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Abstract

A longstanding problem in coastal oceanography is the prediction of the

longshore currents that are forced by breaking waves in the surf zone. Tra-

ditional models based on a 1D momentum balance for the surf zone predict

that current should be strongest in regions of the strongest wave breaking.

However, current on a beach with a sandbar is sometimes observed to have a

maximum in the ”trough” of the bar, far from the region of maximum wave

breaking.

In this thesis, we propose a mechanism for the development of this current

based on vortex dynamics and show, based on idealized studies, that it can

explain the broad features of the observed current. These studies are pursued

using a new numerical model which exploits wave-mean interaction results in

order to model the effect of breaking deep water waves, without resolving the

waves themselves.

We focus on the role of wave group variation rather than bathymetric

irregularities or shear waves, which we argue have been explored and found

to be not enough to produce the expected behavior. Our first experiment

examines beaches forced by isolated packets of obliquely incident waves. We

find that current dislocation occurs on a barred beach (to the trough low) but

not on a planar beach, and no dislocation occurs in the absence of wave group

variations.
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Our second experiment examines beaches forced by sinusoidally varying

wave groups of the approximate spatial scale suggested by the observed wind

speeds during the DELILAH experiment. We again find that current maxima

develop in the trough region and that a relatively simple parameter, given the

restricted set of forcings, will predict whether or not this occurs. This is a

first step towards determining when realistically varying wave group forcing

will produce current dislocation.

We also consider the existence of turbulence in shallow water with topog-

raphy. We find that the physical scales governing the beach do not permit

the development of vigorous two-dimensional turbulence, and specifically the

generation of vortices larger than the spatial scale of circulation forcing.
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Chapter 1

Introduction

For all of its history humankind has relied on the oceans for sustenance

and travel. Today Earth’s coastal regions are heavily populated and heavily

touristed, so their study is not only of scientific interest but profound economic

and social interest as well. The coastal ocean is a fantastically complex sys-

tem: it contains the water, which is a fluid of varying density due to salinity,

temperature, and the presence of other minerals and biological organisms; the

bedrock and sediment, which can be transported in response to fluid motions;

and the air above, whose currents are a primary forcing mechanism for ocean

surface waves.

In this thesis I will focus on the generation of the current structure of

coastal regions, specifically the generation of alongshore (parallel to the shore-

line) currents. Such currents are primarily forced by the breaking of oblique

surface waves and are affected by the local water depth, changes in bathymetry,
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and wind forcing. The ability to accurately predict alongshore currents is nec-

essary to prevent shoreline erosion [40] and to plan military water landings

[47].

A quantitative theory of the generation of alongshore currents by obliquely

incident sea waves was given by Longuet-Higgins [28, 29]. Several modelling

assumptions were made in this work that have been adapted consistently by

subsequent researchers. The instantaneous current is assumed to be horizon-

tal or vertically-averaged. The forcing due to surface waves incoming from

the open sea is modelled using the radiation stress theory developed earlier

by Longuet-Higgins and Stewart [30, 31, 32, 33, 34], wherein surface gravity

waves are found to impart a vertically-averaged momentum flux to the flow.

Breaking and other dissipative processes cause convergence of this momentum

flux, and therefore a forcing on the mean flow. Bottom friction is modelled

by a quadratic function of the free stream velocity (as in a turbulent bound-

ary layer[22]). However, because the mean velocity is taken to be small with

respect to the wave velocity, this is approximated by a linear function of the

mean velocity (where the constant coefficient is the mean orbital speed of the

wave, or some spatial average thereof). Wind forcing is neglected, as in the

surf zone it is generally thought to be much less important than wave forcing

(reference here).

Finally, the bathymetry of the beach, wave forcing, and the mean current

are assumed to be steady and one-dimensional: they do not vary in the along-

shore direction. The result is a one-dimensional momentum balance which can
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be solved for the mean alongshore current.

The general prediction of Longuet-Higgins is that alongshore current should

develop in areas of wave breaking. The qualitative features of this current

depend on the bathymetry of the beach, as well as the model for wave-

breaking (itself a complicated and incompletely-understood process). On a

planar beach, the current will have its maximum at the offshore onset of wave

breaking, and will decrease in magnitude closer to the shoreline. On a barred

beach, generally waves break as they slow down and increase in height over

the bar, but then stop breaking as the water depth increases into the trough,

and break again as they approach the shoreline. Therefore there should be a

current on top of the bar and another closer to the shoreline.

Most subsequent developments have been modifications to this basic model.

Various models for wave distribution and wave-breaking have been proposed

[5, 54]. Reynold’s stresses resulting from presumed turbulent motions are often

included, parameterized as a turbulent eddy viscosity [28], while others argue

that the vertical shear contributes to horizontal mixing and should be taken

into account [53]. Many researchers also modify the wave dissipation model

by adding a “surface roller” to the momentum balance[52]. A roller is the

aerated body of water, produced by the overturning wave, which travels on

top of the shoreward-traveling wave. The shear stress between the roller and

the underlying wave dissipates energy and erodes the roller. According to

these theoreticians, momentum from the wave is first transferred to the roller,

and then to the mean flow as the roller subsides. The use of turbulent mixing
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Figure 1.1: Planar vs. barred topography: profiles used in Chapter 5 (top);
reconstructed topography from the DELILAH experiment (the data has been
artificially extended near the domain boundaries to enforce periodicity)

4



Figure 1.2: Schematic of surface roller, adapted from [52]. The roller travels
at speed c meters per second, the phase speed of the travelling wave.

tends to smooth out predicted currents, whereas the use of surface rollers tend

to move the location of the bar current somewhat seaward of the bar [41].

The one-dimensional momentum balance has been used with varying de-

grees of success to predict currents in experimental and laboratory settings.

Field experiments have been performed at Santa Barbara in 19801, Duck NC

1Experiments were conducted as part of the Nearshore Sediment Transport Study
(NSTS), Leadbetter Beach, CA, January 30-February 23 1980
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in 19902, 19943 and 19974, and Edmonds, the Netherlands in 1995. The first

beach is generally planar, the others generally barred (bathymetry naturally

shifts over the course of the experiment). A one-dimensional model essentially

like that of Longuet-Higgins is used with some success to match the data col-

lected in Santa Barbara[55]. Predicted currents are broad and have a single

maximum that is reasonably near (typically shorewards of) the experimental

current maximum on a cross-shore transect.

On the barred beaches, however, the record is mixed. A laboratory experi-

ment that explicitly enforced alongshore homogeneity[41] in the mean current

and wavetrain on barred beaches found that two maxima developed, one over

the bar and another near the shore, and that one-dimensional models that

include surface rollers and an eddy viscosity could accurately reproduce the

observed bar current. In experimental settings, however, the location of the

alongshore current maximum varies significantly, from the crest of the bar to

the trough. The most striking discrepancies occur in the DELILAH [13] exper-

iment, where the alongshore current has a single maximum close to the trough

of the beach for most days when there is a distinct alongshore bar in place [12]

(before this period there are rhythmic, cusp-like ripples in the bathymetry;

unfortunately significant current data is missing or has been discarded as un-

reliable after October 15, so it is not possible to extend this supposition any

2Duck Experiment on Low-frequency and Incident-Band Longshore and Across-shore
Hydrodynamics (DELILAH), U.S. Army Corps of Engineers, Duck, NC, October 1-21 1990

3Duck94, U.S. Army Corps of Engineers, Duck, NC, August 8-24 and October 1-24, 1994
4SandyDuck, U.S. Army Corps of Engineers, Duck, NC, September 22-October 31, 1997

6



further).

So what went wrong? Assuming that all important physical forcing terms

have been included in the momentum balance, either some forcing term is

inadequately modelled or the assumption of alongshore inhomogeneity is not

reasonable (or both). Feddersen et al. [15] examine the integrated momentum

balance across a single cross-shore transect during Duck94 and conclude that

it is “very unlikely” that there are other significant sources of momentum

present. Ruessink et al. [48] examine alongshore velocities on a cross-shore

measurement transect at Edmonds and Duck94 and compare with a model

that uses rollers as part of its forcing parametrization. The inclusion of rollers

in a one-dimensional momentum balance gives a better fit than without rollers.

The authors restrict their study to time when the bathymetry is alongshore

uniform, as measured by the following nondimensional metric

χ2 =
1

LxLy

∫ Lx

0

∫ Ly

0

(
d(x, y)− d(x)

d(x)

)2

dy dx

This study, in conjunction with the experimental results of Reniers and Battjes[41],

strongly suggests that, when uniform conditions are imposed or controlled for,

our current understanding of the one-dimensional momentum balance is suffi-

cient to describe the current.

Ruessink et al. [48] found that for χ2 > 0.02, the one-dimensional current

model is not trustworthy, suggesting that bathymetric nonuniformities may

play a role in “breaking”
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Later Feddersen and Guza [14] examined alongshore inhomogeneity in the

alongshore currents (now using data from several alongshore transects) in the

1997 SandyDuck experiments and found, contrary to previous results, that χ2

does not correlate well with alongshore nonuniformities in the current.

Putrevu et al. [39] focus on the role that nonuniform bathymetry can play

in current location on a planar beach with a sinusoidal alongshore variation.

Using detailed scaling arguments, they argue that the largest terms in the

alongshore momentum balance are the cross-shore gradient of the radiation

stress and the alongshore gradient of the mean water height and compute

profiles of the current velocity that indicate a shoreward shift. Reniers et al.

[43] use the same procedure to examine a barred beach and also find that

including bathymetric nonuniformities causes a shoreward shift. However, the

current maximum is not shifted enough to match the data: it is shifted to about

70 m from shoreline, whereas the maximum current is measured at 50 m (a

meter located at 70 m shows a current 20 percent smaller). In conclusion these

theoretical models do not adequately explain the DELILAH observations, and

later experiments do not show the result that bathymetric variations correlate

to current variations, as is the case in these theoretical models.

Even with uniform bathymetry and wave forcing, non-uniformities can

arise through the the propagation of so-called “shear waves”, long propagat-

ing structures which appear to be related to a shear instability of a steady

alongshore uniform current [7, 2, 49]. In fact, the spontaneous generation of

wave-like current disturbances is probably the rule rather than the exception.
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Slinn et al.[49] hypothesized that such instabilities could cause the cross-shore

transport of alongshore momentum into the trough. They examine instabilities

that arise in a realistic physical regime on an idealized barred beach. While

the momentum appears to be “diffused” into the trough region, the current

maxima are not shifted in this study, as required to replicate the DELILAH

results.

Another source of inhomogeneity is in the wave forcing. Longuet-Higgins,

and most others, consider a wavetrain that is alongshore uniform and monochro-

matic. Most wavetrains however are not monochromatic and a directional

spread is known to cause “surf-beats” [32]. The interactions of monochro-

matic waves with edge waves can also create alongshore variations in the wave

height, and have been shown to form circulation cells in the laboratory [8].

The effect of inhomogeneity was considered by Bowen [6] and Komar [25] in

the form of an alongshore variation of breaker height. Bowen and Komar rec-

ognized that alongshore differences in wave breaking will produce variations

in wave set-up, or the mean water level. This is turn forces a current away

from the locations of higher mean water level (high breaker) towards locations

of low mean water level. This effect was revisted by Reniers et al.[44] in the

context of using short-wave frequency spectra to predict subharmonic motions

(the “surf-beat” generated by groupy short waves). The authors found that

the subharmonic wave energy was well modelled by the linear relationship be-

tween wave groups during the DELILAH experiment. In a later paper Reniers

et al.[42] examine the evolution of bathymetry under the forcing of short wave
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groups. The wave forcing is produced by generating random time series that

have a realistic frequency distribution. Examination of an example time series

is instructive (see [42], Figure 4); the wave energy at a given point varies up

to a fraction of less than 5% of its peak value over time, with a quasi-periodic

structure of about 40 seconds. If we translate this structure to oblique waves

(in [42] only waves of 0◦ average direction are considered), we see that this vari-

ation in wave energy is instantaneously present along an alongshore transect

(including the bar crest).

We will argue that large scale variations in wave height, such as those

caused by realistic groupiness of short waves, can explain current dislocation on

a barred beach through vortex dynamics. The breaking of non-uniform waves

forces vortex dipoles in the mean flow, whose evolution inherently promotes

dislocation of current on barred beaches, but not on planar beaches (where

this effect has not been pronounced in experimentation).

