overall,
the picture that emerges is that correlation transfer is another
factor to consider in asking which nonlinearities allow neu-

FIG. 7. Spike count correlation �T�� ,	� as measured from Monte Carlo simulations with global model parameter �=0 �top row�, �
=0.5 �middle row�, and �=1 �bottom row�. Measurement time intervals are, from the leftmost column, T=1, T=2, T=8, and T=32 �ms�.
�T is computed for a range of intrinsic phase speed � and noise variance 	2. The fraction of noise variance that is received by both oscillators
is c=0.1; therefore, to recover the approximate susceptibility ST�� ,	���T�� ,	� /c, multiply by 10. As T increases, ST approaches the T
→� limit illustrated in Fig. 3.
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ron models to best encode stimuli, and that there will be
different answers for different stimuli.

In closing, we note that we have studied only simple �but
widely-used� one-dimensional neural models here. However,
preliminary simulations suggest that the trends for correla-
tion transfer found here also hold in some standard type-I vs
type-II conductance-based neuron models �35�. The situation
is more complex, as global features of the neural dynamics
can be involved, and will be explored in future work.

APPENDIX

In this appendix we give some more details about calcu-
lation of T1�0�, T2�0�, and dT1 /d��0� for specific values of
�.

1. �=1 and numerical details

For Z�x�=−sin�x� ��=1�,

A�x� = � +
	2

2
sin�x�cos�x� , �A1�

B�x� = 	2�sin�x��2 �A2�

are periodic on �0,
� with B�x�=0 at 0�2
� and 
.
��x� is defined as an antiderivative as in Eq. �19�; we can

compute this symbolically yielding

��x� = sin�x�exp�−
2�

	2 cot�x�� . �A3�

We can check that limx→0+ ��x�=0, limx→
− ��x�=�, and
that � /B is not integrable at either 0 or 
.

For the interval 
 to 2
 we use the fact that A�x� and B�x�
are 
 periodic; � repeats on this second interval; that is,

��x� = �sin�x��exp�−
2�

	2 cot�x�� �A4�

is an expression that is valid everywhere Z����0.
To compute values of �T1 /�x on a uniform mesh, we use

an adaptive quadrature routine to evaluate Eqs. �22�; in par-
ticular Simpson’s rule implemented via the MATLAB routine
quad. We have already demonstrated the integrability of Eqs.
�22� in Sec. III B. T1�0� is then computed using Simpson’s
three-point rule.

To compute values of �T2 /�x, we use adaptive quadrature
as well, with the caveat that �T1 /�x is evaluated in between
mesh points by linear interpolation.

2. �=0

For the theta model, Z�x�=1−cos�x� or �=0,

A�x� = � +
	2

2
�1 − cos�x��sin�x� , �A5�

B�x� = 	2�1 − cos�x��2 �A6�

are periodic on �0,2
� with B�x�=0 at 0�2
�. Again we can
integrate 2A�x� /B�x� symbolically, finding

� = �1 − cos�x��exp�−
2�

3	2

�2 − cos�x��sin�x�
�1 − cos�x��2 � . �A7�

We can verify Eq. �24� as before.

3. Small � argument for general PRC

Here we replicate the small 	 value of d /d�, using a
perturbation expansion valid for an arbitrary PRC.

We consider the stationary densities p��� and p̂��� of two
different processes,

d� = a���dt + b���dWt, �A8�

d�̂ = â���dt + b���dWt, �A9�

where

a��� = � +
	2

2
Z���Z���� , �A10�

â��� = � +
	2

2
Z���Z���� + �Z��� , �A11�

p��� satisfies the stationary Fokker-Planck equation

−
�

��
�ap� +

�2

��2 �bp� = 0 �A12�

This can be integrated and the constant of integration is
equal to the firing rate:

ap −
�

��
�bp� =  �A13�

and therefore

 =
1

2



0

2


a���p���d� , �A14�

̂ =
1

2



0

2


â���p̂���d� . �A15�

The dc input response, d /d�, can be computed by differen-
tiating ̂ with respect to � and evaluating at �=0. Therefore
we expand ̂ as a series in � and take the first-order term

p̂ = p + �p1 + O��2� , �A16�

̂ =  + �1 + O��2� . �A17�

We find that

d

d�
= 1 =

1

2
�0

2


p���Z���d� + 
0

2


p1���a���d�� .

�A18�

We consider Eq. �A18� more carefully. We will see that
all but one term are multiplied by 	2; for small 	, the term
that remains significant is the mean of the phase-resetting
curve.
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We rewrite Eq. �A18� as follows:

1 =
1

2
�0

2
 � 1

2

+ p̃����Z���d�

+ 	2
0

2
 1

2
Z���Z����p1���d�� �A19�

=
1

2
�0

2
 1

2

Z���d� + 

0

2


p̃���Z���d�

+ 	2
0

2
 1

2
Z���Z����p1���d�� �A20�

using the fact that p1��� must average to 0 so that p̂ remains
a probability density. We have also written p���, the station-
ary density for the process with �=0, as the sum of a uni-
form density and a deviation p̃���.

Consider the process

d� = �� +
	2

2
Z���Z�����dt + 	Z���dWt. �A21�

The stationary density p and firing rate J satisfy

�� +
	2

2
Z���Z�����p��� −

�

��
�	2

2
Z2���p���� = J .

�A22�

If 	=0 then the stationary density is p0= 1
2
 and J0= �

2
 . We
expand p and J in powers of 	2;

p��� = p0 + p̃ �A23�

=p0 + 	2p̃1 + O�	4� , �A24�

J = J0 + 	2J1 + O�	4� . �A25�

At O�1� we have

p0 =
J0

�
�A26�

as already stated. At O�	2�

p̃1 =
1

�
�J1 +

Z2

2

�p0

��
+

1

2
ZZ�p0� �A27�

=
1

�
�J1 +

1

4

ZZ�d�� , �A28�

J1 is determined so that p is a probability density at any
order:


0

2


J1 = 2
J1 = −
1

4



0

2


ZZ�d� = 0 �A29�

as ZZ� is the perfect derivative of a periodic function. For
general order, we have

p̃n =
1

�
�Jn −

1

2
ZZ�p̃n−1 +

�

��
�Z2

2
p̃n−1�� , �A30�

Jn =
1

4



0

2


ZZ�p̃n−1d� , �A31�

where we no longer expect Jn to be zero.
Let’s return to Eq. �A20�. The first integral is the mean of

Z���. The second integral, in our expansion, first appears at
fourth-order in 	. To see this, we examine


0

2


p̃1Z���d� =
1

4



0

2


Z2���Z����d� �A32�

=0. �A33�

The third term is second-order in 	. Thus the dominant term
in Eq. �A20� is the first one, and we have shown the desired
result.
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