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Describing the collective activity of neural populations is a daunting task. Recent empirical
studies in retina, however, suggest a vast simplification in how multi-neuron spiking
occurs: the activity patterns of retinal ganglion cell (RGC) populations under some
conditions are nearly completely captured by pairwise interactions among neurons.
In other circumstances, higher-order statistics are required and appear to be shaped
by input statistics and intrinsic circuit mechanisms. Here, we study the emergence
of higher-order interactions in a model of the RGC circuit in which correlations are
generated by common input. We quantify the impact of higher-order interactions by
comparing the responses of mechanistic circuit models vs. “null” descriptions in which all
higher-than-pairwise correlations have been accounted for by lower order statistics; these
are known as pairwise maximum entropy (PME) models. We find that over a broad range
of stimuli, output spiking patterns are surprisingly well captured by the pairwise model. To
understand this finding, we study an analytically tractable simplification of the RGC model.
We find that in the simplified model, bimodal input signals produce larger deviations from
pairwise predictions than unimodal inputs. The characteristic light filtering properties of
the upstream RGC circuitry suppress bimodality in light stimuli, thus removing a powerful
source of higher-order interactions. This provides a novel explanation for the surprising
empirical success of pairwise models.
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1. INTRODUCTION
Information in neural circuits is often encoded in the activity of
large, highly interconnected neural populations. The combina-
toric explosion of possible responses of such circuits poses major
conceptual, experimental, and computational challenges. How
much of this potential complexity is realized? What do statistical
regularities in population responses tell us about circuit architec-
ture? Can simple circuit models with limited interactions among
cells capture the relevant information content? These questions
are central to our understanding of neural coding and decoding.

Two developments have advanced studies of synchronous
activity in recent years. First, new experimental techniques pro-
vide access to responses from the large groups of neurons neces-
sary to adequately sample synchronous activity patterns (Baudry
and Taketani, 2006). Second, maximum entropy approaches
from statistical physics have provided a powerful approach to
distinguish genuine higher-order synchrony (correlations) from
that explainable by pairwise statistical interactions among neu-
rons (Martignon et al., 2000; Amari, 2001; Schneidman et al.,
2003). These approaches have produced diverse findings. In
some instances, activity of neural populations is extremely
well described by pairwise interactions alone, so that pairwise
maximum entropy (PME) models provide a nearly complete
description (Shlens et al., 2006, 2009). In other cases, while
pairwise models bring major improvements over independent

descriptions, it is not clear that they fully capture the data
(Martignon et al., 2000; Schneidman et al., 2006; Tang et al., 2008;
Yu et al., 2008; Montani et al., 2009; Ohiorhenuan et al., 2010;
Santos et al., 2010). Empirical studies indicate that pairwise mod-
els can fail to explain the responses of spatially localized triplets
of cells (Ohiorhenuan et al., 2010; Ganmor et al., 2011), as well
as the activity of populations of ∼100 cells responding to natural
stimuli (Ganmor et al., 2011). Overall, the diversity of empirical
results highlights the need to understand the network and input
features that control the statistical complexity of synchronous
activity patterns.

Several themes have emerged from efforts to link the corre-
lation structure of spiking activity to circuit mechanisms using
both abstract (Amari et al., 2003; Krumin and Shoham, 2009;
Macke et al., 2009; Roudi et al., 2009a) and biologically-based
models (Bohte et al., 2000; Martignon et al., 2000; Roudi et al.,
2009b); these models, however, do not provide a full description
for why the PME models succeed or fail to capture neural cir-
cuit dynamics. First, thresholding non-linearities in circuits with
Gaussian input signals can generate correlations that cannot be
explained by pairwise statistics (Amari et al., 2003); the deviations
from pairwise predictions are modest at moderate population
sizes (Macke et al., 2009), but may become severe as population
size grows large (Amari et al., 2003; Macke et al., 2011). The pair-
wise model also fails in networks of recurrent integrate-and-fire
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units with adapting thresholds and refractory potassium currents
(Bohte et al., 2000). The same is true for “Boltzmann-type” net-
works with hidden units (Koster et al., 2013). Finally, small groups
of model neurons that perform logical operations can be shown
to generate higher-order interactions by introducing noisy pro-
cesses with synergistic effects (Schneidman et al., 2003), but it is
unclear what neural mechanisms might produce similar distri-
butions. These diverse findings point to the important role that
circuit features and mechanisms—input statistics, input/output
relationships, and circuit connectivity—can play in regulating
higher-order interactions. Nevertheless, we lack a systematic
understanding that links these features and their combinations to
the success and failure of pairwise statistical models.

A second theme that has emerged is the use of pertur-
bation approaches to explain why maximum entropy models
with purely pairwise interactions capture circuit behavior in the
limit in which the population firing rate is very low (i.e., the
total number of firing events from all cells in the same small
time window is small) (Cocco et al., 2009; Roudi et al., 2009a;
Tkacik et al., 2009). Also in this regime, higher-order inter-
actions cannot be introduced as an artifact of under-sampling
the network (Tkacik et al., 2009), a concern at higher popu-
lation firing rates. However, the low to moderate population
firing rates observed in many studies permit a priori a fairly
broad range in the quality of pairwise fits. What is left to explain
then is why circuits operating outside the low population fir-
ing rate regime often produce fits consistent with the PME
model.

We approach this issue here by systematically characterizing
the ability of PME models to capture the responses of a class
of circuit models with the following defining features. First, we
consider relatively small circuits of 3–16 cells, each with iden-
tical intrinsic dynamics (i.e., spike-generating mechanism and
level of excitability). Second, we assume a particular structure for
inputs across the circuit. Each neuron receives the same global
input which, for example, represents stimuli in the receptive
fields of all modeled cells. Neurons also receive an independent,
Gaussian-like noise term. Third, the circuit has either no recipro-
cal coupling, or has all-to-all excitatory or gap junction coupling.
We begin with circuit models fully constrained by measured
properties of primate ON parasol ganglion networks, receiving
full-field and checkerboard light inputs. We then explore a sim-
ple thresholding model for which we exhaustively search over the
entire parameter space.

We identify general principles that describe higher-order spike
correlations in the circuits we study. First, in all cases we exam-
ined, the overall strength of higher-order correlations are con-
strained to be far lower than the statistically possible limits.
Second, for the higher-order correlations that do occur, the pri-
mary factor that determines how significant they will be is the
bimodal vs. unimodal profile of the common input signal. A sec-
ondary factor is the strength of recurrent coupling, which has a
non-monotonic impact on higher-order correlations. Our find-
ings provide insight into why some previously measured activity
patterns are well captured by PME descriptions, and provide pre-
dictions for the mechanisms that allow for higher-order spike
correlations to emerge.

2. RESULTS
2.1. QUANTIFYING HIGHER-ORDER CORRELATIONS IN NEURAL

CIRCUITS
One strategy to identify higher-order interactions is to com-
pare multi-neuron spike data against a description in which
any higher-order interactions have been removed in a principled
way—that is, a description in which all higher-order correlations
are completely described by lower-order statistics. Such a descrip-
tion may be given by a maximum entropy model (Jaynes, 1957a,b;
Amari, 2001), in which one identifies the most unstructured, or
maximum entropy, distribution consistent with the constraints.
Comparing the predicted and measured probabilities of differ-
ent responses tests whether the constraints used are sufficient
to explain observed network activity, or whether additional con-
straints need to be considered. Such constraints would produce
additional structure in the predicted response distribution, and
hence lower the entropy.

A common approach is to limit the constraints to a given sta-
tistical order—for example, to consider only the first and second
moments of the distributions, which are determined by the mean
and pairwise interactions. In the context of spiking neurons, we
denote μi ≡ E[xi] as the firing rate of neuron i and ρ̂ij ≡ E[xixj]
as the joint probability that neurons i and j will fire. The distribu-
tion with the largest entropy for a given μi and ρ̂ij is referred to as
the PME model.

We use the Kullback–Leibler divergence, DKL(P, P̃), to quan-
tify the accuracy of the PME approximation P̃ to a distribution
P. This measure has a natural interpretation as the contribution
of higher-order interactions to the response entropy S(P) (Amari,
2001; Schneidman et al., 2003), and may in this context be written
as the difference of entropies S(P̃) − S(P). In addition, DKL(P, P̃)

is approximately − log2 L, where L is the average likelihood (over
different observations) that a sequence of data drawn from the
distribution P was instead drawn from the model P̃ (Cover and
Thomas, 1991; Shlens et al., 2006). For example, if DKL(P, P̃) = 1,
the average likelihood that a single sample, i.e., a single network
response, came from P̃ relative to the likelihood that it came from
P is 2−1 (we use the base 2 logarithm in our definition of the
Kullback–Leibler divergence, so all numerical values are in units
of bits).

An alternative measure of the quality of the pairwise model
comes from normalizing DKL(P, P̃) by the corresponding distance
of the distribution P from an independent maximum entropy fit
DKL(P, P1), where P1 is the highest entropy distribution consis-
tent with the mean firing rates of the cells (equivalently, the prod-
uct of single-cell marginal firing probabilities) (Amari, 2001).
Many studies (Schneidman et al., 2006; Shlens et al., 2006, 2009;
Roudi et al., 2009a) use

� = 1 − DKL
(
P, P̃

)
DKL (P, P1)

; (1)

a value of � = 1 indicates that the pairwise model perfectly
captures the additional information left out of the independent
model, while a value of � = 0 indicates that the pairwise model
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gives no improvement over the independent model. To aid com-
parison with other studies, we report values of � in parallel with
DKL(P, P̃) when appropriate.

We next explore and interpret the achievable range of
DKL(P, P̃) values. The problem is made simpler if, following pre-
vious studies (Bohte et al., 2000; Amari, 2001; Macke et al., 2009;
Montani et al., 2009), we consider only permutation-symmetric
spiking patterns, in which the firing rate and correlation do not
depend on the identity of the cells; i.e., μi = μ, ρ̂ij = ρ̂ for i �= j.
We start with three cells having binary responses and assume
that the response is stationary and uncorrelated in time. From
symmetry, the possible network responses are

p0 = P [(0, 0, 0)]

p1 = P [(1, 0, 0)] = P [(0, 1, 0)] = P [(0, 0, 1)]

p2 = P [(1, 1, 0)] = P [(1, 0, 1)] = P [(0, 1, 1)]

p3 = P [(1, 1, 1)] ,

where pi denotes the probability that a particular set of i cells spike
and the remaining 3 − i do not. Possible values of (p0, p1, p2, p3)

are constrained by the fact that P is a probability distribution, so
that the sum of pi over all eight states is one.

To assess the numerical significance of DKL(P, P̃), we can com-
pare it with the maximal achievable value for any symmetric
distribution on three spiking cells. For three cells, the maxi-
mal value is DKL(P, P̃) = 1 (or 1/3 bits per neuron), achieved
by the XOR operation (Schneidman et al., 2003). This distri-
bution is illustrated in Figure 1A (right), together with two

distributions produced by our mechanistic circuit models—
illustrating observed deviations from PME fits for unimodal (left)
and bimodal (middle) distributions of inputs (see below). The
KL-divergence for these two patterns is 0.0013 and 0.091, respec-
tively. As suggested by these bar plots (and explored in detail
below), the distributions produced by a wide set of mechanistic
circuit models are quite well captured by the PME approximation:
to use the likelihood interpretation described above, an observer
would need to draw many more samples from these distributions
in order to distinguish between the true and model distributions:
≈1000 times and ≈10 times, respectively, in comparison to the
XOR operator.

To further identify appropriate “benchmark” values of
DKL(P, P̃) with which to compare our mechanistic circuit mod-
els, in Figure 1B we show plots of DKL(P, P̃) and � vs. firing rate
produced by an exhaustive sampling of symmetric distributions
on three cells. From this picture, we can see that it is possible to
find symmetric, three-cell spiking distributions that are poorly
fit by the pairwise model at a range of firing rates and pairwise
correlations, with the largest values of DKL(P, P̃) found at low cor-
relations (note that the XOR distribution has an average pairwise
covariance of zero (i.e., E[X1X2] = E[X1] E[X2])).