We will use an unsteady, two-dimensional, potential-vorticity based numer-

ical model to evolve nearshore currents. With this method we avoid the explicit

computation of wave set-up which is crucial to Putrevu’s method [39, 43]. We

will explicitly resolve the radiation stress and therefore will not rely on the

scaling assumptions made in those papers. In Chapter 2, we justify the equa-

tions used in our numerical model, which include an open boundary condition

for the seaward end. In Chapter 3, we explain more fully past models for cur-

rent prediction and our own. In Chapter 4, we present our numerical model.

Chapter 5 presents an idealized experiment that produces the expected cur-

10



rent structure. In Chapter 6, we pursue an experiment motivated by references

[44, 42] wherein we examine the currents produced by sinusoidal wave-groups

breaking on a barred beach.

Finally we address, in Chapter 7, the question of to what extent the large-

scale surf zone currents are turbulent. This is relevant to whether or not

vorticity structures may be formed by an upscale energy cascade, as suggested

by Peregrine[37].
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Chapter 2

The Shallow-Water Equations

2.1 Basic properties of shallow-water equations

in a finite domain

We begin with the free-surface shallow-water equations with variable bottom

topography1. The dynamic variables are the layer depth h(x, y, t) and the two-

dimensional horizontal velocity u(x, y, t) = (u, v). The governing equations

are

1The words “topography” and “bathymetry” are used intechangeably in this document
to indicate variations in the elevation of the ocean floor. “Bathymetry” is used in the coastal
oceanography literature, whereas “topography” is common in the applied mathematics lit-
erature (perhaps because of a closer connection with atmospheric scientists).
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h
h

B

h
S

x

Figure 2.1: Schematic cross-section of variable depth topography, demonstrat-
ing the definitions of the height variables h,hS, and hB

∂h

∂t
+∇ · (hu) = 0

Du

Dt
+ g∇(h+ hB) = F − cf

h
|u|u

where hB is the bottom elevation, as shown in 2.1 here), F is an unspecified

body force, and cf is a coefficient for quadratic bottom friction. h may be

written as the sum of the still water depth hS and a deflection, so that h =

hS + h′ and hS + hB = hS0 . A dynamic equation for the potential vorticity

can be given

13



q ≡ ∇× u

h
Dq

Dt
=

∇× F

h
− cf
h
∇×

(
|u|u
h

)

Generally we will be concerned with these equations in the case of low

Froude number (ratio of typical flow speed to gravity wave speed). We non-

dimensionalize the equations by standard velocity, length and time scales (U ,

L, T respectively), and assume depth deflections above the still water depth

to be on the scale of U2. Finally, we assume that U ≈ ε
√
ghS

2. Collecting

terms at order ε, we find

∇ · (hSu) = 0 (2.1)

Du

Dt
+ g∇(h′) = F − cf

hS
|u|u (2.2)

Defining p = gρh′, we will henceforth think of this system of equations as

describing a layer of fluid with a “rigid lid”. p is the pressure at the still water

depth due to the weight of the fluid above it.

The rigid-lid shallow-water equations may now be written as

∇ · (hSu) = 0 (2.3)

Du

Dt
+

1

ρ
∇p = F − cf

hS
|u|u (2.4)

2For our purposes, U < 1 m whereas
√

gh ≈ 6m/s
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where hS is the still water depth, p is the pressure at the rigid lid, and ρ is the

fluid density (which we will always take to be constant).

We consider the equations for u, v in the domain 0 ≤ x ≤ D, 0 ≤ y ≤ L,

periodic in the y direction. The boundary conditions in the x-direction are no-

normal flow; that is u(0, y, t) = u(D, y, t) = 0. Because hSu is a non-divergent

vector field, a stream function ψ can be defined, unique up to a constant, for

which

hSu = −∂ψ
∂y

hSv =
∂ψ

∂x

Then ψ and q satisfy the following equation:

∇ ·
(
∇ψ
hS

)
= hSq (2.5)

Dq

Dt
=

∇× F

h
− cf
h
∇×

(
|u|u
h

)
(2.6)

The second equation is the dynamic equation for vorticity, which has been

previously stated.

With the appropriate boundary conditions, and assuming hS > 0 through-

out the domain, ψ is uniquely determined by q. The continuity equation

implies that ψ is periodic. By the no-normal flow boundary condition, we

must have ψ(0, y) = A0 and ψ(D, y) = AD, where A0(t), AD(t) are constant

in y but may evolve in time (without loss of generality we take A0 = 0). It is
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easy to verify the following fact:

Proposition 1. The solution ψ to (2.5), given q(x, y, t), is unique for either

of the following sets of boundary conditions:

1. ψ(0, y, t) = 0, ψ(D, y, t) = AD

2. ψ(0, y, t) = 0,
∫ L

0
1
hS

∂ψ
∂x
dy = CD, ψ(D, y, t) constant in y but not known.

Proof. Because (2.5) is linear, it is sufficient to show that the homogeneous

equation with either AD = 0 or CD = 0 can have only the zero solution. That

is, let ψ1, ψ2 be two solutions to (2.5), with ψ1(D, y, t) = ψ2(D, y, t) = AD.

Then we wish to show that ψ1 − ψ2 = 0.

Consider (2.5) where q ≡ 0. Multiply by ψ and integrate over the domain.

We have

0 =

∫ D

0

∫ L

0

ψ∇ ·
(
∇ψ
hS

)
dy dx

= −
∫ D

0

∫ L

0

1

hS
|∇ψ|2 dy dx+

[∫ L

0

1

hS
ψ
∂ψ

∂x
dy

]D
0

+

[∫ D

0

1

hS
ψ
∂ψ

∂y
dx

]L
0

The third term is zero by periodicity. Suppose that AD = 0; then the second

term is zero as well. If CD = 0, but ψ(D, y, t) is constant in y, then the second

term may be written

[∫ L

0

1

hS
ψ
∂ψ

∂x
dy

]D
0

=

[
ψ

∫ L

0

1

hS

∂ψ

∂x
dy

]D
0

= ψ(D, y, t)

∫ L

0

1

hS

∂ψ

∂x
dy
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The integral is precisely CD, so this term is zero as well.

Proposition 2. AD and CD satisfy the following time-tendency equations.

dA

dt
=

1

L

∫ D

0

∫ L

0

hSF y − cfv|u|+ p
∂hS
∂y

dy dx (2.7)

dC

dt
=

1

L

∫ L

0

F y(D, y)− cf
v(D, y)|u(D, y)|

hS
dy (2.8)

Proof. For the first statement, we observe, using the fact that ψ(D, y, t) is

constant in y, that

ψ(D, y, t) =

∫ D

0

∂ψ

∂x
dx

=
1

L

∫ L

0

∫ D

0

∂ψ

∂x
dx dy

=
1

L

∫ L

0

∫ D

0

hSv dx dy

Then

∂ψ

∂t
(D, y, t) =

1

L

∫ L

0

∫ D

0

hS
∂v

∂t
dx dy

=
1

L

∫ L

0

∫ D

0

hS

(
−u∂v

∂x
− v

∂v

∂y
+ F y − cf

v|u|
hS

− ∂p

∂y

)
dx dy

The final term in (2.7) can be obtained by integration by parts, using the
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periodicity of p:

1

L

∫ D

0

∫ L

0

hS
∂p

∂y
dy dx =

1

L

∫ D

0

∫ L

0

−p∂hS
∂y

dy dx

The Jacobian can be shown to vanish by the following:

1

L

∫ D

0

∫ L

0

[
−hSu

∂v

∂x
− hSv

∂u

∂y

]
dy dx =

1

L

∫ D

0

∫ L

0

[
∂ψ

∂y

∂v

∂x
− ∂ψ

∂x

∂u

∂y

]
dy dx

=
1

L

[∫ D

0

ψ
∂v

∂x
dx

]L
0

− 1

L

∫ D

0

∫ L

0

ψ
∂2v

∂y∂x
dy dx

− 1

L

[∫ L

0

ψ
∂v

∂y
dy

]D
0

+
1

L

∫ D

0

∫ L

0

ψ
∂2v

∂x∂y
dy dx

= 0

The first boundary term vanishes by periodicity, the second by using constancy

of ψ at the x boundaries and periodicity of v. The double integrals cancel.

The second statement follows from the identity that v = 1
hS

∂ψ
∂x

. Then

CD =
1

L

∫ L

0

1

hS

∂ψ

∂x
(D, y, t) dy

=
1

L

∫ L

0

v(D, y, t) dy

∂CD
∂t

=
1

L

∫ L

0

∂v

∂t
(D, y, t) dy

=
1

L

∫ L

0

[
−u∂v

∂x
− v

∂v

∂y
− ∂p

∂y
− cf

v|u|
hS

+ F y

]
dy

The pressure term vanishes by periodicity. The advection terms, as in the case

18



with AD, vanish by integration by parts.

The previous proposition motivates the use of CD as a constraint. While

computing the time-tendency of AD requires computation of the pressure un-

less h is independent of y, CD never requires the pressure.

Proposition 3. The equations (2.3,2.4) are equivalent to (2.5,2.6)

Proof. That a solution to (2.3,2.4) also solves (2.5,2.6) has already been es-

tablished by differentiation and uniqueness of the stream function inversion

equation.

Conversely, if ψ and q satisfy (2.5,2.6), then the velocity field defined by

hSu = ∇⊥ψ satisfies (2.3,2.4) for the gradient of some potential∇p. By taking

the divergence of the velocity equations we recover an elliptic equation for p

∇ · (−hS∇p) = ∇ · (J(ψ,u))−∇ · (hSF ) + cf∇ · (u|u|)

With the boundary conditions, ∂p
∂x

(0, y) = ∂p
∂x

(D, y) = 0, p is determined

uniquely up to a constant.

Proposition 4. The shallow-water equations with a rigid lid conserve the

following quantities in the absence of forcing and dissipation (F = 0, cf = 0)

1. Kinetic energy: 1
2

∫ D
0

∫ L
0
hS(u

2 + v2) dy dx

2. Enstrophy: 1
2

∫ D
0

∫ L
0
hSq

2 dy dx

19



3. Circulation:
∫ D

0

∫ L
0
hSq dy dx

4. In the event that hS(x, y) ≡ hS(x), then solutions also conserve along-

shore momentum
∫ D

0

∫ L
0
hSv dx dy

2.2 Extension to infinite domain and “exact”

boundary conditions

We wish to extend the previous state of knowledge about the finite domain

into the case of the shallow-water equations with a rigid lid in the domain

0 ≤ x <∞, 0 ≤ y ≤ L. The boundary conditions at infinity are that u → 0.

In this case, we have to make some assumptions about hS. Let us suppose

that hS = 1 for x ≥ D.

We introduce the following boundary condition, the Dirichlet-to-Neumann

(DtN) boundary condition [23, 18]. We wish to show that the problem with the

DtN boundary condition at the seaward end of a finite domain (the “interior

domain”) has the same solution as the problem on the infinite domain, where

q ≡ 0 in the “exterior domain”. Thus, the infinite domain problem (0 ≤ x <

∞) can be exactly computed on a finite domain (0 ≤ x ≤ D).

The DtN boundary condition for any partial differential equation problem

is meant to replace a Dirichlet, Neumann, or mixed condition on the boundary.

It gives a constraint on the relationship between the Dirichlet data and the

normal derivative at the boundary. Typically, it enforces the relationship that
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is present in a “decaying” mode of a solution. Therefore it is well-suited to

pick out a restriction of a solution that is bounded in an infinite domain.

By way of illustration, we examine the following one-dimensional problem.

Consider the equation

∂2ψ

∂x2
= q(x), 0 < x < D

∂2ψ

∂x2
= 0, x ≥ D

Then ψ(x), for x > D, must be a linear combination of the two linearly

independent solutions to the differential equation: ψ(x) = Aex + Be−x. If

the solution is to be bounded, clearly there must be no contribution from ex.

Imposing the boundary condition

∂ψ

∂x
= −ψ

at x = D ensures that the solution beyond that point can only contain the

decaying mode.

For the current case we define the DtN map to be the following:

∂ψ

∂x
(D, y) =

1

L

∞∑
0

[
−4πk

L

[∫ L

0

ψ(D, t)cos

(
2πk

L
(y − t)

)
dt

]]
≡ Mψ(D, y)

This expression will be justified at the end of this section, but first we establish
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properties of the solution.

Proposition 5. Let ψ solve (2.5) for q continuous, in the domain 0 ≤ x ≤

D, 0 ≤ y ≤ L. For boundary conditions, we take ψ(0, y) = 0, ∂ψ
∂x

(D, y) =

Mψ(D, y), and ψ(x, y) = ψ(x, y + L). Then ψ is unique.