2.1.1. A condition for higher-order correlations
Possible solutions to the symmetric PME problem take the form
of exponential functions characterized by two parameters, λ1 and
λ2, which serve as Lagrange multipliers for the constraints:

P [(x1, x2, x3)] = 1

Z
exp [λ1 (x1 + x2 + x3) +

λ2 (x1x2 + x2x3 + x1x3)] . (2)

FIGURE 1 | A survey of the quality of the pairwise maximum entropy

(PME) model for symmetric spiking distributions on three cells. (A)

Probability distribution P (dark blue) and pairwise approximation P̃ (light
pink) for three example distributions. From left to right: an example from
the simple sum-and-threshold model receiving skewed common input; an
example from the sum-and-threshold model receiving bimodal common
input [specifically, the distribution with maximal DKL(P, P̃)]; a specific
probability distribution resulting from application of the XOR operator [for

illustration of a “worst case” fit of the PME model (Schneidman et al.,
2003)]. (B) DKL(P, P̃) vs. firing rate and � vs. firing rate, for a
comprehensive survey of possible symmetric spiking distributions on three
cells (see text for details). Firing rate is defined as the probability of a
spike occurring per cell per random draw of the sum-and-threshold model,
as defined in Equation (16). Color indicates output correlation coefficient ρ

ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as illustrated in
the color bars.
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The factor Z normalizes P to be a probability distribution.
By combining individual probabilities of events as given by

Equation (2) the following relationship must be satisfied by any
symmetric PME solution:

p3

p0
=
(

p2

p1

)3

. (3)

This is equivalent to the condition that the strain measure of
Ohiorhenuan and Victor (2010) be zero (in particular, the strain
is negative whenever p3/p0 − (p2/p1)

3 < 0, a condition identified
in Ohiorhenuan and Victor (2010) as corresponding to sparsity in
the neural code).

For three-cell, symmetric networks, models that exactly satisfy
Equation (3) will also be exactly described via PME. Moreover,
note that probability models that meet this constraint fall on
a surface in the space of (normalized) histograms, given by
the probabilities pj. One can verify by straightforward calcula-
tions (see Appendix) that—given fixed lower order moments—
DKL(P, P̃) is a convex function of the probabilities pj. This has
interesting consequences for predicting when large vs. small val-
ues of DKL(P, P̃) will be found (see Appendix).

It is not necessary to assume permutation symmetry when
deriving the PME fit P̃ to an observed distribution P, or
in computing derived quantities such as DKL(P, P̃), and we
do not do so in this study. However, most of the distri-
butions we study are derived from mechanistic models that
are themselves symmetric or near-symmetric. Therefore, we
anticipate that the simplified calculations for permutation-
symmetric distributions will yield analytical insight into our
findings.

2.2. MECHANISMS THAT IMPACT BEYOND-PAIRWISE CORRELATIONS
IN TRIPLETS OF ON-PARASOL RETINAL GANGLION CELLS

Having established the range of beyond-pairwise correlations that
are possible statistically, we turn our focus to coding in retinal
ganglion cell (RGC) populations, an area that has received a great
deal of attention empirically. Specifically, PME approaches have
been effective in capturing the activity of small RGC popula-
tions (Schneidman et al., 2006; Shlens et al., 2006, 2009). This
success does not have an obvious anatomical correlate; there
are multiple opportunities in the retinal circuitry for interac-
tions among three or more ganglion cells. We explored circuits
composed of three RGC cells with input statistics, recurrent
connectivity and spike-generating mechanisms based directly
on experiment. We based our model on ON parasol RGCs,
one of the RGC types for which PME approaches have been
applied extensively (Shlens et al., 2006, 2009). In addition, by
examining how marginal input statistics are shaped by stimu-
lus filtering, we also reveal the role that the specific filtering
properties of ON parasol cells have in shaping higher-order
interactions.

2.2.1. RGC model
We modeled a single ON parasol RGC in two stages (for details
see section 4). First, we characterized the light-dependent excita-
tory and inhibitory synaptic inputs to cell k (gexc

k (t), ginh
k (t)) in

response to randomly fluctuating light inputs sk(t) via a linear-
nonlinear model, e.g.,:

gexc
k (t) = Nexc [Lexc ∗ sk(t) + ηexc

k

]
, (4)

where Nexc is a static non-linearity, Lexc is a linear filter, and ηexc
k is

an effective input noise that captures variability in the response to
repetitions of the same time-varying stimulus. These parameters
were determined from fits to experimental data collected under
conditions similar to those in which PME models have been tested
empirically (Shlens et al., 2006, 2009; Trong and Rieke, 2008). The
modeled excitatory and inhibitory conductances captured many
of the statistical features of the real conductances, particularly the
correlation time and skewness (data not shown).

Second, we used Equation (4) and an equivalent expression
for ginh

k (t) as inputs to an integrate-and-fire model incorporating
a non-linear voltage and history-dependent term to account for
refractory interactions between spikes (Badel et al., 2007, 2008).
The voltage evolution equation was of the form

dV

dt
= F (V, t − tlast) + Iinput(t)

C
, (5)

where F (V, t − tlast) was allowed to depend on the time of the last
spike tlast. Briefly, we obtained data from a dynamic clamp exper-
iment (Sharpe et al., 1993; Murphy and Rieke, 2006) in which
currents corresponding to gexc(t) and ginh(t) were injected into
a cell and the resulting voltage response measured. The input
current Iinput injected during one time step was determined by
scaling the excitatory and inhibitory conductances by driving
forces based on the measured voltage in the previous time step;
that is,

Iinput(t) = −gexc(t) (V − VE) − ginh(t) (V − VI) , (6)

We used this data to determine F and C using the procedure
described in Badel et al. (2007); details, including values of all fit-
ted parameters, are described in section 4. Recurrent connections
were implemented by adding an input current proportional to the
voltage difference between the two coupled cells.

The prescription above provided a flexible model that allowed
us to study the responses of three-cell RGC networks to a wide
range of light inputs and circuit connectivities. Specifically, we
simulated RGC responses to light stimuli that were (1) con-
stant, (2) time-varying and spatially uniform, and (3) varying
in both space and time. Correlations between cell inputs arose
from shared stimuli, from shared noise originating in the retinal
circuitry (Trong and Rieke, 2008), or from recurrent connec-
tions (Dacey and Brace, 1992; Trong and Rieke, 2008). Shared
stimuli were described by correlations among the light inputs sk.
Shared noise arose via correlations in ηexc

k and ηink
k as described in

section 4. The recurrent connections were chosen to be consistent
with observed gap-junctional coupling between ON parasol cells.
We also investigated how stimulus filtering by Lexc and Linh influ-
enced network statistics. To compare our results with empirical
studies, constant light, and spatially and temporally fluctuating
checkerboard stimuli were used as in Shlens et al. (2006, 2009).
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2.2.2. The feedforward RGC circuit is well-described by the PME
model for full-field light stimuli

We start by considering networks without recurrent connectivity
and with constant, full-field (i.e., spatially uniform) light stimuli.
Thus, we set sk(t) = 0 for k = 1, 2, 3, so that the cells received
only Gaussian correlated noise ηexc

k and ηinh
k and constant excita-

tory and inhibitory conductances. Time-dependent conductances
were generated and used as inputs to a simulation of three model
RGCs. Simulation length was sufficient to ensure significance
of all reported deviations from PME fits (see section 4). We
found that the spiking distributions were strikingly well-modeled
by a PME fit, as shown in the righthand panel of Figure 2A;
DKL

(
P, P̃

)
is 2.90 × 10−5 bits. This result is consistent with the

very good fits found experimentally in Shlens et al. (2006) under
constant light stimulation.

Next, we introduce temporal modulation into the full-field
light stimuli such that each cell received the same stimulus,
sk(t) = s(t), where s(t) refreshed every few milliseconds with
an independently chosen value from one of several marginal
distributions. For our initial set of experiments, the marginal
distribution was either Gaussian (as in Ganmor et al., 2011) or
binary (as used in Shlens et al., 2006). For both choices, we
explored inputs with a range of standard deviations (1/16, 1/12,
1/8, 1/6, 1/4, 1/3, or 1/2 of a baseline light intensity) and refresh
rates (8, 40, or 100 ms). The shared stimulus produced strong
pairwise correlation between conductances of neighboring cells.
However, values of DKL(P, P̃) remained small, under 10−2 bits in
all conditions tested.

2.2.3. Impact of stimulus spatial scale
We next asked whether PME models capture RGC responses to
stimuli with varying spatial scales. We fixed stimulus dynamics
to match the two cases that yielded the highest DKL(P, P̃) under
the full-field protocol: for both Gaussian and binary stimuli, we
used 8 ms refresh rate and σ = 1/2. The stimulus was generated
as a random checkerboard with squares of variable size; each
square in the checkerboard, or stixel, was drawn independently
from the appropriate marginal distribution and updated at the
corresponding refresh rate. The conductance input to each RGC
was then given by convolving the light stimulus with its receptive
field, where the stimulus was positioned with a fixed rotation and
translation relative to the receptive fields. This position was drawn
randomly at the beginning of each simulation and held constant
throughout (see insets of Figures 3B,C for examples, and section
4 for further details).

The RGC spike patterns remained very well described by PME
models for the full range of spatial scales. Figure 3A shows this
by plotting DKL(P, P̃) vs. stixel size. Values of DKL(P, P̃) increased
with spatial scale, sharply rising beyond 128 μm, where a stixel
had approximately the same size as a receptive field center, illus-
trating that introducing spatial scale via stixels produces even
closer fits by PME models (the points at 512 μm correspond to
the full-field simulations).

Values reported in Figure 3A are averages of DKL(P, P̃) pro-
duced by five random stimulus positions. At stixel sizes of 128 μm
and 256 μm, the resulting spiking distributions differed signif-
icantly from position to position; in Figure 3B, we show the

probabilities of the distinct singlet [e.g., P(1, 0, 0)] and dou-
blet [e.g., P(1, 1, 0)] spiking events produced at 256 μm. Each
stimulus position created a “cloud” of dots (identified by color);
large dots show the average over 20 sub-simulations. Each sub-
simulation was identified by a small dot of the same color; because
the simulations were very well-resolved, most of them were con-
tained within the large dots (and hence not visible in the figure).
Heterogeneity across stimulus positioning is indicated by the dis-
tinct positioning of differently colored dots. At smaller spatial
scales, the process of averaging stimuli over the receptive fields
resulted in spiking distributions that were largely unchanged with
stimulus position, as shown in Figure 3C, where singlet and dou-
blet spiking probabilities are plotted for 60 μm stixels. Thus,
filtered light inputs were largely homogeneous from cell to cell,
as each receptive field sampled a similar number of indepen-
dent, statistically identical inputs; the inset of Figure 3C shows
the projection of input stixels onto cell receptive fields from an
example with 60 μm stixels. The resulting excitatory conduc-
tances and spiking patterns were very close to cell-symmetric (see
Figures S2B,C).

By contrast, spiking patterns showed significant heterogene-
ity from cell to cell when the stixel size was large, as illustrated
in Figure 3B. This arises because each cell in the population may
be located differently with respect to stixel boundaries, and there-
fore receive a distinct pattern of input activity; this is illustrated by
the inset of Figure 3B, which shows the projection of input stix-
els onto cell receptive fields from one such simulation. However,
PME models gave excellent fits to data regardless of heterogeneity
in RGC responses (see Figures S2E,F); as seen in Figure 3A, over
all 20 sub-simulations, and over all individual stixel positions, we
found a maximal DKL(P, P̃) value of 0.00811.

2.2.4. Conductance profiles and impact of stimulus filtering
Intrigued by the consistent finding of low values of DKL(P, P̃)

from the RGC model circuit despite stimulation by a wide vari-
ety of highly correlated stimulus classes, we sought to further
characterize the processing of light stimuli by this circuit. In par-
ticular, we examined the effects of different marginal statistics of
light stimuli, standard deviation of full-field flicker, and refresh
rate on the marginal distributions of excitatory conductances. We
focused on excitatory conductances because they exhibit stronger
correlations than inhibitory conductances in ON parasol RGCs
(Trong and Rieke, 2008).