Proof. To show uniqueness, we show that the only solution to

∇ ·
(
∇ψ
hS

)
= 0 0 < x < D

ψ(x, 0) = ψ(x, L)

ψ(0, y) = 0

∂ψ

∂x
(D, y) = Mψ(D, y)

is ψ(x, y) = 0.

∫ D

0

∫ L

0

ψ∇ ·
(
∇ψ
hS

)
dy dx = −

∫ D

0

∫ L

0

1

hS
|∇ψ|2 dy dx+

[∫ L

0

1

hS
ψ
∂ψ

∂x
dy

]D
0

+

[∫ D

0

1

hS
ψ
∂ψ

∂y
dx

]L
0

(2.9)

= 0

The third term in the right hand side of (2.9) vanishes by periodicity. Using

22



the boundary conditions, we can write

[∫ L

0

1

hS
ψ
∂ψ

∂x
dy

]D
0

=

∫ L

0

1

hS
ψ(D, y)

∂ψ

∂x
(D, y) dy

=

∫ L

0

1

hS

[∑
k≥0

ψ̂c,k cos

(
2πk

L
y

)
+
∑
k>0

ψ̂s,k sin

(
2πk

L
y

)]
×[∑

k≥0

(
−4πk

L

)
cos

(
2πk

L
y

)
ψ̂c,k

]
dy

where we define

ψ̂c,k ≡ 1

L

∫ L

0

ψ(D, t) cos

(
−2πk

L
t

)
dt k ≥ 0

ψ̂s,k ≡ 1

L

∫ L

0

ψ(D, t) sin

(
−2πk

L
t

)
dt k > 0

These Fourier coefficients have been normalized so that

ψ(D, y) =
∑
k≥0

ψ̂c,k cos

(
2πk

L
y

)
+
∑
k>0

ψ̂s,k sin

(
2πk

L
y

)

Using the orthogonality of the trigonometric functions we find

∫ D

0

∫ L

0

1

hS
|∇ψ|2 dy dx =

∑
k≥0

(
−4πk

L

)
L

2
ψ̂2
c,k

which implies that ψ(x, y) ≡ 0.
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Finally, we wish to justify (2.9). The key is to solve the elliptic problem

on the exterior domain for general Dirichlet data, and to extract the DtN map

from this solution. Then if we solve the problem in the interior domain with the

DtN boundary condition, we can imagine constructing a continuation of this

solution into the exterior. This continuation will “fit together” smoothly with

the interior solution because of the way we have constrained the derivatives at

the boundary.

The following calculation can and has been done for various geometries,

such as the outside of a circle [23], sphere [18], or ellipse [18]. A methodology

has also been given for geometries of very general shape [16]3. Here we are

interested in a periodic strip.

Assume that h(x, y) = 1 outside of the domain x ∈ [0, D]. Then the

exterior Dirichlet problem, given boundary data at x = D, can be written as

∇2ψ(x, y) = 0 (2.10)

ψ(D, y) = p(y) (2.11)

We can write the solution to this equation [1] as

ψ(x, y) =
x−D

π

∫ ∞

−∞

p(t)

(x−D)2 + (y − t)2
dt (2.12)

3A general review of developments can be found in reference [56]
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Because p(y) is periodic, we can write

ψ(x, y) =
x−D

π

∫ L

0

p(t)

[
∞∑

n=−∞

1

(x−D)2 + (y − nL− t)2

]
dt (2.13)

= Gx ∗ p(y) (2.14)

where

Gx(y) =
x−D

π

∞∑
n=−∞

1

(x−D)2 + (y − nL)2

Define the Fourier coefficients ûk = 1√
L

∫ L
0
u(y)e−2πiky/Ldy. Then

ψ̂k(x) = Ĝxkp̂k (2.15)

∂ψ̂k(x)

∂x
=

∂Ĝxk

∂x
p̂k (2.16)

∂ψ(x, y)

∂x
=

1√
L

∞∑
k=−∞

[
∂Ĝxk

∂x
p̂k

]
e2πiky/L (2.17)

=
1√
L

∞∑
k=−∞

[
∂Ĝxk

∂x

[
1√
L

∫ L

0

ψ(D, t)e2πik(y−t)/L dt

]]
. (2.18)

In particular, for x = D

∂ψ(D, y)

∂x
=

1

L

∞∑
k=−∞

[
∂Ĝxk(D)

∂x

[∫ L

0

ψ(D, t)e2πik(y−t)/L dt

]]
. (2.19)

We find by complex integration that Ĝxk = e−2π(x−D)|k|/L for k 6= 0, and
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Ĝx0 = 1. Therefore

∂Ĝxk

∂x
= −2π|k|

L
Ĝxk (2.20)

∂Ĝxk

∂x
(D) = −2π|k|

L
(2.21)

This expression is valid for all k.

Using the reality condition we re-write

∂ψ(D, y)

∂x
=

1

L

∞∑
k=0

[
−4πk

L

[∫ L

0

ψ(D, t) cos

(
2πk

L
(y − t)

)
dt

]]
(2.22)

We cannot “switch” the integral and sum, because the sum is not conver-

gent. However, for any finite truncation, we can interchange and write the

following:

∂ψ(D, y)

∂x
=

1

L

[∫ L

0

ψ(D, t)
K∑
k=0

[
−4πk

L
cos

(
2πk

L
(y − t)

)]
dt

]
(2.23)

2.3 An analysis of the mean flow dynamics us-

ing wave-mean interactions

As we have noted, a common assumption in numerical models of shallow water

with low Froude number flows (U �
√
ghS, where U is a characteristic velocity
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of the flow and hS is the still depth of the fluid layer; i.e.
√
ghS is the speed of

surface gravity waves) is to use the “rigid-lid” assumption. Here, I summarize

an argument from reference [10] that in the presence of small-amplitude waves

(whose amplitude can be measured by the small, non-dimensional number a),

to O(a2), the mean velocity (in a sense that we shall define) evolves according

to rigid-lid dynamics.

The governing equations that we are concerned with are

∂h

∂t
+∇ · (hu) = 0 (2.24)

Du

Dt
+ g∇(h+ hB) = F − cf

h
|u|u (2.25)

We will assume that all flow fields φ can be split into a mean part φ and distur-

bance part φ′ such that φ = φ+φ′. The mean part is defined by time-averaging

over one wavelength of the waves; that is φ(x, t) = ω
2π

∫ t+ 2π
ω

t
φ(x, s)ds. We as-

sume that all mean variables are slowly varying in the horizontal; that is, if

the gradient of φ is O(1), then the gradient of φ is O(µ) � 1.

We wish to consider the mean-flow response to slowly-varying small-amplitude

gravity waves propagating on a state of rest. Formally, we introduce a non-

dimensional wave amplitude a such the background (rest) state is O(1), the

wave field is O(a), and the mean-flow response is O(a2). The O(1) back-

ground state has zero velocity and a flat surface. The rest state is then

h(x, t) = hS(x) = hS0 − hB(x), where hS0 is some reference depth and hB(x)

is the height of the bottom, and u(x, t) = 0. To find the governing equations
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for linear gravity waves, we set u = u′ +O(a2), h = hS + h′ +O(a2) and find

that the O(a) terms of (2.24,2.25) are

∂h′

∂t
+∇ · (hSu′) = 0

∂u′

∂t
+ g∇h′ = F ′

For F ′ = 0, these admit irrotational, nondispersive gravity waves

u′(x, t) = a
√
ghS cos(k · x− ωt)

k

κ
(2.26)

h′(x, t) = ahS cos(k · x− ωt)

where κ = |k| and ω =
√
ghSκ.

Let us also introduce the linear particle displacement4

∂ξ′

∂t
(x, t) = u′(x, t)

This implies that

h′ +∇ · (hSξ′) = 0

4This is not the same particle displacement defined in the Generalized Lagrangian Mean
(GLM) theory; nothing that follows relies on GLM in any way, although the results produced
do have a counterpart in GLM [3]
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I can now define the Lagrangian mean quantity

φ̄L(x, t) ≡ φ(x + ξ′(x, t), t)

and the Stokes drift of φ

φ̄S ≡ φ̄L − φ

Using Taylor expansions I can write φ̄S in terms of the linear particle displace-

ment; e.g., ūS is given, with an error of O(a3) as long as u is O(a) or smaller,

as

ūS
i = ξ′ju

′
i,j

ūS = (ξ′ · ∇)u′

=
1

hS
(hSξ

′ · ∇)u′

= − 1

hS
∇ · (hSξ′)u′ +O(µa2)

≈ 1

hS
h′u′

The boundary term is neglected because it is a derivative of an averaged quan-

tity, and therefore is small compared to its magnitude.
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The wave energy per unit mass is defined to be

E =
1

2

(
u′2 + v′2 + g

h′2

hS

)

We will also introduce the psuedomomentum vector, which will be defined as

pi = −ξ′j,iu′j

≈ ξ′ju
′
i,j + ξ′j(u

′
j,i − u′i,j)

p ≈ ūS + ξ′ × ẑ(∇× u′)

We will find that p is linked to the dissipative forcing of the mean flow.

Using the definition of ξ′ and the equations satisfied by the linear gravity

waves[34, 10], we find that the change in time of p is given by

∂pi
∂t

+
1

hS

∂

∂xj

(
hSu′iu

′
j + δij

hS
2

[
g
h′2

hS
− |u′|2

])
+
|u′|2
2hS

∂hS
∂xi

= −ξ′j,iF ′
j

≡ Fi

2.3.1 Mean-flow response, early stage

We begin by averaging the continuity (2.24) and momentum (2.25) equations,

using the fact that φ′ = 0 for any φ. The continuity equation becomes

∂h̄

∂t
+∇ · (hu + h′u′) = 0

30



I define the “depth set-up” ∆h ≡ h− hS.
5 Then

∂∆h

∂t
+∇ · (hSūL) = 0

Averaging the momentum equation (without the friction term, which is still

negligible at O(a2)) gives

∂u

∂t
+ (u · ∇)u + (u′ · ∇)u′ + g∇(h+ hB) = F

By neglecting terms at higher order than O(a2) and using ∆h, we find

∂u

∂t
+ (u′ · ∇)u′ + g∇∆h = F

We can manipulate the advection term in the previous equation, using again

the linear gravity wave solution, to get

∂ūL

∂t
+

1

hS
∇ ·
(
hSu′u′ + δ

g

2
h′2
)

+ g∇∆h = F̄
L

or,

∂ūL

∂t
+ g∇∆h = − 1

hS
∇ ·
(
hSu′u′ + δ

g

2
h′2
)

+ F̄
L

= − 1

hS
∇ · S + F̄

L

5This term can be balanced against radiation-stress to produce “wave set-up/down”[33]
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S is precisely the radiation-stress tensor used in [28],[29].

2.3.2 Mean flow response, later stage

The equations that we have derived are not adequate to describe the eventual

steady state of the wave-driven current, where wave forcing balances bottom

friction. In order for the friction to make a non-negligible contribution, we

have to suppose that u is O(a). However, the set-up ∆h still has to be O(a2)

in order to balance a vortex with ūL of O(a) (by cyclostrophic balance). The

continuity equation, now truncated at O(a), is

∇ · (hSūL) = 0

and the momentum equation (compare with (2.27): we have one additional

term, the advection of mean momentum, and use the fact that ūL ≈ u)

∂ūL

∂t
+ (ūL · ∇)ūL = − 1

hS
∇ · S−B

By taking the curl and manipulating the mean momentum term we find that

(
∂

∂t
+ (ūL · ∇)

)
q = − 1

hS
∇× (

1

hS
∇ · S +B) (2.27)

where q ≡ ∇×ūL

hS
.

With this justification, we will proceed to use shallow water with a rigid lid

for our numerical model. The radiation stress term will be discussed further
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in §3.1.1. For the remainder of this dissertation, unless otherwise specified,

h(x, y) will refer to the still-water depth of the fluid under consideration, i.e.

we will drop the subscript S from hS.

2.3.3 Representation of friction

Finally, we must approximate the term

B =
cf
hS

u|u|

Suppose that we assume a simple sinusoidal wave structure over which to take

the phase (or time) average,

u = ac sin θ
k

κ

where θ ∈ [0, 2π), a is the non-dimensional amplitude (expressed as a fraction

of the still water depth hS), and c =
√
ghS is the phase speed. We wish to

have an expression that (at a minimum) includes both the quadratic mean-

flow friction and an approximation to the littoral friction produced by the

oscillating waves interacting with the mean current (as in [28]). To find the

latter, we make the assumption that

|u′| � |u|

|u′| � |ūL|
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Then

|u + u′|(u + u′) =
√
|u|2 + 2u · u′ + |u′|2(u + u′)

≈ |u′|
(

1 +
u · u′

|u′|2

)
(u + u′) (2.28)

Because u is already phase-averaged (i.e. constant in θ), |u|u′ = 0. However

|u′| = 2
π
u′max, where u′max = ac is the maximum orbital velocity of the waves.

Then averaging (2.28), we find

|u′|
(

1 +
u · u′

|u′|2

)
(u + u′) =

2

π
u′maxu ·

(
δ +

kk

κ2

)
(2.29)

δ is the Kronecker delta. To complete the expression for friction that we will

use in the numerical model, we include the quadratic friction directly induced

by the mean flow, so that

B =
cf
hS

2

π
u′maxu ·

(
δ +

kk

κ2

)
+
cf
hS
|u|u

=
cf
hS

2

π
u′maxū

L ·
(

δ +
kk

κ2

)
+
cf
hS
|ūL|ūL +O(a3)

The final expression can be justified by the fact that u and ūL are O(a) quan-

titities that differ by a correction of O(a2).
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Chapter 3

Longshore currents in the surf

zone

3.1 Radiation stresses due to surface gravity

waves

It can be demonstrated that for a variety of waves in fluids, there is a flux of

momentum present in excess of what would be there in the absence of waves.

Although previously known for some cases[27], this fact was derived compre-

hensively by Longuet-Higgins and Stewart in a series of papers [30, 31, 32].

The authors also used the framework of radiation stress to explain oceano-

graphic phenomena such as surf beats [32], wave set-up [33, 34], and longshore

currents [28].

35



Following [34], we will define radiation stress as the excess flow of momen-

tum due to the presence of the waves. In order to correctly model the mean

flow changes that result from waves, we have to predict any radiation stress

convergence or divergence (which, by conservation of momentum, would shift

its momentum to the mean flow). Because the waves are horizontal, we will

always define the radiation stress as a vertically averaged quantity.

In [34], the radiation stress for progressive waves in water of uniform depth

is computed. We begin with waves propagating in the x direction, with surface

elevation given by

ξ = a cos(kx− ωt)

where a is the amplitude of the waves, k is the wave number, and ω is the

radial frequency. The depth of the water is h, and we define the z-axis so that

the still surface of the water lies at z = 0. Then the velocity components are

given by

u =
aω

sinh kh
cosh k(z + h) cos(kx− ωt)

w =
aω

sinh kh
sinh k(z + h) sin(kx− ωt)

We now compute the radiation stress Sxx by averaging the u-momentum flux

across a plane x = C over one wave period, and subtracting the momentum
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flux at rest:

Sxx =

∫ ξ

−h
(p+ ρu2)dz −

∫ 0

−h
p0dz

where p0 is the hydrostatic pressure.

One may compute that to O(a2),

Sxx =

∫ 0

−h
ρ(u2 − w2)dz +

1

2
ρgξ2

= E

(
2kh

sinh 2kh
+

1

2

)

where E ≡ 1
2
ρga2 is the energy density of the waves.

In shallow water, where the particle orbits are approximately straight lines

(that is, w = 0) and the velocity is the same throughout the water column, we

can write this as

Sxx = hSu2 +
1

2
ρgξ2

We can also compute Sxy the flux of x-momentum across a plane y = C, Syx

the flux of y-momentum across a plane x = C, and Syy the flux of y-momentum

37



across a plane y = C. We find

Sxy = 0

Syx = 0

Syy =
1

2
ρgξ2

If the direction of propagation is at angle θ to the x-axis, the radiation stress is

given by a coordinate transformation from the propagation frame of reference

to the “true” coordinate system. Written in tensor notation and using the

notation of §2.3, we conclude that

Sij = hSu′iu
′
j + δij

g

2
h′2 (3.1)

This is the definition that we will use for the remainder of this thesis.

3.1.1 A decomposition of radiation stress for steady sur-

face waves

The following is due to Buhler and Jacobson [10].

The time tendency of psuedomomentum p is given by 2.27. The radiation

stress tensor is defined by 3.1. Comparing these two equations, we see that

− 1

hS
∇ · S =

∂p

∂t
−F − 1

2
∇|u′|2 (3.2)
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We can see that in the presence of steady waves, the only term with a non-zero

curl (i.e. the only term that will force the mean vorticity) is F .

By using the solution for the linear waves (2.26), we see that

F ≡ −ξ′j,iF ′
j

= kω−1u′ · F

Using the equations satisfied by linear waves on resting fluid, we can show

∂E

∂t
+

1

hS
∇ · (ghSh′u′) = u′ · F

Furthermore, up to O(a2),

ūS = p =
k

ω
E

With steady, monochromatic waves then,

k

ω
u′ · F ′ =

k

ω

∂E

∂t
+

k

ωhS
∇ · (ghSh′u′) (3.3)

=
k

ωhS
∇ · (ghSh′u′) (3.4)

=
k

ωhS
∇ · (gh2

S

k

ω
E) (3.5)

=
k

hS
∇ · (hS

k

κ2
E) (3.6)
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3.2 Application to problem of longshore cur-

rents

A commonly used framework for predicting steady currents near the shore is

by establishing a one-dimensional (in the cross-shore direction) momentum

balance, wherein momentum flux due to radiation stresses must balance mo-

mentum flux due to bottom drag, wind stress, and/or turbulent mixing. This

approach was used by Longuet-Higgins[28, 29].

Longuet-Higgins begins with the momentum equations for the shallow wa-

ter equations: in particular the longshore momentum equation,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −cf

|u|v
h
.

Suppose that the flow consists of a mean flow added with a steady wave train,

so that v(x, y, t) = 〈v〉(x) + v′(x, y, t). The wave-train has a wave vector k,

which can be expressed in terms of its magnitude k and angle θ, where θ = 0

indicates waves normal to the shore. At some point offshore the waves are

characterized by phase speed c0 and angle θ0. We suppose that the shoreline

is given by x = 0 as in 3.1. From the shoreline, the beach slopes monotonically

downwards.

Averaging in time over a wave period (an operation we will denote by 〈·〉),
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we find

∂

∂x
〈hu′v′〉 = 〈−cf |u|v〉

The first term in this balance is the convergence of radiation stress (assum-

ing that u′,v′ are purely wave disturbances). However, small-scale turbulent

motions may be present, and these may contribute to the flow of longshore mo-

mentum shoreward or seaward. Longuet-Higgins presumes that these effects

will be well-modelled as an eddy diffusion of the mean velocity. He concludes

that an acceptable model for the longshore momentum balance for the surf

zone is

0 = −∂Sxy
∂x

+
∂

∂x

(
N
∂〈v〉
∂x

)
− 〈cf |u|v〉 (3.7)

where N is some sort of parameterization of horizontal momentum flux. It is

known ([30],§3.1) that the momentum flux parallel to the direction of propa-

gation across any plane normal to the direction is given by

S11 = E

(
1

2
+

2κh

sinh 2κh

)

and the momentum flux perpendicular to the direction of propagation is give
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0

SURF ZONE

Figure 3.1: Schematic of shoreline in Longuet-Higgins’ model (adapted from
[28]). The “longshore” direction is along the y-axis (parallel to the shoreline)
and the “cross-shore” direction is parallel to the x-axis
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by

S22 = E
2κh

sinh 2κh

where E is the wave energy per unit area, defined to be E = 1
2
ρga2, where a

is the amplitude (one half the distance from crest to trough) of the wave. By

the standard coordinate transformation then, the flux of y momentum across

a plane x = c is given by

Sxy = E
cg
c

cos θ sin θ

= Ecg cos θ
sin θ0

c0
(3.8)

using Snell’s law.

In the absense of dissipation, the energy density E satisfies a conservation

principle along rays; in its steady, longshore-homogeneous form, it is

∂(Ecg cos θ)

∂x
= 0

By comparison with 3.8, we see that Sxy changes with x if and when E is

dissipated or generated.

In order to approximate ∂Sxy

∂x
, we make the following assumptions. We

suppose that waves break via saturation; when their height reaches a fraction

of the local still water height, they are capped in a spilling breaker. Because

the beach is sloping monotonically, and therefore undissipated waves slow and
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shoal as they move shoreward, once a wave begins to break, it is capped at

its saturation height until it reaches the shoreline. We additionally suppose

that the waves are close enough to normal that cos θ ≈ 1, and that kh� 1 so

that cg ≈
√
gh. Therefore we can approximate the wave amplitude and wave

energy shoreward of the breaking line by

a = αh

Sxy =
1

2
ρg(αh)2

√
gh

sin θ0

c0

=
1

2
α2ρg3/2h5/2 sin θ0

c0

and

−∂Sxy
∂x

= −5

4
α2ρ(gh)3/2∂h

∂x

sin θ

c

= −5

4
α2ρgh

∂h

∂x
sin θ

Using the maximum horizontal orbital velocity from linear wave theory, wherein

umax =
aσ

kh
= α(gh)1/2

this can be written as

−∂Sxy
∂x

=
5

4
ρu2

max

(
∂h

∂x
sin θ

)
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We now turn to estimating the bottom friction.

B ≡ −cfρ|u|v

The velocity in general is given by the sum of the orbital velocity uorb and

the average velocity 〈v〉. If the average velocity 〈v〉 is small compared to the

orbital velocity, B is well approximated by the expression

〈B〉 = cfρ〈|uorb|〉〈v〉

=
2

π
cfρumax〈v〉

assuming that uorb is sinusoidal in time. If 〈v〉 is 0, however, the bottom

friction, averaged over the orbital velocity, is 0.

We now return to the averaged momentum balance (3.7) and assume that

“horizontal turbulence” is not present. Then balancing the radiation stress

derivative and bottom friction, we find

〈v〉 =
5π

8cf
umax

∂h

∂x
sin θ

=
5π

8cf
αgh

∂h

∂x

sin θ

c

This last equation makes it evident that when the local beach slope is constant,

〈v〉 is proportional to the local water depth. Seaward of the breaking line, the

averaged bottom friction and the radiation stress convergence are 0, so the
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momentum balance is satisfied trivially.

How do we generalize this argument to the case where the beach does not

monotonically slope upwards (for example, the barred beach)? The difference

is that as the wave travels into the deeper water of the bar trough, it will

dip below saturation height. Because no significant dissipative processes are

occuring, we can again take 〈v〉 = 0 to be a consistent solution in this region.

Therefore on a barred beach a current will be forced over the bar and close to

the shoreline, the two locations where significant wave breaking occurs.

3.3 A mechanism for current dislocation

The one-dimensional momentum balance3.9 qualitatively reproduces current

profiles on planar beaches. However, discrepancies have been noted on barred

beaches [12, 13]. In particular, the local maximum of longshore current is

moved or “dislocated” from the bar to the trough.

We propose a mechanism that will cause current dislocation on barred

beaches, but not on planar beaches. This mechanism relies on understanding

both the vorticity forced by breaking waves and the subsequent dynamics of

regions of vorticity.
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Figure 3.2: Mean currents (as solid dots) recorded at Duck, NC on Oct. 10,
1990 (from reference [12]

Figure 3.3: Mean currents (as solid dots) recorded at Duck, NC on Oct. 12,
1990 (from reference [12]
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3.3.1 Inhomogeneous forcing/topography will force dipo-

lar vortex structures

Suppose that a “packet”1 of oblique waves advances on a beach (barred or

planar). If the packet is supposed to break according to saturation, it will

break when it reaches the appropriate height and impart some kind of long-

shore momentum to the current through the convergence of radiation stress.

However, it will also impart vorticity to the flow. We can qualitatively assess

the nature of this forcing by examining

−1

h
∇×

(
1

h
∇ · S

)

which is the contribution that the radiation stress divergence makes to the

vorticity evolution equation (2.27). In the case where both S and h are long-

shore homogeneous and θ > 0, we find that this forcing takes the character

of two “strips” of vorticity, one shoreward positive and one seaward negative.

Together they force a longshore current in the expected direction, as we have

already seen from the momentum perspective.