With constant light stimulation (no temporal modulation) the
excitatory conductances were unimodal and broadly Gaussian
(Figure 2A, middle panel). For a short refresh rate (8 ms) or
small flicker size (standard deviation 1/6 or 1/4 of baseline light
intensity), temporal averaging via the filter Lexc and the approxi-
mately linear form of Nexc over these light intensities produced
a unimodal, modestly skewed distribution of excitatory con-
ductances, regardless of whether the flicker was drawn from a
Gaussian or binary distribution (see Figures 2B,C, center pan-
els). For a slower refresh rate (100 ms) and large flicker size (s.d.
1/3 or 1/2 of baseline light intensity), excitatory conductances
had multi-modal and skewed features, again regardless of whether
the flicker was drawn from a Gaussian or binary distribution
(Figure 2D). Other parameters being equal, binary light input
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FIGURE 2 | Results for RGC simulations with constant light and full-field

flicker. (A–C) (Left) A histogram and time series of stimulus, (center) a
histogram of excitatory conductances and (right) the resulting distribution of
spiking patterns. Stimuli are shown as deviations from a baseline intensity,
expressed as a fraction of the baseline. Right panels show the probability
distribution on spiking patterns P obtained from simulation (“Observed”; dark
blue), and the corresponding pairwise approximation P̃ (“PME”; light pink).
Each row gives these results for a different stimulus condition. (A) No stimulus
(Gaussian noise only). (B) Gaussian input, standard deviation 1/6, refresh rate

8 ms. (C) Binary input, standard deviation 1/3, refresh rate 8 ms. (D) Binary
input, standard deviation 1/3, refresh rate 100 ms. For panel (D), the data in the
left panel differs. (Left, top panel) The excitatory filter Lexc(t) (Equation 7) is
shown instead of a stimulus histogram; (Left, bottom panel) the normalized
excitatory conductance, as a function of time (red dashed line), is
superimposed on the stimulus (blue solid). (Center) The histogram of excitatory
conductances and (right) the resulting distribution of spiking patterns. Both the
form of the filter and the conductance trace illustrate that the LN model that
processes light input acts as a (time-shifted) high pass filter.

produced more skewed conductances. While some conductance
distributions had multiple local maxima, these were never well
separated, with the envelope of the distribution still resembling a
skewed distribution.

The mechanism that leads to unimodal distributions of con-
ductances, even when light stimuli are binary, is high-pass
filtering—a consequence of the differentiating linear filter in
Equation (7) and illustrated in Figure 2D. To demonstrate this,
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we constructed an alternative filter with a more monophasic
shape [Equation (9), illustrated in Figure S1] and compared the
excitatory conductance distributions side-by-side. We saw a strik-
ing difference in the response to long time scale, binary stimuli:
the distributions produced by the monophasic filter reflected the
bimodal shape of the input. Interestingly, the resulting simulation
produced eight-times greater DKL(P, P̃) (Figure 4). This suggests
that greater DKL(P, P̃) may occur when ganglion cell inputs are
primarily characterized via monophasic filters, e.g., at low mean
light levels for which the retinal circuit acts to primarily integrate,
rather than differentiate over time.

In Figure 4A, we examine this effect over all full-field stimu-
lus conditions by plotting DKL(P, P̃) from simulations with the
monophasic filter, against DKL(P, P̃) from simulations in which
the original filter was used with the same stimulus type. An
increase in DKL(P, P̃) was observed across stimulus conditions,
with a markedly larger effect for longer refresh rates. This con-
sistent change could not be attributed to changes in lower order

statistics; there was no consistent relationship between the change
in pairwise model performance and either firing rate or pairwise
correlations (data not shown). Instead, large effects in DKL were
accompanied by a striking increase in the bi- or multi-modality of
excitatory conductances (see Figure 4B). In Figure 4C, we show
an example stimulus and excitatory current trace taken from the
simulation shown in Figure 4B: the monophasic filter allows the
excitatory synaptic currents to track a long-timescale, bimodal
stimulus with higher fidelity, transferring the bimodality of the
stimulus into the synaptic currents. This finding was robust to
specifics of the filtering process; we were able to reproduce the
same results by designing integrating filters in different ways (data
not shown).

2.2.5. Recurrent connectivity in the RGC circuit
We next considered the role of recurrence in shaping higher-
order interactions by incorporating gap junction coupling into
our simulations. We did this separately for each full-field stimulus

FIGURE 3 | Results for RGC simulations with light stimuli of varying

spatial scale (“stixels”). (A) Average DKL(P, P̃) as a function of stixel
size. Values were averaged over five stimulus positions, each with a
different (random) stimulus rotation and translation; 512 μm corresponds
to full-field stimuli. For the rest of the panels, data from the binary
light distributions is shown; results from the Gaussian case are similar.
(B,C) Probability of singlet and doublet spiking events, under stimulation
by movies of 256 μm (B) and 60 μm (C) stixels. Event probabilities are
plotted in 3-space, with the x, y , and z axes identifying the singlet

(doublet) events 001 (011), 010 (101), and 100 (110), respectively. The
black dashed line indicates perfect cell-to-cell homogeneity
(e.g., P[(1, 0, 0)] = P[(0, 1, 0)] = P[(0, 0, 1)]). Both individual runs (dots)
and averages over 20 runs (large circles) are shown, with averages
outlined in black (singlet) and gray (doublet). Different colors indicate
different stimulus positions. Insets: contour lines of the three receptive
fields (at the 1 and 2 SD contour lines for the receptive field center;
and at the zero contour line) superimposed on the stimulus checkerboard
(for illustration, pictured in an alternating black/white pattern).

FIGURE 4 | Comparison of RGC simulations computed with the

original ON parasol filter, vs. simulations using a more monophasic

filter. (A) DKL(P, P̃) for original vs. monophasic filter. Data is organized
by stimulus refresh rate (8, 40, and 100 ms) and marginal statistics
(Gaussian vs. binary). (B) Histograms of excitatory conductances for an
illustrative stimulus class, under original (top) and monophasic (bottom)

filters. The marginal statistics and refresh rate are illustrated by icons
inside black circles; here, binary stimuli with refresh rate 100 ms. The
input standard deviation (expressed as a fraction of baseline light
intensity) was 1/2. (C) Time course of stimulus and resulting excitatory
conductances, from simulation shown in (B): original (top)
vs. monophasic (bottom) filters.
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condition described earlier. In each case, we added gap junction
coupling with strengths from 1 to 16 times an experimentally
measured value (Trong and Rieke, 2008), and compared the
resulting DKL with that obtained without recurrent coupling
(Figure 5).

At the experimentally measured coupling strength (ggap =
1.1 nS) itself, the fit of the pairwise model barely changed
(Figure 5A) from the model without coupling. At twice the mea-
sured coupling strength (ggap = 2.2 nS), recurrent coupling had
increased higher-order interactions, as measured by larger values
of DKL for all tested stimulus conditions. Higher order inter-
actions could be further increased, particularly for long refresh
rates (100 ms), by increasing the coupling strength to four or
eight times its baseline level (ggap = 4.4 nS or ggap = 8.8 nS; see
Figures 5B,C). Consistent with the intuition that very strong cou-
pling leads to “all-or-none” spiking patterns, DKL(P, P̃) decreased
as ggap increased further, often to a level below what was seen in
the absence of coupling (Figure 5D). In summary, the impact of
coupling on DKL is maximized at intermediate values of the cou-
pling strength. However, the impact of recurrent coupling on the
maximal values of DKL evoked by visual stimuli is small over-
all, and almost negligible for experimentally measured coupling
strengths.

2.2.6. Modeling heavy-tailed light stimuli in the RGC circuit
Finally, we repeated the full-field, recurrent, and alternate filter
simulations previously described with light stimuli drawn from
either Cauchy or heavy-tailed distributions: such distributions

FIGURE 5 | The impact of recurrent coupling on RGC networks with

full-field visual stimuli. The strength of gap junction connections was
varied from a baseline level (relative magnitude g = 1, or absolute
magnitude ggap = 1.1 nS) to an order of magnitude larger (g = 16, or
ggap = 17.6 nS). In each panel, DKL(P, P̃) obtained with coupling is plotted
vs. the value obtained for the same stimulus ensemble without coupling,
for each of 42 different stimulus ensembles. (A) ggap = 1.1 nS
(experimentally observed value); (B) ggap = 4.4 nS; (C) ggap = 8.8 nS; (D)

ggap = 17.6 nS.

have been found to model the frequency of occurrence of lumi-
nance values in photographs of natural scenes (Ruderman and
Bialek, 1994). In contrast to previous results with Gaussian and
bimodal inputs, here we found very low DKL(P, P̃) over all stimu-
lus conditions: the largest values found were more than an order
of magnitude smaller than those obtained earlier. Specifically, for
all conditions, we found DKL(P, P̃) < 4.5 × 10−4, over all 42 net-
work realizations; for many simulations, this number did not
meet a threshold for statistical significance (see section 4.1.7),
indicating that P and P̃ were not statistically distinguishable.
Using a more monophasic filter resulted in no apparent con-
sistent change to DKL(P, P̃). When gap junction coupling was
added, DKL(P, P̃) was maximized at an intermediate value; when
ggap = 8.8, all simulations produced a statistically significant
DKL(P, P̃) ≈ 3 − 4 × 10−3. However, overall levels remained rel-
atively low, roughly 1/2 the value achieved with Gaussian or
binary stimuli.

To explain these findings, we examined the excitatory input
currents: we found that over a broad range of refresh rates and
stimulus variances, the marginal distributions of excitatory input
conductances produced were remarkably unimodal in shape,
and showed little skewness (Figure 6A). By examining the time
evolution of the filtered stimuli (see Figure 6B), we see that heavy-
tailed distributions allow rare, large events, but at the expense of
medium-size events which explore the full range of the linear-
nonlinear model used for stimulus processing (compare the blue
with the red/green traces). When combined with the Gaussian
background noise, this produces near-Gaussian excitatory con-
ductances and, as may be expected from our original full-field
simulations, very low DKL.

We hypothesize that the methodology of averaging over the
entire stimulus ensemble may not capture the significance of rare
events that may individually be detected with high fidelity: DKL

was low even for full-field, high variance stimuli, which presum-
ably caused (infrequent) global spiking events. Additionally, an
important avenue for future work would be to test the ability
of our RGC model, which was trained on Gaussian stimuli, to
accurately model the response of a ganglion cell to stimuli whose
variance is dominated by large events. Recent work examining
the adaptation of retinal filtering properties to higher-order input
statistics found little evidence of adaptation; however, the stimuli
used in this work incorporated significant kurtosis but not heavy
tails (Tkacik et al., 2012).

2.2.7. Summary of findings for RGC circuit
In summary, we probed the spiking response of a small array
of RGC models to changes in light stimuli, gap junction cou-
pling, and stimulus filtering properties, and identified two cir-
cumstances in which higher-order interactions were robustly
generated in the spiking response. First, higher-order interac-
tions were generated when excitatory currents had bimodal
structure; we observed such structure when bimodal light stim-
uli was processed by a relatively monophasic filter. Secondly,
higher-order interactions were maximized at an intermediate
value of gap junction coupling; this value was, however, much
larger (eight times) than the experimentally observed coupling
strength.
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FIGURE 6 | Results for RGC simulations with heavy-tailed inputs.

(A) Histograms of excitatory conductances, for the original (left)
vs. monophasic (right) filter. The marginal statistics are heavy-tailed skew
(top) and Cauchy (bottom) inputs, and refresh rate is 40 ms for both panels.
The input standard deviation (expressed as a fraction of baseline light
intensity) was 1/2 for both simulations. (B) Sample 100 ms stimuli, filtered
by the original linear filter Lexc (top) and altered, monophasic filter
Lexc,M(bottom). Cauchy (blue solid), Gaussian (red dashed), and bimodal
(green dash-dotted) stimuli are shown.

2.3. A SIMPLIFIED CIRCUIT THAT EXPLAINS TRENDS IN RGC CELL
MODEL

2.3.1. Setup and motivation
In the previous section, we developed results for a computational
model tuned to a very specific cell type; we now ask whether these
findings will hold for a more general class of neural circuits, or
whether they are the consequence of system-specific features. To
answer this question, we considered a simplified model of neu-
ral spiking: a feedforward circuit in which three spiking cells
sum their inputs and spike according to whether or not they
cross a threshold. Such highly idealized models of spiking have
a long history in neuroscience (McCulloch and Pitts, 1943) and
have been recently shown to predict the pairwise and higher-
order activity of neural groups in both neural recordings and

more complex dynamical spiking models (Nowotny and Huerta,
2003; Tchumatchenko et al., 2010; Yu et al., 2011; Leen and
Shea-Brown, 2013).