In the packet case, we find that this vorticity forcing takes the form of

a dipole. There are several ways to see this result. From a fundamental

fluid mechanical perspective, a wave that topples over and breaks introduces

a topologically-induced circulation into the fluid when the wave rejoins the

main body of water. Because the fluid is incompressible and largely inviscid,

1That is, the wavetrain is limited in longshore physical extent
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Figure 3.4: Schematic of bore showing circulation production on either end.
The straight arrows indicate the direction of wave propagation (towards the
shoreline)

vortex lines must reconnect or end on the surface of the fluid. In this case,

the vortex lines must end at the surface at the edges of the breaking wave; the

sense of the circulation produced at the leftward edge (from the perspective of

an observer looking shoreward) is positive, at the rightward edge is negative

(see figure 3.4).

From the model of a breaking wave as a bore, it has been demonstrated

that the circulation produced around the edges of a bore of finite extent is

proportional to the energy dissipation, but where the sign of the circulation

depends on which edge is being considered[36]. Here, too, a dipole is justified.
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3.3.2 Vortex dynamics can produce current dislocation

Now let us consider the vortex dynamics that take place on a sloping beach.

Generally, I wish to refer in this discussion to isolated regions of vorticity.

They can be characterized by their circulation

Γ =

∫ ∫
S

hq dx dy

=

∫
∂S

u · dr

where S is a simple region that contains the entire vortex region, and also by

radius

b = min
S

√
1

π

∫ ∫
S

dx dy

If the vortex is of circular shape, then b will give the actual radius.

There are several dynamical effects present that may effect the evolution

of the vortices. The shallow water approximation assumes that there is no

vertical variation in vorticity or velocity; therefore the usual two-dimensional

vortex dynamics are active (see reference [11], Chapter 2). For example, two

vortices of the same sign will tend to rotate about their center of circulation,

and two vortices of opposing sign will tend mutually advect away, in a straight

line if they are of equal magnitude.

There are also image vortices, necessitated by satisfying no-normal flow

boundary conditions at any wall boundaries. A vortex that is near to a wall
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will move along the wall as if a vortex of equal and opposite circulation were

behind it2.

Finally, we have a “self-advection” effect because of the sloping bottom.

A region of positive or negative vorticity in a vorticity free region takes the

form of a cylindrical shape. On a planar beach, a well-known approximation

to this fluid motion is that of an axisymmetric vortex ring [27]. A vortex that

takes the form of a circular arc will have motion identical to the corresponding

vortex ring. The motion of a vortex ring may be characterized in terms of its

circulation and inner and outer radii.

The velocity, according to [27], is given by

U =
Γ

4πR

(
ln

(
8R

b

)
− 1

4

)
(3.9)

Translated to the planar beach, the equivalent vortex ring has outer radius

h/|∇h| and inner radius b; due to mass conservation we must have

b = b0

(
h0

h

)1/2

throughout the motion of the vortex. Using these identities the self-advection

velocity U (3.9) may be written in terms of these physical variables as

U =
Γ

4π

(
∇h
h
× ẑ

)(
ln

(
8

b0h
1/2
0

h3/2

|∇h|

)
− 1

4

)
(3.10)

2This is not exactly true if the wall is not straight; in this case the image vortex does not
move according to ordinary vortex dynamics, but the effect on the “real” vortex is similar
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∇h  z

Figure 3.5: Self-advection on a planar beach

This makes clear that the direction of self-advection depends on both the

circulation Γ and the direction of the gradient ∇h. The direction of “self-

advection” is shown on 3.5. This approximation may also be used in the case

of a non-planar beach, where the vortex ring is no longer an exact solution.

We again use ∇h to determine the outer radius, but here it is a local slope.

This expression 3.10 has been shown to be a leading order approximation [45]

for the law of motion for vortices of small dimensionless radius O(ε), separated

by distances of O(1).

Together, these two facts explain why a packet of breaking waves will create
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a dislocated current on a barred beach. First, a vortex dipole will be created

at the location of the bar; or, on a planar beach, at the onset of breaking.

The vortices by mutual advection will want to move shoreward. On a planar

beach, self-advection will quickly move the vortices apart until their mutual

advection is negligible.

On a barred beach, by contrast, the vortices will move closer together

as they move shoreward. Therefore their shoreward motion is not arrested

until the vortices climb out of the trough, separating now because the local

slope of the topography has reversed[10]. The result is a dislocation of the

corresponding alongshore momentum from the bar, the site of wave-breaking,

to the trough, the eventual location of the vortices.
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Chapter 4

Numerical Model

4.1 Vortical flow

We model the resolved vortical flow by the shallow water equations with a

rigid lid in their velocity-stream formulation.

q ≡ ∇× u

h
Dq

Dt
=

∇× F

h
− cf
h
∇×

(
|u|u
h

)

u is defined by the following equations

∇ ·
(
∇ψ
h

)
= hq

u =
1

h
∇⊥ψ
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The domain is given to be

0 ≤ x ≤ D (4.1)

0 ≤ y ≤ L (4.2)

with boundary conditions

ψ(x, y) = 0 x = 0

∂ψ

∂x
(x, y) = Mψ(x, y) x = D

and ψ(x, y) = ψ(x, y + L). We have already seen that (see §2.2) given q, ψ

and therefore u are uniquely determined.

We leave the determination of F for §4.2 and consider the numerical meth-

ods used to solve these equations.

First we consider the dynamic equation. We use grid-based rather than

psuedo-spectral methods due to the arbitrary nature of the topography. At

each time step, the Jacobian J(ψ, q) is computed using the Arakawa Jaco-

bian. The friction term is computed using second-order differences. The time

integration is performed using the leapfrog method, with an occasional Huen

predictor-corrector step (as in [35]) to control the computational mode. Be-

cause both the advection and the friction term are computed to second-order

accuracy, we are satisfied to use a time discretization that is second-order as

well.
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A key consideration in these choices was the ability of the numerical scheme

to preserve conservation of the kinetic energy and enstrophy (defined in §2.1).

These conservation properties are believed to play a major role in constrain-

ing the spectral profile of a turbulent two-dimensional fluid, and so we do

not believe we can perform a physically realistic turbulence simulation with-

out them. The Arakawa Jacobian conserves discrete analogues of the energy

and enstrophy, so that any change in these quantities (in the absence of forc-

ing and dissipation) is due to time-stepping. With the time-stepping scheme

used, we conserve the appropriate quantities with reasonable accuracy in sim-

ulations where sources of energy and enstrophy are absent. We were interested

to find that alternative and popular time stepping schemes (leapfrog with a

Robert-Asselin filter and the third-order Adam-Bashforth scheme) permitted

an unacceptable decay of enstrophy, although energy was well conserved.

Two algorithms are used for the determination of ψ. The first, a direct

inversion in Fourier space, allows very fast, non-iterative computation, but is

limited to cases where h(x, y) = h(x). The second is an iterative multi-grid

solver that can be used for two-dimensional height fields (h depends on both

x and y).

4.1.1 Direct inversion

We consider the Fourier transform in y

ψ̂k(x) =

∫ L

0

ψ(x, y)e−i
2πk
L dy
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Then ψ̂k solves the ordinary differential equation

∂

∂x

(
∂ψ̂k
∂x

)
−
(

2πk

L

)2
ψ̂k
h

= hq̂k

ψ̂k(0) = 0

ψ̂k(D) = Mψ̂k(D)

It remains to specify M , the Dirichlet-to-Neumann map.

Suppose that the topography is flat outside of the computational domain,

i.e. h(x, y) = 1. Then the solution in the exterior must satisfy

∂

∂x

(
∂ψ̂k
∂x

)
−
(

2πk

L

)2
ψ̂k
h

= 0

A general solution to this equation is given by

ψ̂k = C1e
2πkx

L + C2e
− 2πkx

L

for k 6= 0, and

ψ̂0 = C1 + C2x

if k = 0.

If ψ is to remain bounded as x → ∞, then each Fourier component must
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remain bounded; so for each k 6= 0 we have the requirement that

ψ̂k = C2e
− 2πkx

L

and

ψ̂0 = C1.

We can express this is a relationship between the Dirichlet and Neumann data

on the boundary as

∂ψ̂k
∂x

(D) = −2πk

L
ψ̂k(D)

for k 6= 0, and

∂ψ̂0

∂x
(D) = 0.

These conditions are easily incorporated into a finite difference stencil along

with (4.3).

This is the simplest, but hardly the only model for the topography outside

the boundary. As one alternative we may take the height field outside the

domain to vary linearly with distance from the shoreline (h(x) = α(x − x0)),
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so that

∂2ψ̂k
∂x2

− 1

x− x0

∂ψ̂k
∂x

−
(

2πk

L

)2

ψ̂k = hq̂k

which has the general solutions

ψ̂k = C1(x− x0)I1(λ(x− x0)) + C2(x− x0)K1(λ(x− x0)), k 6= 0

ψ̂0 = C1 + C2(x− x0)
2

where λ ≡ 2πk
L

, and I1, K1 are modified Bessel functions of the first and second

kind respectively. Again, discarding the non-bounded solution and computing

the relationship between Dirichlet and Neumann data, we see

∂ψ̂k
∂x

(D) = −λK0(λ(D − x0))

K1(λ(D − x0))
ψ̂k(D), k 6= 0

∂ψ̂0

∂x
(D) = 0

In our simulations, we choose to model the exterior topography as flat. Be-

cause vortex pairs are attracted to deep water, we thought a deep exterior

topography might encourage vortices to leave the domain (and therefore open

boundary conditions using a sloping exterior topography will resolve a flow

less accurately than when using a flat exterior topography). Also, the com-

putations are somewhat simpler. In practice, for wave-driven dissipative sim-

ulations (such as those meant to model the barred beach), the choice doesn’t
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make much difference.

4.1.2 Multi-grid solver

In the case that h(x, y) is no longer solely a function of x, the above approach

is no longer appropriate. The equation for ψ is discretized in two dimensions

and solved by standard multi-grid methods [19]. The multi-grid technique is

a response to the insufficiency of classical iterative methods for inverting large

systems of linear equations. We will describe the philosophy briefly before

addressing some concerns peculiar to our particular problem.

The equations to solve are

∇ ·
(
∇ψ
h

)
= hq (4.3)

ψ(x, y, t) = ψ(x, y + L, t)

ψ(0, y, t) = 0

A seaward boundary condition remains to be specified. We will consider the

following two boundary conditions

ψ(D, y, t) = C(t)

∂ψ

∂x
(D, y, t) = Mψ(D, y, t)

where C(t) is specified by the time-tendency equation (2.8). This is an elliptic
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equation

Lu = f

with Dirichlet or Dirichlet and Dirichlet-to-Neumann boundary conditions. It

may be discretized into a system of nl linear equations using finite differences

Llul = fl.

Given an initial guess at u0
l , we define the Gauss-Seidel method to be, component-

wise,

ul,i =

[
nl∑

j=1,j 6=i

Ll,ijul,j − fl,i

]
/Ll,ii

Each ul,i is replaced as it is generated. Therefore the result depends on the

ordering of equations.

For our problem, we define Ll to be the following symmetric, second-order

finite-difference scheme. Let a grid be defined with spacing hl in both the x
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and y directions. Define

pi+ =
1

h(xi + hl/2, yj)

pi− =
1

h(xi − hl/2, yj)

pj+ =
1

h(xi, yj + hl/2)

pj− =
1

h(xi, yj − hl/2)

Llul(i, j) = h−2
l [pi+ul,i+1 j + pi−ul,i−1 j + pj+ul,i j+1

+ pj−ul,i j−1 − (pi+ + pi− + pj+ + pj−)ul,ij]

fl(i, j) = h(xi, yj)q(xi, yj)

We take the ordering of equations in the Gauss-Seidel ordering to be the stan-

dard red-black ordering. In addition, we must define a prolongation operator

P and a restriction operator R such that

P : Ul−1 → Ul (4.4)

R : Ul → Ul−1 (4.5)

(4.6)

where Ul is the set of vectors of dimension nl. We will construct a sequence

of grids such that hl−1 = 2hl.
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The two-stage multi-grid algorithm

For the problem with Dirichlet boundary conditions and red-black ordering,

it can easily be seen that the Gauss-Seidel method will convergence. However

the speed of convergence is unacceptably slow; while it is efficient at reducing

high-frequency errors, smooth errors will decay very slowly. We address this

problem by combining Gauss-Seidel (or Jacobi, etc.), with a step that reduces

smooth errors.

Suppose we generate an intermediate solution ũ by smoothing on the grid

hl. We will refer to the smoothing operation consisting of ν Gauss-Seidel (or

Jacobi) iterations by S ν
l . We compute the defect

ũl = S ν
l ul

dl = Llũl − fl,

and then restrict the defect onto the coarse grid and solve

dl−1 = R(dl)

Ll−1vl−1 = dl−1.