In more detail, each cell j received an independent input
Ij and a “triplet”—(global) input Ic that is shared among all
three cells. Comparison of the total input Sj = Ic + Ij with a
threshold � determined whether or not the cell spiked in that
random draw. An additional parameter, c, identified the frac-
tion of the total input variance σ2 originating from the global
input; that is, c ≡ Var[Ic]/Var[Ic + Ij]. The global input was cho-
sen from one of several marginal distributions, which included
those used in the RGC model: Gaussian, bimodal, and heavy-
tailed. The independent inputs Ij were, in all cases, chosen from
a Gaussian distribution, consistent with our RGC model. When
the common inputs are Gaussian, our model is equivalent to
the Dichotomized Gaussian model previously studied by several
groups (Amari et al., 2003; Macke et al., 2009, 2011; Yu et al.,
2011), cf. (Tchumatchenko et al., 2010). For further details, see
section 4.2.

In the RGC model large effects in DKL were accompanied by
a striking increase in the bi- or multi-modality of excitatory con-
ductances. Why are bimodal inputs, shared across cells, able to
produce spiking responses that deviate from the pairwise model?
We use our simple thresholding model to provide some intu-
ition for how bimodal common inputs to thresholding cells lead
to spiking probabilities that violate the constraints (Equation 3)
which must hold for the pairwise model. For example, suppose
that the common input Ic can take on values that cluster around
two separated values, μA < μB, but rarely in the interval between;
that is, the distribution of Ic is bimodal. If μB is large enough
to push the cells over threshold but μA is not, then we see that
any contribution to the right-hand side of Equation (3), p2/p1,
depends only on the distribution of the independent inputs Ij;
if either one or two cells spike, then the common input must
have been drawn from the cluster of values around μA, because
otherwise all three cells would have spiked.

To be concrete, let P[x] refer to the probability of spiking event
x = (x1, x2, x3), and P[x | Ic ≈ μA] refer to the probability that x
occurs, conditioned on the event Ic ≈ μA. Then

P [(1, 0, 0)] = P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

+ P [(1, 0, 0) | Ic ≈ μB] P [Ic ≈ μB]

= P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

because P [(1, 0, 0) | Ic ≈ μB] = 0: for the same reason,

P [(1, 1, 0)] = P [(1, 1, 0) | Ic ≈ μA] P [Ic ≈ μA]

therefore

p2

p1
= P [(1, 1, 0) | Ic ≈ μA] P [Ic ≈ μA]

P [(1, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]

= P [(1, 1, 0) | Ic ≈ μA]

P [(1, 0, 0) | Ic ≈ μA]
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On the other hand,

p3

p0
= P [Ic ≈ μB] + P [(1, 1, 1) | Ic ≈ μA] P [Ic ≈ μA]

P [(0, 0, 0) | Ic ≈ μA] P [Ic ≈ μA]
.

By changing the relative likelihood of drawing the common
input from one cluster or the other, without changing the
values of μA and μB themselves (that is, change P [Ic ≈ μB]
and P [Ic ≈ μA] but leave the conditional probabilities (e.g.,
P [(1, 0, 0) | Ic ≈ μA]) fixed) one may change the ratio p3/p0

without changing the ratio p2/p1. Hence the constraint specify-
ing those network responses exactly describable by PME models
can be violated when the common input is bimodal.

In contrast, we may instead consider a unimodal common
input, of which a Gaussian is a natural example. Here, the dis-
tribution of the common input Ic is completely described by its
mean and variance; both parameters can impact the ratio p3/p0

(by altering the likelihood that the common input alone can trig-
ger spikes) and the ratio p2/p1. Each value of Ic is consistent with
both events p1 and p2, with the relative likelihood of each event
depending on the specific value of Ic; it is no longer clear how to
separate the two events. In the following sections, we will confirm
this intuition by direct evaluation of the resulting departure from
pairwise statistics.

2.3.2. Model input distributions
Motivated by our observations of excitatory currents that arose
in the RGC model, we chose several input distributions that
allow us to explore other salient features, such as symmetry
and the probability of large events. A distribution is called sub-
Gaussian if the probability of large events decays rapidly with
event size, so that it can be bounded above by a scaled Gaussian
distribution (see section 4). We considered two sub-Gaussian dis-
tributions; the Gaussian itself, and a skewed distribution with
a sub-Gaussian tail (hereafter referred to as “skewed”). We also
considered the two “heavy-tailed” distributions used as stimuli to
the RGC model—the Cauchy distribution, and a skewed distribu-
tion with a Cauchy-like tail (hereafter referred to as “heavy-tailed
skewed”). In these distributions, the probability of large events
decays polynomially rather than exponentially.

For each choice of common input marginal, we varied the
input parameters so as to explore a full range of firing rates and
pairwise correlations: specifically, we varied the input correlation
coefficient c in the range [0, 1], the total input standard deviation
σ in the range [0, 4], and the threshold � in [0, 3]. In all cases
the independent inputs Ij were chosen from a Gaussian distribu-
tion [of variance (1 − c)σ2]. For each choice of input parameters,
we determine the resulting distribution on spiking states (as
described in section 4) and compute the PME approximation.

2.3.3. Unimodal common inputs fail to produce significant
higher-order interactions in three-cell feedforward circuits

We first considered common inputs chosen from a unimodal
(e.g., Gaussian) distribution. If Ic is Gaussian, then the joint dis-
tribution of S = (S1, S2, S3) is multivariate normal, and therefore
characterized entirely by its means and covariances. Because the
PME fit to a continuous distribution is precisely the multivari-
ate normal that is consistent with the first and second moments,

every such input distribution on S exactly coincides with its
PME fit. However, even with Gaussian inputs, outputs (which
are now in the binary state space {0, 1}3) will deviate from the
PME fit (Amari et al., 2003; Macke et al., 2009). As shown below,
non-Gaussian unimodal inputs can produce outputs with larger
deviations. Nonetheless, these deviations are small for all cases
in which inputs were chosen from a sub-Gaussian distribution,
and PME models are quite accurate descriptions of circuits with a
broad range of unimodal inputs.

We first considered circuits with either Gaussian or skewed
common inputs. Over the full range of input parameters, distri-
butions remained well fit by the pairwise model, with a maximum
value of DKL(P, P̃) (of 0.0038 and 0.0035 for Gaussian and
skewed inputs, respectively) achieved for high correlation val-
ues and σ comparable to threshold. In Figure 7A we illustrate
these trends with a contour plot of DKL(P, P̃) for a fixed value
of threshold (here, � = 1.5) and Gaussian common inputs (the
analogous plot for skewed inputs is qualitatively very similar,
Figure S3A).

Clear patterns also emerged when we viewed DKL(P, P̃) as
a function of output spiking statistics rather than input statis-
tics (as in Macke et al., 2011). Non-linear spike generation can
produce substantial differences between input and output cor-
relations; this relationship can vary widely based on the specific
non-linearity (Moreno et al., 2002; de la Rocha et al., 2007;
Marella and Ermentrout, 2008; Shea-Brown et al., 2008; Vilela
and Lindner, 2009; Barreiro et al., 2010, 2012; Tchumatchenko
et al., 2010; Hong et al., 2012). Figure 7B shows DKL(P, P̃) and �

for all threshold values (including the data shown in Figure 7A),
but now plotted with respect to the output firing rate. The data
were segregated according to the Pearson’s correlation coeffi-

cient ρ between the responses of cell pairs (ρ ≡ Cov(xi,xj)√
Var(xi)Var(xj)

=
ρ̂−μ2

μ(1−μ)
). For a fixed correlation, there was generally a one-to-one

relationship between firing rate and DKL(P, P̃). For these distri-
butions (Figure 7B, for Gaussian inputs; skewed inputs shown in
Figure S3B), DKL(P, P̃) was maximized at an intermediate firing
rate. Additionally, DKL(P, P̃) had a non-monotonic relationship
with spike correlation: it increased from zero for low values of
correlation, obtained a maximum for an intermediate value, and
then decreased. These limiting behaviors agree with intuition: a
spike pattern that is completely uncorrelated can be described by
an independent distribution (a special case of PME model), and
one that is perfectly correlated can be completely described via
(perfect) pairwise interactions alone.

We next considered circuits in which inputs were drawn from
one of two heavy-tailed distributions, the Cauchy distribution
and a heavy-tailed skewed distribution, defined earlier. Here, dis-
tinctly different patterns emerge: for a fixed �, DKL(P, P̃) is
maximized in regions of high input correlation and high input
variance σ, but relatively high values of DKL are achievable
across a wide range of input values (see Figure 7C for Cauchy
inputs; heavy-tailed skewed in Figure S3C). However, the max-
imum achievable values of DKL were achieved at intermediate
output correlations ρ ≈ 0.4 (see Figure 7D for Cauchy inputs;
heavy-tailed skewed shown in Figure S3D); this suggests that high
input correlations do not result in high output correlations.
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FIGURE 7 | Strength of higher-order interactions produced by the

threshold model as input parameters vary, and the relationship of

these higher-order interactions with other output firing statistics.

(A) For Gaussian common inputs: DKL(P, P̃) as a function of input
correlation c and input standard deviation σ, for a fixed threshold � = 1.5.
Color indicates DKL(P, P̃); see color bar for range. (B) For Gaussian
common inputs: DKL(P, P̃) vs. firing rate (Left) and the fraction of
multi-information (�) captured by the PME model vs. firing rate (Right).

Each dot represents the value obtained from a single choice of the input
parameters c, σ, and �; input parameters were varied over a broad range
as described in section 2. Firing rate is defined as the probability of a
spike occurring per cell per random draw of the sum-and-threshold model,
as defined in Equation (16). Color indicates output correlation coefficient ρ

ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as illustrated in
the color bars. (C,D): as in (A,B), but for Cauchy common inputs. (E,F): as
in (A,B), but for bimodal common inputs.

This somewhat unintuitive finding may be explained by the
structure of the PDF of a heavy-tailed common input, which
favors (infrequent) large events at the expense of medium-
size events. For instance, the probability that a Cauchy input
is above a given threshold (P[Ic > � > E[Ic]]) is often much
smaller than for a Gaussian distribution of the same vari-
ance. However, an input can trigger at best one single spik-
ing event regardless of size: therefore a Cauchy common input
generates fewer correlated spiking events with larger inputs,
while a Gaussian common input triggers correlated spiking
events with smaller, but more frequent, input values. As a
result, heavy-tailed inputs are unable to explore the full range
of output firing statistics: Figure 7D shows that high out-
put correlations only occur at very low firing rates. Overall,
DKL(P, P̃) reaches higher numerical values than for sub-Gaussian
inputs, possibly reflecting the higher-order statistics in the input.
However, the maximal DKL(P, P̃) attained still falls far short
of exploring the full range of possible values (compare with
Figure 1B).

Finally, we examine the behavior of the strain, which
quantifies both the magnitude and sign of deviation from
the pairwise model (see Ohiorhenuan and Victor, 2010). It
has been previously observed that the strain is negative for
the DG model (Macke et al., 2011), a condition that has
been related to sparsity of the neural code and with which
our results agree (data not shown). However, we found that
any other choice of input marginal statistics, both posi-
tive and negative values are seen; for heavy-tailed common
inputs, positive values predominated except at very low firing
rates.

2.3.4. Bimodal triplet inputs can generate higher-order interactions
in three-cell feedforward circuits

Having shown that a wide range of unimodal common inputs
produced spike patterns that are well-approximated by PME fits,
we next examined bimodal common inputs. Such inputs sub-
stantially increased departures from PME fits in the ganglion cell
models described above. As in the previous section, we varied c,
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σ, and � so as to explore a full range of firing rates and pairwise
correlations.

As a function of input parameter values, DKL(P, P̃) is maxi-
mized for large input correlation and moderate input variance σ2

[see Figure 7E, which illustrates DKL(P, P̃) for a fixed threshold
� = 1.5]. Figure 7F shows DKL(P, P̃) values as a function of the
firing rate and pairwise correlation elicited by the full range of
possible bimodal inputs. We see that DKL(P, P̃) is maximized at
an intermediate (but relatively high: ν ≈ 0.4) firing rate, and for
intermediate-to-large correlation values (ρ ≈ 0.6 − 0.8).

We find distinctly different results when we view �

(Equation 1), for these same simulations, as a function of output
spiking statistics (right panels of Figures 7B,D,F). For unimodal,
sub-Gaussian distributions (Figure 7B), � is very close to 1, with
the few exceptions at extreme firing rates. For heavy-tailed and
bimodal inputs (Figures 7D,F), � may be appreciably far from
1 (as small as 0.5) with the smallest numbers (suggesting a poor
fit of the pairwise model) occurring for low correlation ρ. This
highlights one interesting example where these two metrics for
judging the quality of the pairwise model, DKL(P, P̃) and �, yield
contrasting results.

Finally, we emphasize that while bimodal inputs can produce
greater higher-order interactions than unimodal inputs, the val-
ues of DKL(P, P̃) accessible by feedforward circuits with global
inputs remain far below their upper bounds at any given fir-
ing rate. The maximal values of DKL(P, P̃) reached by Cauchy
and heavy-tailed skewed inputs were 0.0078 and 0.0153; bimodal
common inputs reached a maximal value of 0.091. This is an
order of magnitude smaller than possible departures among sym-
metric spike patterns (compare Figure 1B). The difference is
illustrated in Figure S4, which compares the DKL(P, P̃) values
obtained in the thresholding model and those obtained by direct
exhaustive search at each firing rate by superposing the datapoints
on a single axis.

2.3.5. Mathematical analysis of unimodal vs. bimodal effects
The central finding above is that circuits with bimodal inputs can
generate significantly greater higher-order interactions than cir-
cuits with unimodal inputs. To probe this further, we investigated
the behavior of DKL(P, P̃) for the feedforward threshold model
with a perturbation expansion in the limit of small common
input. We found that as the strength of common input signals
increased, circuits with bimodal inputs diverged from the PME
fit more rapidly than circuits with unimodal inputs; the full cal-
culation is given in the Appendix. In brief, we determined the
leading order behavior of DKL(P, P̃) in the strength c of (weak)
common input. DKL(P, P̃) depended on c3 for unimodal distri-
butions, i.e., the low order terms in c dropped out; for symmetric
unimodal distributions, such as a Gaussian, DKL(P, P̃) grew as c4.
For bimodal distributions, DKL(P, P̃) grew as c2. Because of the c2

dependence, rather than c3 or c4, as the strength of common input
signals c increases, circuits with bimodal inputs are predicted to
produce greater deviations from their PME fits.

2.3.6. Impact of recurrent coupling
We next modified our thresholding model to incorporate the
effects of recurrent coupling among the spiking cells. To mimic

gap junction coupling in the RGC circuit, we considered all-to-
all, excitatory coupling, and assumed that this coupling occurs on
a faster timescale compared with the timescale over which inputs
arrive at the cells.

Our previous model was extended as follows: if the inputs
arriving at each cell elicited any spikes, there was a second
stage at which the input to each neuron receiving a connection
from a spiking cell was increased by an amount g. This repre-
sented a rapid depolarizing current, assumed for simplicity to add
linearly to the input currents. If the second stage resulted in addi-
tional spikes, the process was repeated: recipient cells received an
additional current g, and their summed inputs were again thresh-
olded. The sequence terminated when no new spikes occurred on
a given stage; e.g., for N = 3, there were a maximum of three
stages. The spike pattern recorded on a given trial was the total
number of spikes generated across all stages.

We then explored the impact of varying g for a single repre-
sentative value of σ and �, and several values of the correlation
coefficient c. We found that as g increased DKL(P, P̃) varied
smoothly, reflecting the underlying changes in the spike count
distribution. For small c (c = 0.02 shown in Figure 8A), where
the variance of common input is very small, the results var-
ied little by input type: for all input types DKL(P, P̃) reached
an interior maximum near g ≈ 1.7. As c increases, the distinc-
tions between inputs types become apparent (Figures 8B,C show
c = 0.2, 0.5, respectively): for most input types and values of c,
the value of DKL(P, P̃) reaches an interior maximum that exceeds
its value without coupling (i.e., g = 0). However, overall values
of DKL(P, P̃) remained modest, never exceeding 0.01 across the
values explored here.

2.3.7. Summary of findings for simplified circuit model
We examined a highly idealized model of neural spiking, so
as to explore the generality of our earlier findings in a small
array of RGC models. We found that our main results from the
RGC model—that higher-order interactions were most signif-
icant when inputs had bimodal structure, and that when fast
excitatory recurrence was added to the circuit, higher-order inter-
actions were maximized at an intermediate value of the recur-
rence strength—persisted in this simplified model. Moreover, we
were able to show that the first of these findings is general, in that
it holds over a complete exploration of parameter space.

2.4. SCALING OF HIGHER-ORDER INTERACTIONS WITH POPULATION
SIZE

The results above suggest that unimodal, rather than bimodal,
input statistics contribute to the success of PME models. Next,
we examined whether this conclusion continues to hold when we
increase network size. The permutation-symmetric architectures
we have considered so far can be scaled up to more than three cells
in several natural ways; for example, we can study N cells with a
global common input.

We considered a sequence of models in which a set of N
threshold spiking units received global input Ic [with mean 0 and
variance σ2c] and an independent input Ij [with mean 0 and vari-
ance σ2(1 − c)]. As for the three-cell network models considered
previously, the output of each cell was determined by summing
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FIGURE 8 | The impact of recurrent coupling on the three-cell

sum-and-threshold model. Each plot shows DKL(P, P̃) as a function of g,
for a specific value of the correlation coefficient. In all panels, input
standard deviation σ = 1, threshold � = 1.5, N = 3 and symbols are as
described in the legend for (C). Abbreviations in the legend denote the
marginal distribution of the common input: G, Gaussian; SK, skewed; C,
Cauchy; HT, heavy-tailed skewed; B, bimodal. (A) For input correlation
c = 0.02, (B) c = 0.2, and (C) c = 0.5.

and thresholding these inputs. Upon computing the probability
distribution of network outputs (section 4), we fit a PME distri-
bution. Again, we explored a range of σ, c, and � and recorded the
maximum value of DKL(P, P̃) between the observed distribution
P and its PME fit P̃. Figure 9 shows this DKL/N [i.e., entropy per
cell (Macke et al., 2009)] for each class of marginal distributions.

We found that the maximum DKL(P, P̃)/N increased roughly
linearly with N for Gaussian, skewed and Cauchy inputs; for
heavy-tailed skew and bimodal inputs, DKL(P, P̃)/N appeared to
saturate after an initial increase (Figure 9). The relative order-
ing for unimodal inputs shifted as N increased; as N → 16, the
maximal achievable DKL(P, P̃) for sub-Gaussian inputs overtook
the values for heavy-tailed inputs. At all values of N, the val-
ues for Gaussian and skewed inputs tracked one another closely.
Regardless, the values for all unimodal inputs remained substan-
tially below the maximal value achievable for bimodal inputs.
Figure 9B shows that the probability distributions produced by
these inputs qualitatively agree with this trend: departures from
PME were more visually pronounced for global bimodal inputs
than for global unimodal inputs. In addition, the distributions for
heavy-tailed and sub-Gaussian inputs differed qualitatively, offer-
ing a potential mechanism for different scaling behavior. Using
the relationship between DKL and likelihood ratios (described

in section 2.1), at N = 16, the value DKL/N ≈ 0.1 for bimodal
global inputs corresponds to a likelihood ratio of 0.33 that a sin-
gle draw from P (single network output) in fact came from the
PME fit P̃ rather than from P; a likelihood <0.01 is reached for
four draws.

We next extended our model with recurrent coupling to N > 3
cells. In addition to the parameters for the uncoupled network,
we varied the coupling strength, g, for each type of input. As in
the N = 3 network, coupling was all-to-all. As for the small net-
works explored in an earlier section, DKL(P, P̃) generally peaked
at an intermediate value of the coupling strength g; however,
the value of g decreased as population size N increased (illus-
trated in Figure 10A, for c = 0.2). This may be attributed to
the increased potential impact of recurrence at larger popula-
tion sizes; as N increases, the number of potential additional
spikes that may be triggered increases; consequently the aver-
age recurrent excitation received by each cell increases, and
therefore the probability that one or two spikes will trigger a
cascade to N spikes. In Figure 10B we demonstrate that the
impact of this effect may be captured by plotting DKL(P, P̃) as
a function of an effective coupling parameter, g∗N/3. Here, we
plot the curves for six population sizes (N = 3, 4, 6, 8, 10, and
12) and five common input types; each curve was scaled by
normalizing DKL(P, P̃) by its maximum value. For many sets
of parameter values, the resulting curves line up remarkably
well, suggesting a universal scaling with the effective coupling
parameter.

We also explored the overall possible impact of recurrence on
higher-order interactions, by surveying a range of circuit param-
eters c, σ, � and g. The top panel of Figure 10C shows the
maximal DKL(P, P̃) per neuron, for each type of input, up to
population size N = 8. For unimodal inputs, recurrent coupling
increased the available range of higher-order interactions mod-
estly, compared with the range achieved with purely feedforward
connections; however, these values remained significantly lower
than those achieved for bimodal inputs.

Finally, we considered how higher-order interactions scale
with population sampling size. The spike pattern distributions
used to generate the last column of data points (N = 8) in the
top panel of Figure 10C were reanalyzed by sub-sampling the
spike pattern distributions on k < 8 cells. In each case, we chose
our sub-population to be k nearest neighbors (for our setup, any
subset of k cells is statistically identical). In the bottom panel of
Figure 10C, we show the maximal value of DKL(P, P̃) per sub-
sampled cell achieved over all input parameters (the curves for
Gaussian, skewed and Cauchy inputs are so close together so as to
be visually indistinguishable). This number increases or remains
steady as k increases, indicating that sub-sampling a coupled net-
work will depress the apparent higher-order interactions in the
output spiking pattern.

To summarize, the greater impact of bimodal vs. unimodal
input statistics on maximal values of DKL(P, P̃) persists in cir-
cuits with N = 3 cells up to N = 16 cells. Overall, for the cir-
cuit parameters producing maximal deviations from PME fits,
it becomes easier to statistically distinguish between spiking dis-
tributions and their PME fits as the number of cells increases in
feedforward networks.
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FIGURE 9 | The significance of higher-order interactions increases

with network size. (A) Normalized maximal deviation, DKL(P, P̃)/N, from
the PME fit for the thresholding circuit model as network size N
increases. For each N and common input distribution type, possible input
parameters were in the following ranges: input correlation c ∈ [0, 1], input
standard deciation σ ∈ [0, 4], and threshold � ∈ [0, 3]. (B) Example

sample distributions for different types of common input: from top,
bimodal, Gaussian, heavy-tailed skew, and Cauchy common inputs. For
each input type, the distribution that maximized DKL(P, P̃) for N = 16 is
shown. Each distribution is illustrated with a bar plot contrasting the
probabilities of spiking events in the true (dark blue) vs. pairwise
maximum entropy (light pink) distributions.

FIGURE 10 | The impact of recurrent coupling on the sum-and-threshold

model, for increasing population size. (A) DKL(P, P̃) as a function of the
coupling coefficient, g, for a specific value of population size N. In all plots,
input standard deviation σ = 1, threshold � = 1.5 and input correlation
c = 0.2. From top: N = 4; N = 8; N = 12. (B) Dnorm

KL (P, P̃) as a function of the
coupling coefficient, g, for populations sizes N = 3 − 12. For each curve,
DKL(P, P̃) was scaled by its maximal value and plotted as a function of the
scaled coupling coefficient, g∗N/3, to illustrate a universal scaling with
effective coupling strength. The line style of each curve indicates the
population size N, as listed in the legend. The marker and line color indicate

the common input marginal, as listed in the legend for (A). (C) (Top) Maximal
value of DKL(P, P̃)/N, achieved over a survey of parameter values c, σ, �,
and g, as a function of the population size N (solid lines). For each input
marginal type, a second curve shows the maximal value obtained over only
feed-forward simulations (g = 0; dashed lines). The marker and line color
indicate the common input marginal, as listed in the legend for (A). (Bottom)
Maximal value of DKL(P, P̃)/k, achieved over a survey of parameter values c,
σ, �, and g, as a function of the subsample population size k. Data was
subsampled from the N = 8 data shown in the top panel, by restricting
analysis to k out of N cells.
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3. DISCUSSION
We used mechanistic models to identify input patterns and cir-
cuit mechanisms which produce spike patterns with significant
higher-order interactions—that is, with substantial deviations
from predictions under a PME model. We focused on a tractable
setting of small, symmetric circuits with common inputs. This
revealed several general principles. First, we found that these
circuits produced outputs that were much closer to PME predic-
tions than required for a general spiking pattern. Second, bimodal
input distributions produced stronger higher-order interactions
than unimodal distributions. Third, recurrent excitatory or gap
junction coupling could produce a further, moderate increase of
higher-order correlations; the effect was greatest for coupling of
intermediate strength.