If this equation has been solved by direct inversion, its cost will have been re-

duced by 23d-fold, where d is the physical dimension of the problem. If it has

been solved by smoothing, the smooth components will be more quickly re-

duced on this coarser grid. We restrict the defect rather than the intermediate
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solution ũl for the following reason; while ũl may contain high-frequency com-

ponents, which cannot be adequately resolved on the coarse grid, dl contains

only the remaining smooth errors.

Finally, we interpolate vl−1 onto the fine grid and correct the intermediate

solution

vl = P(vl−1)

unewl = ũl − vl.

In practice, this procedure is recursively called on a sequence of grids (l =

0..m,where 0 is the coarsest). We can write the algorithm as follows, in FOR-

TRAN pseudo-code:

recursive subroutine mgm(l,u,f)

ūl = S ν1
l ul

v = 0

ūnewl = ūl −P(L−1
l−1(R(Llūl − fl))) l = 1

= ūl −P(mgm(l − 1, v,R(Llūl − fl))) l > 1

unewl = S ν2
l ūnewl

end subroutine

The interior correction step can also be repeated γ times. For γ = 1, this
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is called a “V-cycle”, for γ = 2 a “W-cycle”.

Boundary conditions

Two different seaward boundary conditions are implemented: Dirichlet, in

which C(t) is specified by the time evolution equation (2.8), and Dirichlet-

to-Neumann, in which the equation (2.9) must be satisfied at the seaward

boundary. The Dirichlet condition is incorporated into the scheme in the

usual way, by including the condition ψ = C(t) as a forcing on the right hand

side of the grid points immediately to the left of the boundary. The DtN

condition is also incorporated into the finite difference scheme, as described in

the next section.

Convergence

Because the multi-grid solver is used hundreds or thousands of times during a

simulation (at each time step, which may be a fraction of a second), we wish

to confirm that we will have a convergent algorithm for our problem for any

input, and desirable to estimate or increase the rate of convergence.

For open boundary conditions, the Dirchlet-to-Neumann map that must

be satisfied at the seaward boundary is given by (2.9). If we approximate the
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expression by a truncated sum, we have

MKψ(DH , y) =
1

L

K∑
0

[
−4πk

L

[∫ L

0

ψ(DH , t)cos(
2πk

L
(y − t))

]]

=
1

L

[∫ L

0

ψ(D, t)
K∑
k=0

[
−4πk

L
cos(

2πk

L
(y − t))

]
dt

]

In order to guarentee convergence, it will be sufficient to show the following

facts: the Ll = L∗l > 0 and Dl > 0, where Dl is the main diagonal of Ll and

A > 0 means positive-definite.

We first incorporate the boundary condition into Ll. We can discretize this

integral using any standard quadrature scheme, such as Simpson’s 1/3 rule.

ψ(D + ∆x, y)− ψ(D −∆x, y)

2∆
=[

N∑
i=1

∆t (1 + mod (i, 2))
1

3
ψ(D, i∆t)

K∑
k=0

[
−4πk

L2
cos

(
2πk

L
(y − i∆t)

)]]

By also using the 5-point stencil applied at the boundary point, we can get

rid of the exterior point and get the following equation (p = 1
h
, assuming that
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h = 1 on the boundary):

(
1 + p(D − ∆x

2
, y)

)
ψ(D −∆x, y) +

ψ(D, y −∆y) +

ψ(D, y + ∆y) +

−
(

3 + p(D − ∆x

2
, y)

)
ψ(D, y) +

2∆x

[
N∑
i=1

∆t (1 + mod (i, 2))
1

3
ψ(D, i∆t)

K∑
k=0

[
−4πk

L2
cos

(
2πk

L
(y − i∆t)

)]]
= 0

This is an equation for ψ(D, y). We notice that for two points on the

boundary, the equations are symmetric; the coefficient in the stencil only de-

pends on the distance between them. It is also true that the coefficients sum

to zero. It remains to show that there is symmetry in the coefficients between

boundary points (x = D) and their neighbors (x = D −∆x). So far, it is not

true; but suppose that h(D−∆x, y) ≡ h(D−∆x), which we can always have

by enlarging the computational domain slightly. Then we can multiply each

boundary equation by the factor

p(D − ∆x
2

)

1 + p(D − ∆x
2

)

to enforce symmetry. Since the factor is the same for each equation, we don’t

disturb the symmetry of coefficients between boundary points.

To show positive definiteness, we apply the Gershgorin Circle theorem [21].

By symmetry of L all eigenvalues are real. In order to show that all eigenvalues
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are positive it is sufficient to show that all Gershgorin circles lie in the right-

hand plane, and that at least one of them is isolated from zero. The matrix L

contains one row for each point that is not fixed; it includes all interior points

(including the y boundary points, where there is periodicity), and the right

boundary. For every point except on the right boundary, the row is a standard

finite difference stencil for the variable-coefficient Laplacian; in particular, the

elements of the row sum to zero for interior points. Their Gershgorin circles

lie in the right-hand plane but include zero on their boundary. As pointed

out earlier, this is also true for right-hand boundary equations. However, the

Gershgorin circles corresponding to points next to the left hand boundary do

not include zero. Because zero is on the boundary of the union of Gershgorin

circles, it cannot be an eigenvalue unless it is on the boundary of all Gershgorin

circles.

The same fact holds for the finite difference matrix in which Dirchlet con-

ditions have been used. The difference here is that the Gershgorin circles

corresponding to the points next to the right-hand side boundary lie entirely

in the right-hand plane. So again L must be positive definite because it cannot

have 0 as an eigenvalue.

To prove that the multi-grid algorithm with our choice of construction is

convergent, we appeal to the arguments in reference [4]. While there are many

other proofs of similar results [19, 59], the summary we will give below has

the advantage of being entirely algebraic and so refers directly to the linear

system being solved.

68



In [4], Banks and Douglas obtain estimates for the spectral radius of the

iteration matrix associated with the multi-grid algorithm; that is, the conver-

gence rate of one step of the iteration. Let L be the matrix of coefficients of the

discretized PDE problem (we have dropped the subscript l used previously),

and B be a matrix associated with a smoother, such that

Zj+1 = Zj +B−1(G− LW )

is equivalent to one step of the smoothing method.

In the formulation above the matrix equation that we wish to solve is

LZ = G (4.7)

and B is the matrix associated with the symmetric Gauss-Seidel method,

B = (D − A)D−1(D − A)T

where A is the strictly lower triangular part of L; that is,

L = D − A− AT

B is symmetric positive definite, as is L (from the previous argument). Ac-

cording to [4], that all of the generalized eigenvalues are positive is sufficient
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for convergence. In particular, if there is κ such that

√
uTBu ≤ κ1/2

√
uTAu

then various numerical values are proposed for the spectral radius of the iter-

ation step. In particular, we can see that

κ = λmax

is sufficient, where λmax is the maximum eigenvalue of the generalized eigen-

value problem for A and B. The result of [4] is that for a single iteration of

the multigrid algorithm, the error is decreased by a factor of

γ =
κ

κ+m

where m is the number of smoothing iterations used.

However, this is a very, very pessimistic bound. The actual condition

specified in the theorems in this paper refers to the ratio of uTBu to uTAu on

the subspace M⊥
j−1 ∩Mj.

To give examples demonstrating the convergence rate, we show three in-

version cases. We examine ‖ Lψ − hq ‖L2 , the L2 error of the residual. Each

vorticity field is chosen from a simulation, and inverted using the multi-grid

algorithm, with a tolerance ‖ Lψ − hq ‖L2< 10−8. The rate of decrease of the

residual is very similar for each case, with the residual decreasing by a factor
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10− 12 with each iteration.

4.2 Waves

The waves are modelled by a parameterization that resolves the rotational

part of the momentum convergence of breaking waves. As we have observed

in §2.3 the radiation stress tensor appears in our asymptotic description of

the shallow water equations with small-amplitude waves, as a forcing on the

averaged, vortical flow (2.27). The same expression was previously derived by

Longuet-Higgins and Stewart ([34] and many others) as the excess momentum

flux that occurs in the presence of waves. We begin from the point of view of

§3.1.1, that

− 1

hS
∇ · S =

∂p

∂t
−F − 1

2
∇|u′|2 (4.8)

If the waves are steady, we need only resolve

F =
k

hS
∇ · (hS

k

κ2
E).

This expression only depends on the steady wave train. We propose to compute

the necessary fields by computation along ray trajectories. We will find this

to be suitable for the saturation breaking criteria that we use to model wave

breaking.

We begin by presenting the general theory of raytracing in nonhomoge-
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Figure 4.1: ‖ Lψ − hq ‖L2< 10−8 for the three example inversions shown in
Figures 4.2,4.3,and 4.4.
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Figure 4.2: The vorticity field hq (left) and stream function ψ (right) for a
barred beach with open boundary conditions.

Figure 4.3: The vorticity field hq (left) and stream function ψ (right) for a
barred beach with closed boundary conditions.
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Figure 4.4: The vorticity field hq (left) and stream function ψ (right) for a flat
beach with periodic boundaries.

neous, but slowly varying, dispersive systems. In addition we will assume

that the background state is one of rest (otherwise a parallel development is

possible). We consider the phase φ(x, t), and determines its evolution from

ω(x, t) = −∂φ
∂t

(4.9)

k(x, t) = ∇φ (4.10)

We assume that ω is determined by a dispersion relation ω = Ω(k, x). Then

the characteristics of φ are given by
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dx

dt
= Ωk (4.11)

dk

dt
= −Ωx

We define cg ≡ Ωk to be the group velocity. We see from (4.11) that the group

velocity gives the speed of wave quantities in the propagation space.

It remains to compute the wave action per unit area, which in this case is

given by A = ωE (again, because the waves are propagating on a background

state of rest, there is no distinction between intrinsic and relative frequency).

The wave action per unit area A can be given by the so-called derived ray

equations [20]:

d∇k
dt

= −∇k · Ωkl · ∇k − Ωkx · ∇k −∇k · ΩT
kx − Ωxx (4.12)

dlnJ

dt
= ∇k : Ωk + tr(Ωkx) (4.13)

AJ = constant (4.14)

where

∇k =

 kx lx

ky ly
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Ωkx =

 ωkx ωlx

ωky ωly


and so forth.

J is the Jacobian determinant of x with respect to α, the initial origin of

the rays. The law for the action is essentially a restatement of the fact that A

is the density of a conserved quantity along wave trajectories in the absence

of dissipation.

These equations will become singular if caustics or foci arise in the ray

tracing. Essentially, the situation that we are faced with is that

∇k → ∞

J → 0

While this can’t arise in one-dimensional topography, it may happen for two-

dimensional topography. It is advantageous to have a method for computing

J which can be continued through a focus, if only so that we can detect them

should they arise1. We use an alternative scheme proposed in [58]. Their

solution is to propose an alternative set of equations that cleverly combine ∇k

and J into a variable that remains finite through a focus.

We begin by supposing that we begin with an initially plane wavefront at

1This would still not be sufficient to compute the action, however, because the law for
action would not give an accurate description of the wave envelope in the vicinity of a focus.
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a curve x0(α), parametrized by arclength α. Let

γ = (t, α)T

so that xγ is the 2 x 2 matrix of derivatives of the transformation from ray

coordinates (γ) to physical space. Let me define the unit tangent e1 along a

ray

e1(t, α) =
Ωk(x,k)

|Ωk(x,k)|

and define e2 so that e2 ⊥ e1 and (e1, e2) are right-handed. Given these

definitions, the Jacobian of the transformation (t, α) → x

J = det(xγ)

= |Ωk|Ã

where Ã ≡ eT2 · xα is the raytube area.

White and Fornberg now turn to the derived ray equation, written in matrix

form here as

∂

∂t
kx(x(t, α)) = −Ωxx − Ωxkkx − kxΩkx − kxΩkkkx
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By changing to the (e1, e2) basis and other manipulations, they show that

∂Ã

∂t
= µ2Ã+ µ3B̃

∂B̃

∂t
= µ1Ã− µ2B̃

where B ≡ ÃeT2 · kx · e2 and

µ1 = −eT2 · Ωxx · e2 + 2
eT2 Ωx

|Ωk|
[
eT1 · Ωkx · e2 + eT2 · Ωkx · e1

]
−2

(
eT1 · Ωx

|Ωk|

)(
eT2 · Ωx

|Ωk|

)
eT1 · Ωkk · e2

−
(

eT2 · Ωx

|Ωk|

)2 [
eT1 Ωkk · e1 + 2eT2 · Ωkk · e2

]
µ2 = −eT1 · Ωkk · e2

(
eT2 · Ωx

|Ωk|

)
+ eT2 · Ωkx · e2

µ3 = eT2 · Ωkk · e2

While very dull to look at (and to write), these equations are very easy to

implement and to solve numerically. They are linear equations and are solvable

even if Ã goes through 0.