These general results held for both an abstract threshold-
and-spike model and for networks of non-linear integrate-and-
fire units based on measured properties of one class of RGCs.
Together with the facts that ON parasol cell filtering suppresses
bimodality in light input, and that coupling among ON parasol
cells is relatively weak, our findings provide an explanation for
why their population activity is well captured by PME models.

3.1. COMPARISON WITH EMPIRICAL STUDIES
How do our maximum entropy fits compare with empirical stud-
ies? In terms of DKL(P, P̃)—equivalently, the logarithm of the
average relative likelihood that a sequence of data drawn from P
was instead drawn from the model P̃—numbers obtained from
our RGC models are very similar to those obtained by in vitro
experiments on primate RGCs (Shlens et al., 2006, 2009). For
example, in a survey of 20 numerical experiments under con-
stant light conditions (each of length 100 ms, with spikes binned
in 10 ms intervals), we find that DKL(P, P̃) ranges between 0 and
0.00029: similarly excellent fits were found by Shlens et al. (2006)
(in which cell triplets were stimulated by constant light for 60 s
with spikes binned at 10 ms), with one example given of 0.0008
(inferred from a reported likelihood ratio of 0.99944). These
values can increase by an order of magnitude under full-field
stimulation, as well as spatio-temporally varying stixel simula-
tions (bounded above by 0.007). We can view the 60 μm stixel
simulations as a model of the checkerboard experiments of Shlens
et al. (2006), for which close fits by the PME distribution were also
observed (likelihood numbers were not reported). Similarly, the
values of � produced by our RGC model are close to those found
by Schneidman et al. (2006); Shlens et al. (2006) under compa-
rable stimulus conditions. We obtain � = 99.5% (for cell group
size N = 3) under constant illumination, which is near the range
reported by Shlens et al. (2006) for the same bin size and stimulus
conditions (98.6 ± 0.5, N = 3 − 7). For full-field stimuli we find
a range of numbers from 95.7% to 99.3% (N = 3).

With regard to the circuit mechanisms behind these excellent
fits by pairwise models, the findings that most directly address
the experimental settings of Shlens et al. (2006, 2009), are (1)
the finding that in the threshold model, unimodal inputs generate
minimal higher-order interactions, compared to bimodal inputs,
and (2) the particular stimulus filtering properties of parasol cells
can suppress bimodality that may be present in an input stimu-
lus, resulting in a unimodal distribution of input currents. First,

we believe that unimodal inputs are consistent with the white-
noise checkboard stimuli used in Shlens et al. (2006, 2009), where
binary pixels were chosen to be small relative to the receptive
field size; averaged over the spatial receptive field, they would
be expected to yield a single Gaussian input by the central limit
theorem. Second, temporal filtering may contribute to receipt of
unimodal conductance inputs by cells for the full-field binary
flicker stimuli that are delivered in Schneidman et al. (2006). With
the 16.7 ms refresh rate used there, under the assumption that the
filter time-scale of the cells studied in that paper is roughly similar
to that of the ON parasol cell we consider, the filter would aver-
age a binary (and hence bimodal) stimulus into a unimodal shape
(see Figure 2C, for example).

The simple threshold models that we have considered, mean-
while, give us a roadmap for how circuits could be driven in
such a way as to lower �. The right columns of Figures 7B,D,F
show � plotted as a function of firing rate for circuits of N = 3
cells receiving global common inputs; we observe that � ≈ 1 for
Gaussian inputs over a broad range of firing rates and pairwise
correlation coefficients, but that values of � can be depressed
by 25–50% in the presence of a bimodal common input. Indeed,
Shlens et al. (2006) showed that adding global bimodal inputs to
a purely pairwise model can lead to a comparable departure in �.
Our results are consistent with this finding, and explicitly demon-
strate that the bimodality of the inputs—as well as their global
projection—are characteristics that lead to this departure.

3.2. CONSEQUENCES FOR SPECIFIC NEURAL CIRCUITS
Our results make predictions about when neural circuits are likely
to generate higher-order interactions. A comprehensive study of
our simple thresholding model shows that bimodal inputs gen-
erate greater beyond-pairwise interactions than unimodal inputs.
This result can be extended to other circuits where a clear input–
output relationship exists, and be used to predict higher-order
correlations by analyzing the impact of stimulus filtering on a
statistically defined class of inputs. For example, the effect holds
in our model of primate ON parasol cells, where a biphasic fil-
ter suppresses bimodality in a stimulus with a timescale matched
to that of the filter. We can use these results to extrapolate to
other classes of RGCs or other stimulus conditions in which fil-
ters are less biphasic (Victor, 1999). Indeed, when we process long
time-scale bimodal inputs through a preliminary model of the
midget cell circuit, stimulus bimodality is no longer suppressed
and is associated with higher-order interactions (see Figure 4).
We predict that greater higher-order interactions will be found
for stimuli or RGC circuits that elicit bimodal activity that is
thresholded when generating spikes—in comparison to the para-
sol circuits and stimuli studied in Shlens et al. (2006, 2009).
We believe that this principle will be further applicable in other
sensory systems.

We found that recurrent excitatory connections further
increase higher-order interactions, which are maximized at an
intermediate recurrence strength; in particular, when the strength
of an excitatory recurrent input was comparable to the distance
between rest and threshold (Figure 8). For the primate ON para-
sol cells we considered, the experimentally measured strength of
gap junction coupling would lead to an estimated membrane
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voltage jump of ≈1 mV in response to the firing of a neighbor-
ing RGC, while the voltage distance between the resting voltage
and an approximate threshold is about 5–10 mV (Trong and
Rieke, 2008). Consistent with this estimate, we found that in
our ON parasol cell model, higher-order interactions were maxi-
mized when the strength of excitatory recurrence was eight times
its experimentally measured value. The experimentally measured
values of recurrence had little or no effect on higher-order inter-
actions. We anticipate that this result may be used to predict
whether recurrent coupling plays a role in generating higher-
order interactions in other circuits where the average voltage
jump produced by an electrical or synaptic connection can be
measured.

To apply our findings to real circuits, we must also consider
population size. A measurement from a neural circuit, in most
cases, will be a subsample of a much larger, complete circuit.
We addressed this question where it was computationally more
tractable, for the thresholding model. Here, we found that the
impact of higher-order interactions, as measured by entropy per
cell unaccounted for by the pairwise model (DKL/k), increases
moderately as subsample size k increases. Since recurrent con-
nectivity in our model is truly global, this is consistent with the
suggestion of Roudi et al. (2009a) and others that the entropy
can be expected to scale extensively with population size N, once
N significantly exceeds the true spatial connectivity footprint: we
may see different results with limited, local connectivity.

3.3. SCOPE AND OPEN QUESTIONS
There are many aspects of circuits left unexplored by our study.
Prominent among these is heterogeneity. Only a few of our sim-
ulations produce heterogeneous inputs to model RGCs, and all
of our studies apply to cells with identical response properties.
This is in contrast to studies such as Schneidman et al. (2006),
which examine correlation structures among multiple cell types.
For larger networks, feedforward connections with variable spa-
tial profiles also occur, between the extremes of independent and
global input connections examined here. It is also possible that
more complex input statistics could lead to greater higher-order
interactions (Bethge and Berens, 2008). Finally, Figure 9 indicates
that some trends in DKL(P, P̃) vs. N appear to become non-linear
for N � 10; for larger networks, our qualitative findings could
change.

Our study also leaves largely open the role of different reti-
nal filters in generating higher-order interactions. We have found
that the specific filtering properties of ON parasol cells sup-
press bimodality in light inputs, suggesting that other classes of
RGCs, such as midget cells, may produce more robust higher-
order interactions (compare panels in Figure 4B). This predicts
a specific mechanism for the development of higher-order inter-
actions in preparations that include multiple classes of ganglion
cells (Schneidman et al., 2006). For a complete picture, future
studies will also need to account for the possible adaptation of
stimulus filters in response to higher-order stimulus character-
istics (Tkacik et al., 2012); we did not consider the latter effect
here, where our filter was fit to the response of a cell to Gaussian
stimuli with specific mean and variance. An allied possibility is
that multiple filters will be required, as was found when fitting

the responses of salamander retinal cells to LN models (Fairhall
et al., 2006). Distinguishing the roles of linear filters vs. static
non-linearities in determining which stimulus classes will give
the greatest higher-order correlations is another important step.
Finally, we considered circuits with a single step of inputs and
simple excitatory or gap junction coupling; a plethora of other
network features could also lead to higher-order interactions,
including multi-layer feedforward structures, together with lat-
eral and feedback coupling. We speculate that, in particular,
such mechanisms could contribute to the higher-order interac-
tions found in cortex (Tang et al., 2008; Montani et al., 2009;
Ohiorhenuan et al., 2010; Oizumi et al., 2010; Koster et al., 2013).

A final outstanding area of research is to link tractable net-
work mechanisms for higher-order interactions with their impact
(or lack of impact) on information encoded in neural popula-
tions (Kuhn et al., 2003; Montani et al., 2009; Oizumi et al.,
2010; Ganmor et al., 2011; Cain and Shea-Brown, 2013). A sim-
ple starting point is to consider rate-based population codes in
which each stimulus produces a different “tuned” average spike
count (see for e.g., chapter 3 of Dayan and Abbot, 2001). One
can then ask whether spike responses can be more easily decoded
to estimate stimuli for the full population response (i.e., P) to
each stimulus or for its pairwise approximation (P̃). In our pre-
liminary tests where higher-order correlations were created by
inputs with bimodal distributions, we found examples where
decoding of P vs. P̃ differed substantially. However, a more com-
plete study would be required before general conclusions about
trends and magnitudes of the effect could be made; such a study
would include complementary approach in which the full spike
responses P are themselves decoded via a “mismatched” decoder
based on the pairwise model P̃ (Oizumi et al., 2010). Overall, we
hope that the present paper, as one of the first that connects cir-
cuit mechanisms to higher-order statistics of spike patterns, will
contribute to future research that takes these next steps.

4. MATERIALS AND METHODS
4.1. EXPERIMENTALLY-BASED MODEL OF A RGC CIRCUIT
We model the response of a individual RGC using data col-
lected from a representative primate ON parasol cell, following
methods in Murphy and Rieke (2006); Trong and Rieke (2008).
Similar response properties were observed in recordings from
16 other cells. To measure the relationship between light stim-
uli and synaptic conductances, the retina was exposed to a
full-field, white noise stimulus. The cell was voltage clamped
at the excitatory (or inhibitory) reversal potential VE = 0 mV
(VI = −60 mV), and the inhibitory (or excitatory) currents were
measured in response to the stimulus. These currents were then
turned into equivalent conductances by dividing by the driving
force of ±60 mV; in other words

gexc = Iexc/(V − VE); V − VE = −60 mV

ginh = Iinh/(V − VI); V − VI = 60 mV

The time-dependent conductances gexc and ginh were now
injected into a different cell using a dynamic clamp procedure
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(i.e., the input current was varied rapidly to maintain the cor-
rect relationship between the conductance and the membrane
voltage) and the voltage was measured at a resolution of 0.1 ms.

4.1.1. Stimulus filtering
To model the relationship between the light stimulus and synaptic
conductances, the current measurements Iexc and Iinh were fit to
a linear-nonlinear model:

gexc(t) = Nexc [Lexc ∗ s(t) + ηexc] ,
ginh(t) = N inh

[
Linh ∗ s(t) + ηinh

]

where s is the stimulus, Lexc (Linh) is a linear filter, Nexc (N inh) is
a non-linear function, and ηexc (ηinh) is a noise term. The linear
filter was fit by the function

Lexc(t) = Pexc (t/τexc)
nexc exp (−t/τexc) sin (2πt/Texc) (7)

and the non-linear filter by the polynomial

Nexc(x) = Aexcx2 + Bexcx + Cexc. (8)

Fits minimized the mean-square distance between model and
data. Linh and N inh were fit using the same parametrization.