The wave action per unit area, then, is easily computed in terms of Ã

and the local group velocity |Ωk| in the absence of dissipation. If dissipation is

present, we must model the process somehow; some models rely on a rate of en-

ergy dissipation along the ray trajectory, we use a saturation criterion. Either

way, we wish to recover the implicit effect of wave dissipation by computing

F . Notice that for non-dispersive waves, including shallow water waves, we
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can write

F =
k

hS
∇ · (cgA)

=
k

hS
D

for D ≡ ∇ · (cgA). Note also that in a steady wave train

D =
∂A

∂t
+∇ · (cgA)

=
dA

dt
+ (∇ · cg)A (4.15)

However in the absence of dissipation, action conservation states that

dA

dt
+ (∇ · cg)A = 0

Let us approximate both (4.15) and (4.16) by the Euler method along a tra-

jectory:

Aundispt+∆t − At + (∇ · cg)At∆t = 0

Adispt+∆t − At + (∇ · cg)At∆t = D∆t

Consequently

D =
1

∆t
(Adispt+∆t − Aundispt+∆t )
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This equation may be used in two ways; if a waves “saturates” - that is, it

breaks when it reaches an unstable amplitude - then Adisp is known and D

can be solved for. If instead a model is given for D, then Adisp is recovered.

Aundisp is always given by action conservation from the previous “time” step.

4.2.1 Dissipation models

Saturation

We employ for most of our simulations the following saturation criterion: if

as the wave travels towards the shore, its height H exceeds a fraction α of

the still water depth, it will “break” and be forced to maintain the saturation

amplitude. We take α = 0.41 and define H to be the maximum displacement

from the still water depth (one half the vertical distance from crest to trough).

Dissipation incorporating randomness

In order to test the robustness of our results we also use a model for wave

dissipation in [46]. A breaking wave is assumed to have a rate of energy

dissipation equal to that of a bore whose shallow water depth is given by the

still water depth h, and the deep water height is given by the height still water

depth plus the wave height H [5]; assuming that H is proportional to the

water depth, we arrive at a function of the wave energy, with C still to be
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determined,

Db =
C

4
ρgω

H3

h

=
C

4
ρgωh2

= 2CωE.

Then, a wave has some probability of breaking; this function is given with

reference to a reference energy Eref

Pb =

[
1− e

−
„

E
Eref

«(n/2)]

This function has the character of an “on-off” function, with Pb being close to

1 for E > Eref , and close to 0 for E < Eref . The sharpness of the transition

increases as n increases. In our simulation, we let Eref be the energy corre-

sponding to a wave of saturation height H = αh. Put together, the energy

dissipation rate of a wave progressing towards the shoreline is given by

PbDb =

[
1− e

−
„

E
Eref

«(n/2)]
2CωE

Waves the evolve using this dissipation model differ from those that break

according to the saturation model in several ways. Waves are now allowed to

exceed the saturation threshold, although they will quickly be damped down.

The main effect of this different concept of evolving wave energy is to shift
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the location of wave dissipation; dissipation is no longer limited to regions of

upward sloping topography. In particular, on the barred beach, dissipation is

shifted “forward” onto the shoreward side of the bar (see figure (4.5)).
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Figure 4.5: Breaking flag (top), non-dimensional amplitude, as fraction of
still water depth (middle), and magnitude of dissipation (bottom) for both
saturation (blue solid) and random (red dashed) wave dissipation models.
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Chapter 5

Current dislocation in an

idealized numerical experiment

We first demonstrate an idealized experiment that shows the current disloca-

tion can occur when, as predicted, longshore inhomogeneity in wave structure

or topography is present. This experiment is modelled on simulations pre-

sented in [10] with a non-linear shallow water model. The simulations are

run for a total of 10 hours, simulation time, starting from rest. A constant

forcing resulting from wave-breaking parameterization is applied. The waves

are either assumed to come in from the sea with no alongshore variation, or in

a Gaussian-shaped packet, whose length is 3 times the wavelength. The pa-

rameters that are varied between simulations are topography and wave packet

structure. The time step is variable and is set so that the CFL, defined in

reference to the maximum (resolved current) velocity, is within an appropriate
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range (< .9).

Two types of topography are considered, a planar beach and a barred

beach as used in [10]. We should find that current dislocation will occur when

inhomogeneity in the longshore direction permits the creation of strong vortex

dipoles during wave breaking. Furthermore, the degree of dislocation will

depend on the shape of the topography, as vortex dynamics will govern the

newly formed dipole.

Parameter Definition Formula or value
CFL Courant-Friedrichs-Levy number < 0.9
∆t Time step CFL

max |u|
1

1/∆x+1/∆y
s

∆x x (cross-shore)-grid spacing 1m
∆y y (alongshore)-grid spacing 1m
D Cross-shore dimension 512m
L Alongshore dimension 512m
hS0 Still-water depth at seaward boundary 4m
a Amplitude of waves at seaward boundary 0.2hS0

θ Angle of incidence at seaward boundary 15
κ Magnitude of wave-number vector 0.29m−1

λ Wave-length 2π/κ

Table 5.1: Parameters common over simulations A,B,C,D

Simulations D and B then (homogeneous forcing and homogeneous to-

Simulation Topography Wave packet structure cf
A Barred Packet 0.01
B Barred Homogeneous 0.01
C Linear Packet 0.01
D Linear Homogeneous 0.01

Table 5.2: Description of simulations
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pography) should show no current dislocation and should broadly satisfy the

predictions of [28, 29]. Simulation C (inhomogeneous wave forcing, but pla-

nar beach) should show modest dislocation, because the topography is not

conducive to forward motion of vortices. Simulation A should show marked

dislocation, with a preference for the local maximum of water depth.

The forcing profiles for each simulation clearly show the expected dipole

pattern when predicted.

The early development of current is as expected. For homogeneous waves

breaking on a barred beach (simulation B), the current develops over the bar,

where its maximum is located for the entirety of the simulation. On a planar

beach, the current initially develops at the location of wave breaking and

shows a slight shift shoreward as the simulation progresses, consistent with

the vortex dynamics. On a barred beach, the current initially develops on the

bar, but shows a marked shift shorewards as the simulation progresses, with

its maximum located at the bar trough.

86



Figure 5.1: −∇× F for simulation A
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Figure 5.2: −∇× F for simulation B
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Figure 5.3: Closeup of −∇× F for simulation A
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Figure 5.4: −∇× F for simulation C
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Figure 5.5: Early development of mean longshore current for simulation A
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Figure 5.6: Early development of mean longshore current for simulation A
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Figure 5.7: Early development of mean longshore current for simulation B
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Figure 5.8: Early development of mean longshore current for simulation B
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Figure 5.9: Early development of mean longshore current for simulation C
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Figure 5.10: Early development of mean longshore current for simulation C
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5.1 Long-time observations

In the previous section, we examined the evolution of the nearshore current

structure from rest over the period of about 30 minutes. However, experimen-

tal data is typically averaged from instantaneous measurements over a period

of time comparable to this length of time (in DELILAH, current measure-

ments were processed in 34 minute increments) and the current structure is

relatively steady over a period of hours. So it is important to demonstrate

that the mechanism for current dislocation that we have proposed can persist

over a number of hours of simulation time, or even be a steady state.

We demonstrate this by plotting the alongshore-averaged alongshore ve-

locity for a long-running version of simulation A (up to 14 hours). We see a

persistent spike in velocity at the trough (50 meters).

Over time, a marked current develops outside of the surf zone. This is

a consequence of the peculiar vortex dynamics of the isolated packet; as the

vortex dipole advects out of the trough and separates, it spins off small coher-

ent vortices that travel down the beach until they meet their “mate” near the

periodic boundary. These vortices now travel shorewards and transport some

momentum offshore. Exacerbating this trend is a second circulation dipole

generated at the shoreline; this circulation also gets swept offshore. This sec-

ond dipole structure is an artifact of the isolated packet and we do not expect

to see it in more general idealized or realistic models of wave dissipation forc-

ing.
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Figure 5.11: Alongshore-averaged alongshore velocity for simulation A.
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Figure 5.12: Alongshore-averaged alongshore velocity for simulation A. Con-
tinuation of previous figure
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Figure 5.13: Alongshore-averaged alongshore velocity for a long-running ver-
sion of simulation A. In total, this simulation was run for 14 simulation hours.
Note: the time scales on these plots are not the same
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5.2 Comparison with NLSW simulations

These results were previously achieved using a shock-resolving non-linear shal-

low water (NLSW) model and discussed in [10]. It is instructive to compare

the computational time required in each case. The NLSW model, because it

resolves surface gravity waves, has a time step that is limited to the maximum

gravity wave speed present in the model. We have a computational savings

because our time step is limited only by the slow vortical flow. A typical max-

imum velocity speed in a fully developed flow is around 2 m/s, whereas the

maximum gravity wave speed in the NLSW simulations was 6.3 m/s. So from

this consideration alone, we can expect a factor of three increase in time step.

In addition, the non-linear behavior of waves in the NLSW model is very

different from what we wish to model in an ocean setting. For example, waves

in the NLSW model will steepen and break as they travel over flat topography,

whereas a linear surface ocean wave will travel unchanged. For the numerical

examples presented in [10], the initial wave amplitude had to be chosen to be

very small, in order that the waves would actually break over the bar and not

in the off-shore region. While the vorticity forcing is qualitatively similar in

shape and sign to that produced by parameterization, its magnitude differs by

the relative input of energy between the two simulations.
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By observing that the shallow water equations

∂h

∂t
+∇ · (hu) = 0

Du

Dt
+ g∇(h+ hB) = F − cf

h
|u|u

are invariant under the transformation

F → βF

u → βu

t → 1

β
t

we conclude that the effect of magnifying a forcing by β will be to accelerate

the flow by β; that is, a time period of T in the new model is equivalent to a

time period of βT in the NLSW model.

It remains to establish the ratio by which the magnitude of the forcing

has been increased (roughly). Let us compare the path (x,k,a) of a surface

gravity wave in the NLSW model with that (x̃,k̃,ã) of a gravity wave in our

model. Because the path in physical and wave number space depends only on

the linear dispersion wave relationship, we have x̃ = x,k̃ = k. Suppose that

the amplitude path is given by a linear proportionality; that is ã = γa. Then

F̃ = γ2F
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So we should take β = γ2.

In practice, we do not believe that it is useful to estimate β and draw

strong conclusions from its numerical value. While the momentum input from

wave dissipation should increase quadratically with the amplitude of incoming

waves, the imprint of the forcing function changes shape as the amplitude in-

creases because it depends on the onset of breaking, a highly nonlinear process.

So a straight-forward “speeding up” of the flow development is not guarenteed.

However it is clear that the steady flow of interest develops much faster in the

vortical model (compare figure 5 and [10], figure 9); and this is certainly pos-

sible because of the use of qualitatively similar, but much stronger forcing.

Finally, the non-linear shallow water scheme used previously is extremely

diffusive, particularly of enstrophy.
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Chapter 6

Waves that will cause

dislocation can be characterized

by their breaking fraction

The previous experiment demonstrates that the vorticity dynamics proposed

are active when a steady, isolated wave packet breaks on the beach. A key

feature of that experiment is that the surf zone was forced by a dipole-like

vorticity structure; instabilities that arise in flow with homogeneous forcing

are not sufficient to create dislocation.

However, not all periodic vorticity profiles will create the same current

structure. A barred beach will exhibit seaward flowing rip currents at locations

where it has “cuts”, because the vorticity dipole is oppositely aligned[24, 9].

To clarify the nature of the vortex dynamics produced by inhomogeneous wave
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groups we construct an experiment motivated by the simulations of Reniers

et al. [44, 42]. Reniers et al. examine the behavior of bathymetry under

random wave forcing. Using a Jonswap frequency spectrum1 and random

phases, boundary conditions for the incoming waves in terms of time and

alongshore position are computed. The amplitude of the incoming waves from

a single realization show remarkable variations on the order of O(100 s) and

O(100 m). The authors, however, used waves with a mean 0◦ direction, and

so consistent longshore currents would not have been present in their setup.