The noise terms ηexc
k , ηinh

k were fit to reproduce the statistical
characteristics of the residuals from this fitting. We simulated the
noise terms ηexc and ηinh using Ornstein–Uhlenbeck processes
with the appropriate parameters; these were entirely characterized
by the mean, standard deviation, and time constant of autocorre-
lation τη,exc

(
τη,inh

)
, as well as pairwise correlation coefficients

for noise terms entering neighboring cells. The noise correlation
coefficients were estimated from the dual recordings of Trong and
Rieke (2008).

Linear filter parameters computed (also listed in Table 1)
were Pexc = −8 × 104s−1, nexc = 3.6, τexc = 12 ms, Texc =
105 ms, and Pinh = −1.8 × 105 s−1, ninh = 3.0, τinh = 16 ms,
Tinh = 120 ms. Non-linearity parameters were Aexc = −8.3 ×
10−7 nS, Bexc = 7 × 10−3 nS, Cexc = −0.95 nS, and Ainh =
1.67 × 10−6 nS, Binh = 6.2 × 10−3 nS, Cinh = 4.17 nS. Noise
parameters were measured to be mean(ηexc

k ) = 30, std(ηexc
k ) =

500, τη,exc = 22 ms, and mean(ηinh
k ) = −1200, std(ηinh

k ) = 780,
τη,inh = 33 ms. In addition, excitatory (inhibitory) noise to dif-
ferent cells ηexc

k , ηexc
j (ηinh

k , ηinh
j ) had a correlation coefficient of

0.3 (0.15).
For the filter demonstrated in Figure 4, we added a cosine

component to the previous filter, i.e.,

Lexc,M(t) = Pexc,M
(
t/τexc,M

)nexc,M exp
(−t/τexc,M

)
× [

sin
(
2πt/Texc,M,S

)+ Rexc,M cos
(
2πt/Texc,M,C

)]
(9)

Here Pexc,M = −3.2 × 105 s−1, nexc,M = 2, τexc,M = 12 ms,
Texc,M,S = 120 ms and Texc,M,C = 100 ms, and Pinh,M =
−3.5 × 105 s−1, ninh,M = 2, τinh,M = 13.2 ms, Tinh,M,S = 132 ms
and Tinh,M,C = 110 ms, while Rexc,M = Rinh,M = 0.8.

4.1.2. Voltage evolution
We create a model of the cell as a non-linear integrate-and-fire
model using the method of Badel et al. (2007), in which the
membrane voltage is assumed to respond as

dV

dt
= F (V, t − tlast) + Iinput(t)

C
(10)

where C is the cell capacitance, tlast is the time of the last
spike before time t, and Iinput(t) is a time-dependent input cur-
rent. We use the current-clamp data, which yields cell voltage
in response to the input current Iinput(t) = −gexc(t)(V − VE) −
ginh(V − VI), to fit a function F(V, t). When voltage data is seg-
regated according to the time since the last spike t − tlast, the I − V
curve is well fit by a function of the form

F (V, t − tlast) = 1

τm

(
EL − V + �Te(V−VT )/�T

)
(11)

where parameters are the membrane time constant τm, rest-
ing potential (EL), spike width �T and knee of the exponential
curve VT .

The values of these constants differed in each bin of voltage data;
to estimate these constants, we first extracted their values from each
mean I − V curve. We found that these constants, as a function of
t − tlast, were well fit by either a single exponential or a difference
of two exponentials, with relaxation to a baseline rate (as in Badel
et al., 2007, Figure 3). Specifically, we chose:

1

τm
= cτm,1 + cτm,2e−(t−tlast)/cτm,3

EL = cEL,1 + cEL,2

(
e−(t−tlast)/cEL,3 − e−(t−tlast)/cEL,4

)
�T = c�T ,1 + c�T ,2

(
e−(t−tlast)/c�T ,3 − e−(t−tlast)/c�T ,4

)
VT = cVT ,1 + cVT ,2e−(t−tlast)/cVT ,3 (12)

We obtained the coefficients by least-squares fitting to the above
functional forms: specifically, we found that (up to four digits):(
cτm,1, cτm,2, cτm,3

) = (0.3719 ms−1, 0.5412 ms−1, 13.2726 ms),(
cEL,1, cEL,2, cEL,3, cEL,4

) = (−59.4858 mV, 5.8966 mV, 8.3076 ms,
233.1114 ms),

(
c�T ,1, c�T ,2, c�T ,3, c�T ,4

)= (20.0487 ms,
19.0560 ms, 3.6280 ms, 2.4304 s), and

(
cVT ,1, cVT ,2, cVT ,3

) =
(−44.3323 mV, 25.1812 mV, 4.7653 ms). Coefficients are also
listed in Table 2.

The capacitance was inferred from the voltage trace data by
finding, at a voltage value where the voltage/membrane current
relationship is approximately Ohmic, the value of C that mini-
mizes error in the relation Equation (10) (Badel et al., 2007). The
estimated value was C = 28 pF.

4.1.3. Spiking dynamics: feedforward network
For simulations without electronic coupling, our model neu-
ron comprises Equations (10, 11) for V < Vthreshold; a spike was
detected when V reached Vthreshold = −30 mV; voltage was then
reset to Vreset = −55 mV. The cell was then unable to spike for an
absolute refractory period of τabs = 3 ms.

All simulations presented here were done in a three-cell net-
work.
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4.1.4. Spiking dynamics: recurrent network
Gap junction coupling was introduced as an additional current on
the right-hand side of Equation (10):

Igap,j

C
= − ggap

C

∑
k �=j

(
Vj − Vk

)
(13)

The coupling strength ggap was held constant during a simulation.
When coupling was present (i.e., when ggap �= 0), ggap was var-
ied from the measured level (1.1 nS) (Trong and Rieke, 2008) to
16 times this value (17.6 nS) between simulations. When present,
coupling was all-to-all.

As in the feedforward model, Equations (10, 11) were inte-
grated for V < Vthreshold, and a spike was detected when V reached
Vthreshold = −30 mV. To model the voltage trajectory immediately
following a spike, an averaged spike waveform was extracted from
voltage traces of the same ON parasol cell used to fit Equations (10,
11). This spike waveform was then used to replace 1 ms of the
membrane voltage trajectory during and after a spike; at the end
of the 1 ms, the voltage was released at approximately −58 mV.
The cell was unable to spike for an absolute refractory period of
τabs = 3 ms. A relative refractory period was induced by introduc-
ing a declining threshold for the period of 3–6 ms following a spike,
after which Vthreshold returns to −30 mV.

4.1.5. Cell receptive field and stimulation
We defined each cell’s stimulus as the linear convolution of an
image with its receptive field. The receptive fields include an ON
center and an OFF surround, as in Chichilnisky and Kalmar (2002):

sj (
x) = exp

(
−1

2

(
x − 
xj
)T

Q
(
x − 
xj

))
(14)

−k exp

(
−1

2
r
(
x − 
xj

)
Qr
(
x − 
xj

))

where the parameters k and 1/r give the relative strength and size
of the surround. Q specifies the shape of the center and was cho-
sen to have a 1 standard deviation (SD) radius of 50 μm and to be
perfectly circular. The receptive field locations 
x1, 
x2, and 
x3 were
chosen so that the 1 SD outlines of the receptive field centers will
tile the plane (i.e., they just touch). Other parameters used were
k = 0.3, r = 0.675.

Stimulation images were defined on a 512 μm × 512 μm grid
that overlapped all three receptive fields. For full-field stimuli,
light intensity was chosen be spatially constant and refreshed every
8, 40, or 100 ms by choosing independently from the specified
stimulus distribution (Gaussian, binary, Cauchy, or heavy-tailed
skew). For spatially variable stimuli, a checkerboard pattern was
imposed on the stimulation image: the intensity value in each
checkerboard square was chosen independently and refreshed

Table 1 | Parameters used to model the transformation of stimuli into synaptic conductances for the RGC model, as described in Equations

(7–9).

Model (MOD) PMOD (s−1) τMOD (ms) nMOD TMOD (ms) AMOD (nS) BMOD (nS) CMOD (nS)

exc −8 × 104 12 3.6 105 −8.3 × 10−7 7 × 10−3 −0.95

inh −1.8 × 105 16 3.0 120 1.67 × 10−6 6.2 × 10−3 4.17

exc,M −3.2 × 105 12 2 120* −8.3 × 10−7 7 × 10−3 −0.95

inh,M −3.5 × 105 13.2 2 132* 1.67 × 10−6 6.2 × 10−3 4.17

Additional parameters for monophasic filters

Model (MOD) TMOD, S (ms) TMOD, C (ms) RMOD

exc,M 120 100 0.8

inh,M 132 110 0.8

Asterisks (*) indicate parameters that are superceded by later rows; note that the monophasic filter equations contain two filtering timescales—for example Texc,M,S

and Texc,M,C, for the excitatory monophasic filter—and a relative weighting (e.g., Rexc,M).

Table 2 | Coefficients used to define refractory EIF model as specified in Equations (11, 12).

Parameter (PAR) cPAR,1 cPAR,2 cPAR,3 (ms) cPAR,4 (ms)

τm (actual fit: 1/τm) 0.3719 ms−1 0.5412 ms−1 13.2726

VT −44.3323 mV 25.1812 mV 4.7653

EL −59.4858 mV 5.8966 mV 8.3076 233.1114

�T 20.0487 ms 19.0560 ms 3.6280 2430.4

The parameters 1/τm and VT were fit to single exponentials as functions of time, with three free parameters. The parameters EL and �T were fit to differences

of exponentials and therefore have four parameters. Units in the first and second columns are as stated; coefficients in the third and fourth column are in units of

milliseconds (ms).
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at the appropriate interval. The checkerboard pattern was first
given a random rotation and translation relative to the receptive
fields: this was chosen at the outset of each batch of stixel sim-
ulations (for a total of five rotation/translation pairs per stixel
size, refresh rate, and stimulus distribution). Two example place-
ments are shown in Figures S2A,D for 256 μm and 60 μm pixels
respectively.

4.1.6. Numerical methods
All simulations and data analysis were performed using MATLAB.
Equations (10, 11) were integrated using the Euler method for
>105 ms with a time step of 0.1 ms. The synaptic noise terms,
ηexc

k and ηinh
k , as well as the light input, were generated indepen-

dently for each simulation. In response to uniform light stim-
uli, firing rates were 11.51 ± 0.38 Hz (standard deviations given
across a total of 60 cells; 3 cells each from 20 105 ms simula-
tions); 10 ms bins were used to discretize the spiking output. Firing
rates were higher for full-field stimuli, ranging from 12 to 43 Hz
(firing rates increased with stimulus variance); therefore shorter
(5 ms) bins were used to discretize spike output for all other
simulations. With this range of firing rates and bin size, multi-
ple spikes were very rare (occurring in <1% of occupied bins).
Empirical spiking distributions were computed from the binned
spike data.

For each stimulus condition, 20 simulations (or sub-
simulations) were run, for a total integration time of
> 20 × 105 ms. These 20 sub-simulations were used to esti-
mate standard errors in both the probability distribution over
spiking events and DKL(P, P̃). Numbers reported in section 2 are,
unless specified otherwise, produced by collating the data from the
20 simulations.

To fit a maximum entropy model P̃ to an empirical probability
distribution P, we used standard methods that have been explained
elsewhere (Malouf, 2002). Briefly, we minimized the negative log-
likelihood function:

L (λ) = −
∑

x

P (x) log P̃ (x, λ) (15)

where

P̃ (x, λ) = Z−1
λ exp

(∑
k

λkfk (x)

)
;

Zλ is the partition function, fk, k = 1, . . . , M is a set of functions or
“features” of the spiking state, and λ is a vector of parameters, each
of which serves as a Lagrange multiplier enforcing the constraint
EP̃[fk]. For the pairwise (PME) model on N cells, λ corresponds to
N firing rates and N(N − 1)/2 covariances, and the sum is over all
possible spiking states of the system. For N = 3 there are six such
parameters, and

log P̃ ({x1, x2, x3}, λ) = λ1x1 + λ2x2 + λ3x3 + λ1,2x1x2

+λ2,3x2x3 + λ1,3x1x3 − log Zλ.