We wish to examine the effect of comparable variations on the develop-

ment of alongshore currents. We use the barred beach domain as described

in Chapter 5. The angle of attack of the waves is fixed at 15◦. The incoming

wave amplitude at the seaward boundary is sinusoidal, with two periods in the

domain. The amplitude and the offset may vary over the series of experiments.

The effect of this variation is to change the average amplitude of the wave field;

most importantly, to alter the intensity and spatial variation of wave breaking

at the bar.

As the average seaward amplitude of the waves increases, the spatial frac-

tion of the incoming wave the exceeds the saturation criterion at the bar in-

creases; more of the wave “topples over” and breaks. Recall that a wave packet

produces vortices at its flanks; what we have then is a sequence of vortex

pairs, where from experiment to experiment we vary the ratio of the distance

1The Jonswap frequency spectrum is a wave spectrum projected to be forced by winds
of a given velocity U acting over an area F or “fetch”[51]
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between positive/negative pairs (shoreward-travelling) and negative/positive

pairs (seaward-travelling). It is reasonable to suppose that this ratio will con-

trol whether the vortices form seaward-travelling pairs (and therefore current

dislocation) or shoreward-travelling pairs (rip currents). Therefore we charac-

terize each experiment by its “breaking fraction” (fb), defined as the spatial

percentage of the wave that breaks at the bar. For fb = 0.5, each consecutive

vortex should be evenly spaced from its leftward and rightward neighbor. For

fb � 0.5 we get the isolated packet regime, for bf � 0.5 the rip current regime.

To be specific, we allowed the offset of the incoming amplitude to vary

by 0.02 from 0.02 to 0.16 and the amplitude to vary by 0.04 from 0.2 to 0.2

(all numbers are fractions of the still water height 4 m at the seaward bound-

ary). Values were discarded if a) the resulting wave-train has very weak or no

breaking over the sandbar, or b) strong breaking occurred everywhere along

the bar2. In summary the dimensional amplitude at the seaward boundary

was defined to be

(4 m)

(
O + A sin(

4π

L
)

)
For each of these simulations, we ran until a stable, quasi-periodic flow

emerges, as in the “packet” experiment. Then we averaged the alongshore

velocity in the alongshore direction and in time (over the second half of the

experiment, for t > 1 h). In each case, there is a maximum alongshore velocity

developed near the shoreline, where the majority of wave dissipation occurs.

However, there is a second maximum between 35 m and 110 m from the

2These were qualitative judgments.
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Figure 6.1: Amplitude at seaward boundary and vorticity forcing footprint for
O = 0.06, A = 0.08 (top) and O = 0.12, A = 0.08. O and A are in each case
expressed as a fraction of the still water depth at the seaward boundary. The
location of high amplitude forcings in the side-by-side plots do not appear to
“match up” because of the oblique direction of the waves.
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Parameter Definition Formula or value
CFL Courant-Friedrichs-Levy number < 0.9
∆t Time step CFL

max |u|
1

1/∆x+1/∆y
s

∆x x (cross-shore)-grid spacing 2m
∆y y (alongshore)-grid spacing 2m
D Cross-shore dimension 512m
L Alongshore dimension 512m
hS0 Still-water depth at seaward boundary 4m
θ Angle of incidence at seaward boundary 15
κ Magnitude of wave-number vector 0.29m−1

λ Wave-length 2π/κ

Table 6.1: Parameters common over all simulations

O \ A 0.04 0.08 0.12 0.16 0.2
0.02 X 0.19 0.31 0.36 0.39
0.04 X 0.30 0.37 0.41 0.43
0.06 0.27 0.39 0.43 X X
0.08 0.45 0.47 0.48 X X
0.1 0.61 0.55 0.54 X X
0.12 0.82 0.64 0.59 X X
0.16 1.0 0.87 0.71 X X

Table 6.2: Breaking fraction matrix: shows simulations that were retained.
An “X” denotes that the simulation was discarded.

shoreline (the trough has its deepest point at 50 m, and the bar its highest

point at 100 m). The location of this maximum corresponds extremely well to

fb; for fb < 0.6 the second maximum is located at or near the trough low; for

fb > 0.6 the second maximum is located at or near the bar crest.
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Figure 6.2: Location of current maximum vs. breaking fraction fb for
frequency-2 sinusoidal wave forcings

6.1 Discussion

While this is a promising result, a couple caveats should be mentioned. While

quadratic (approximated as littoral plus quadratic mean flow, as described in

§2.3.3) friction is used, there is no additional dissipation that acts preferentially

at small scales (quadratic and linear drag act preferentially at large spatial

scales[50, 17]). As can be seen in figures 6.3 and 6.4, significant small-scale

noise is present and increases as time goes on. This noise is clearly numerical,
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an artifact of the advection scheme used. However, it is unclear how use of a

different scheme might alter the results.

Also, the maxima plotted in figure 6.2 are not nearly as prominent as ex-

perimental maxima, at least in comparison to the nearshore maximum, which

is present in every experiment. The prominence of the nearshore maximum

is related to the strong disspation due to wave breaking near that location.

This would be affected by the construction of the incoming wave train, as

well as by the wave-breaking model. For example, the “random wave model”

described in §4.2.1 will, for typical parameters, increase the energy dissipated

over the bar relative to the shoreline (relative to the saturation model used

here), possibly ameliorating this behavior.

Finally, the wave breaking model may affect another aspect of the result,

the location of the current maximum for a particular incoming wave-train. In

particular, the circulation footprint produced by the random wave model may

be shifted further shoreward (see figure 4.5), increasing the likelihood that it

will travel shorewards.
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Figure 6.3: Two circulation plots from O = 0.06, A = 0.08 (fb = 0.39); 30
minutes after spin-up from rest (top), 2 hours from rest (bottom)

111



Figure 6.4: Two circulation plots from O = 0.12, A = 0.08 (fb = 0.39); 30
minutes after spin-up from rest (top), 2 hours from rest (bottom)
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Figure 6.5: Time-averaged, alongshore-averaged alongshore currents from two
experiments, O = 0.06 and O = 0.12, both with A = 0.08.
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Chapter 7

Shallow-water turbulence with

topography

Turbulent fluids are characterized by motions on a wide range of spatial and

temporal scales. This requires a statistical description of the behavior; without

such a description, transport and energy dissipation within the fluid cannot be

understood; for example, the mean velocity at a point, unlike the mean velocity

in a laminar fluid, is a completely uninteresting quantity (in an isotropically

forced and dissipated fluid, the mean velocity at any point x must be zero, no

matter how vigorous its motions may be1).

We wish to ask to what degree the near-shore current system is turbulent.

Specifically, we want to know to what degree the flow shows the characteristics

1If the statistics of the fluid don’t depend on spatial variation, a mean velocity at one
point would imply the same mean velocity at any other point. But this would imply that
momentum in this direction was imparted to the flow by the forcing or dissipative operators,
which are statistically independent of direction.
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of two-dimensional turbulence. We will find, based on recent theory for the

arrest scale of quadratically dissipated systems[17], that our model in fact can

not display a range of scales in which upscale energy transport can occur. This

is consist with our observation that simulations of wave-forced dynamics on

the beach do not show vortex mergers or energetic vortex-vortex interactions.

7.1 The near-shore current system is

non-turbulent

One question we wish to address is the degree to which two-dimensional tur-

bulence is operating in the near-shore current system. Without friction and

forcing, and assuming a flat topography, the shallow water equations with a

rigid lid are identical to the two-dimensional incompressible Euler equations

∂q

∂t
+ J(ψ, q) = 0

∇2ψ = q

The turbulent behavior of solutions to these equations has been extensively

analyzed in the fluid dynamics and physics literature[57, 26], and has many in-

teresting characteristics. If one attempts to construct a power-law relationship

for the kinetic energy at equilibrium (assuming that there is both a source and

a sink of energy), one finds that a two-dimensional fluid, if it is forced at some

intermediate spatial scale relative to the domain size, must have an upscale
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cascade of energy and a downscale cascade of enstrophy.

The mechanism by which these energy and enstrophy scales tranfers are

accomplished is through vortex straining and mergers (cite Ecke here). Strain-

ing and creation of filaments allows enstrophy to go to smaller scales, while

merger of vortices sends energy to larger scales. If unchecked by some energy

dissipation mechanism at large scales, the size of features may expand to the

domain size. Mechanisms that dissipate energy at large scales include linear

or quadratic friction; in particular the friction that we employ in our model of

the near-shore region.

Grainik et al. [17] analyze the cascade phenomenology of shallow water of

uniform depth h

∂ξ

∂t
+ u · ∇ξ = Fξ +Dξ (7.1)

Dξ = ∇× (−Cd|u|u) (7.2)

Cd is the combination of a non-dimensional friction parameter and the layer

depth; that is Cd = cf/h, in our earlier terminology. Fξ is assumed to be

isotropic and isolated in wavenumber space, near wavenumber kf . As in

the traditional two-dimensional picture, in equilibrium energy will cascade to

larger scales. At some scale ka, however, friction will overwhelm the non-linear

energy transfer of energy and “arrest” the cascade. Grainik et al. identify ka
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by matching the advective time scale to the drag time scale

Tadv ∼ k−2/3ε1/3

Tdrag ∼ C−1
d k1/3ε1/3

and find that they are matched at the wavenumber

ka = AnCd (7.3)

that is, ka depends only on Cd. Therefore knowing the friction coefficient and

the layer depth, we should be able to predict the arrest scale.

Grainik et al. find experimentally that the arrest scale is indeed unchanged

by varying the energy input, and that

ka ≈ 51Cd

An is also estimated by assuming that the quadratic drag is well approximated

by a linear drag

Dξ = −Cd|u|ξ

= −reffξ

for reff = Cd|u|. When |v| is chosen to be the velocity at the arrest scale, and

the scale itself is chosen as the arrest scale of the corresponding linear drag
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[50], yielding possible values of An = 32.4 and An = 54, using two different

estimates of the corresponding linear constant.

ka is naturally related to the vertical aspect ratio of the shallow layer; the

horizontal scale at which turbulence is arrested is much larger for a shallow

layer than for a deep layer. In particular, suppose that we are considering

motions for which the shallow water equations are considered to be a good

model for a shallow, three-dimensional layer of fluid; this requires that

kh < 1

where k is a characteristic scale of the motions.

This is the assumption that we must make in order to model the beach 2.

But the arrest scale on the beach must occur at

ka = 51
0.01

h

kah = 0.5

Regardless of the local depth of the fluid, any turbulence is arrested at only

twice the scale of the smallest resolvable motions. There is no possibility then,

of cascade to larger scales.

This conclusion should be taken with caution. First, the results of Grainik

et al. assumed constant h and isotropic forcing. It is not clear how to general-

2in fact, the discretization choices that we make in our model typically do not resolve
scales below this; that is the ratio of horizontal grid spacing to fluid depth is approximately
1
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ize to variable h and the spatially-localized, deterministic forcing used in the

beach simulation. We have asserted that any forcing on a scale appropriate to

shallow-water modelling would be arrested by the quadratic drag. This could

be clarified by examining simulations where the scale of forcing is varied.

Another point of concern is the use of shallow water with quadratic drag

to model the near-shore region. This is a common modelling assumption and

is based on the idea that the shear stress on the current due to bed friction

is due to a turbulent boundary layer. In a shallow water model, this stress is

considered to be distributed equally throughout the layer and the constant cf

is typically assigned a constant value, resulting in the momentum conservation

equation term cf
u|u|
h

. Spatial variation in the coefficient is sometimes used (as

in reference [15]), and experimental studies suggest that breaking waves have

a larger influence on the behavior of the boundary layer than just by varying

the free-stream velocity of the breaking wave[38]. Finally the numerical deter-

mination of a constant (or a spatial varying cf ) has resulted in variations over

different beaches and different conditions, without a clear rationale for how to

generalize to unmeasured beaches. In conclusion, quadratic drag is known to

be a rough and inaccurate representation of the shear stress from the bed.

Finally, we should address the ability of our numerical model to simulate

forced-dissipative turbulence. Currently, we employ no small scale enstrophy

filter, which is necessary for any forced simulation of isotropic turbulence.

In order to properly reproduce the simulations given in Grainik et al. (or an

analogue for the sloping beach, as suggested earlier), an appropriate dissipative
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operator will need to be used.
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