The function in Equation (15) is a convex function of the param-
eters λ which will be minimized precisely (and uniquely) when P̃
matches the desired moments from P: e.g., EP[x1] = EP̃[x1]. Since

P̃ is in log-linear form, the result will be the maximum entropy
distribution that matches the desired moments (Malouf, 2002).
In principle any unconstrained gradient descent method may be
used; we used an implementation of the non-linear conjugate
gradient method. The Kullback Leibler divergence DKL(P, P̃) was
computed using the identity DKL(P, P̃) = S(P̃) − S(P), where S(P)

is the entropy of P, i.e., S(P) = −∑x P(x) log P(x).

4.1.7. Convergence testing
To test our finding that the observed distributions were well-
modeled by the PME fit, we also performed the PME analy-
sis on each of the 20 simulations for each stimulus condition.
While in general DKL(P, P̃) can be quite sensitive to perturba-
tions in P, the numbers remained small under this analysis. To
confirm that our results for DKL(P, P̃) are sufficiently resolved to
remove bias from sampling, we performed an analysis in which
we collect the 20 simulations in subgroups of 1, 2, 4, 5, 10, and
20, and plot the mean DKL with estimated standard errors. As
expected (e.g., Paninski, 2003), bias decreases as the length of sub-
group increases and asymptotes at—or before—the full simulation
length.

To provide a cross-validation test for the significance of our
reported DKL(P, P̃) values, we divided our data into halves
(which we denote P1 and P2, each including data from 10 sub-
simulations) and performed the PME analysis on one half (say
P1) to yield a model P̃1. We then computed DKL(P2, P̃1) and
DKL(P2, P1) (as in Yu et al., 2011), which we refer to the cross-
validated and empirical likelihood, respectively. The former tests
whether the PME fit is robust to over-fitting; the latter tests
how well-resolved our “true” distribution is in the first place.
Most cross-validated likelihoods fall on or near the identity line;
most empirical likelihoods are close to zero [and importantly,
significantly smaller than either DKL(P, P̃) or DKL(P2, P̃1), indi-
cating that DKL(P, P̃) is accurately resolved]. We conclude that
the deviations that we observe when these conditions are met can
not be accounted for by the differences in testing and training
data.

4.2. COMPUTATION OF SPIKING PATTERNS IN THE SIMPLIFIED MODEL
As a simplified model of a neural circuit, we consider a vari-
ant of the Dichotomized Gaussian (Amari et al., 2003; Macke
et al., 2009, 2011), in which correlated inputs are thresholded
to produce an output spike pattern. To be concrete, a set of N
threshold spiking units is forced by a common input Ic [drawn
from a probability distribution PC(y)] and an independent input
Ij [drawn from a probability distribution PI(y)]. To relate these
functions to the other free parameters in the model, PC(y) and
PI(y) were always chosen so that Ij and Ic had mean 0 and
variances (1 − c)σ2 and cσ2, respectively (so that c yields the
Pearson’s correlation coefficient of the input to two cells). The out-
put of each cell xj is determined by summing and thresholding
these inputs:

xj = H
(
Ij + Ic − �

)
(16)

where H is the Heaviside function [H(x) = 1 if x ≥ 0; H(x) = 0
otherwise]. Conditioned on Ic, the probability of each spike is
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given by:

Prob
[
xj = 1 | Ic = a

] = Prob
[
Ij + a − � > 0

]
= Prob

[
Ij > � − a

]
=
∫ ∞

�−a
PI(y) dy

Similarly, we have the conditioned probability that xj = 0:

Prob
[
xj = 0 | Ic = a

] = Prob
[
Ij + a − � < 0

]
= Prob

[
Ij < � − a

]
=
∫ �−a

−∞
PI(y) dy

Because these are conditionally independent, the probability of any
spiking event (x1, x2, . . . , xN) = (A1, A2, . . . , AN) is given by the
integral of the product of the conditioned probabilities against the
density of the common input.

Prob [x1 = A1, . . . , xN = AN ] =
∫ ∞

−∞
dy PC(y) (17)

N∏
j = 1

Prob
[
xj = Aj | Ic = y

]

The integral in Equation (17) is numerically evaluated via an adap-
tive quadrature routine, such at Matlab’s quad or integral.

Four distinct unimodal inputs were used; two with heavy tails
(Cauchy and heavy-tailed with skew), and two with sub-Gaussian
tails (Gaussian and skewed). A random variable X is sub-Gaussian
if the probability of large events can be bounded above by a scaled
Gaussian; that is, if there exist constants C, c > 0 such that

P (|X| > λ) ≤ C exp
(−cλ2)

for all λ (e.g., see Tao, 2012, p. 15).
Unimodal inputs Ij, Ic were chosen from different marginals

with mean 0 and variances (1 − c)σ2, cσ2, respectively (for sim-
plicity, we use σ2 to refer to the variance of a generic probability
distribution in the following three paragraphs). For Gaussian

inputs with variance σ2, P(x) ∝ e−x2/2σ2
; for skewed inputs,

P(x) ∝ (x + μ)e−(x+μ)2/2a, for x > −μ, where the parameter a

sets the variance 2a(1 − π
4 ) and shifting by μ =

√
aπ
2 ensures that

the mean of P(x) is zero.
The heavy-tailed unimodal inputs were chosen so that the rate

of tail decay would mimic the I−2 luminance statistics found in
natural scenes (Ruderman and Bialek, 1994):

P(x) ∝ 1

x2 + 1
, −X < x < X

P(x) ∝ x(
x2 + 1

)3/2
, 0 ≤ x < X

for the Cauchy and heavy-tailed with skew distributions,
respectively. A finite support of X was necessary in order to ensure
the distributions had finite moments; X was chosen to be 1000.
Given X, the distributions were shifted and scaled to ensure mean
0 and variance σ2.

Bimodal inputs with variance σ2 were chosen in the following
way: in all cases, P(x) was chosen to be a discrete distribution with
support on two values {0, X} i.e., P(X) = p and P(0) = 1 − p. If
possible (i.e., if σ2 ≤ 1/4), X was chosen to be 1; otherwise, X was
chosen so as to minimize the distance between 0 and X. Finally,
P(x) was shifted to have the desired mean value.
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Figure S1 | Biphasic vs. monophasic filters used in simulations illustrated

in Figure 4.

Figure S2 | Illustration of RGC simulations with light stimuli of varying

spatial scale (“stixels”). (A–C) For stixel size 60 μm, results for one

randomly chosen stimulus position. (A) Contour lines of the three

receptive fields (at 0.5, 1, 1.5, and 2 SD; and at the zero contour line)

superimposed on the stimulus checkerboard (for illustration, pictured in an

alternating black/white pattern). The red scale bar indicates 100 μm. (B)

Histograms of the excitatory conductances, for each cell. (C) Spike pattern

distribution, as obtained from computational simulations of the RGC

model (“Observed”; dark blue), and the corresponding pairwise fit

(“PME”; light pink). All eight spike patterns are shown, to allow for the

possibility of non-symmetric responses; the three different probabilities

labeled p1 correspond to P[(1, 0, 0)], P[(0, 1, 0)], and P[(0, 0, 1)]. (D–F) As

in (A–C), but for stixel size 256 μm. Panels (E,F) demonstrate that for this

input, both excitatory inputs and spiking responses are heterogenous

across the RGCs.

Figure S3 | Strength of higher-order interactions produced by the

threshold model as input parameters vary; relationship with other output

firing statistics. (A) For skewed common inputs: DKL(P, P̃) as a function

of input correlation c and input standard deviation σ, for a fixed threshold

� = 1.5. Color indicates DKL(P, P̃); see color bar for range. (B) For

skewed common inputs: DKL(P, P̃) vs. firing rate E[x1] (Left) and the

fraction of multi-information (�) captured by the PME model vs. firing rate

E[x1] (Right). In (B), possible input parameters were varied over a broad

range as described in section 2. Firing rate is defined as the probability of

a spike occurring per cell per random draw of the sum-and-threshold

model, as defined in Equation (16). Color indicates output correlation

coefficient ρ ranging from black for ρ ∈ (0, 0.1), to white for ρ ∈ (0.9, 1), as

illustrated in the color bars. (C,D): as in (A,B), but for heavy-tailed, skewed

common inputs.
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Figure S4 | The range of higher-order interactions produced by the

threshold model varies across input type. Here, all values of DKL(P, P̃)

produced by the three-cell threshold model (previously displayed in

Figures 7, S3) are superimposed to show the contrast between different

input distributions. By comparing these data with data from direct

sampling of all symmetric spiking distributions on three cells (from

Figure 1 and shown here in yellow), one can see that only a limited set of

output patterns are accessed by the feedforward thresholding model.

Firing rate is defined as the probability of a spike occurring per cell per

random draw of the sum-and-threshold model, as defined in

Equation (16).
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APPENDIX
A.1 A MEASURE OF HIGHER-ORDER INTERACTIONS: DKL(P, P̃)

We begin by observing that when P̃ is a maximum entropy distri-
bution that approximates P (that is, it is log-linear, with coefficients
chosen to enforce equality of a set of moments), then the KL-
distance may be written as a difference of entropies (Cover and
Thomas, 1991; Malouf, 2002):

DKL
(
P, P̃

) = −S(P) + S
(
P̃
)

Here, the entropy of a probability distribution P on {0, 1}3 is given

S(P) = −p0 log
(
p0
)− 3p1 log

(
p1
)− 3p2 log

(
p2
)

(18)

−p3 log
(
p3
)

if we use the fact that the distributions are permutation-symmetric
[i.e., p1 ≡ P(1, 0, 0) = P(0, 1, 0) = P(0, 0, 1)]. We take the loga-
rithms in the definitions of the entropy S and KL-divergence DKL

to be base 2, so that any numerical values of these quantities are in
units of bits. Using the fact that P must normalize to 1, we rewrite

S(P) = − (1 − 3p1 − 3p2 − p3
)

log
(
1 − 3p1 − 3p2 − p3

)
−3p1 log

(
p1
)− 3p2 log

(
p2
)− p3 log

(
p3
)

where the set of admissible distributions may now be described by
the convex tetrahedron in R

3, C = {p1, p2, p3 ≥ 0; 3p1 + 3p2 +
p3 ≤ 1}

We note that the set of distributions which satisfies a desired set
of lower order moments is given by an affine subspace (in R

3, a
line) which intersects this tetrahedron:

μ ≡ E[Xi] = p1 + 2p2 + p3

ρ̂ ≡ E[X2
i ] = p2 + p3

Denoting this set by Cμ,ρ̂, we note that Cμ,ρ̂ is a convex set and that

S(P̃) is constant on each Cμ,ρ̂.
By straightforward differentiation we can check that the Hessian

of −S(P) is positive definite, as long as the probabilities p0, p1, etc.
are strictly greater than zero:

−D2S(P) =
⎡
⎢⎣

3
p1

0 0

0 3
p2

0

0 0 1
p3

⎤
⎥⎦+ 1

p0

⎡
⎣9 9 3

9 9 3

3 3 1

⎤
⎦

Therefore −S(P) is convex on Cμ,ρ̂; since S(P̃) is constant,

DKL(P, P̃) is likewise convex on Cμ,ρ̂. As a consequence, if

DKL(P, P̃) has a local minimum, then it is unique and a global
minimum as well. Since DKL(P, P̃) ≥ 0 with equality if and only
if P = P̃, this minimum must be achieved occurs when P = P̃; the
maximum is likewise achieved on the boundary of the admissible
region Cμ,ρ̂.

A.2 A MEASURE OF HIGHER-ORDER INTERACTIONS: STRAIN
We define the strain,

γ = log

(
p3p3

1

p0p3
2

)
(19)

= log p3 − log p0 + 3 log p1 − 3 log p2

a potential measure of the importance of higher-order interac-
tions (Ohiorhenuan and Victor, 2010). By Equation (3), we can
see that γ = 0 precisely for a pairwise maximum entropy (PME)
distribution. We will show that as the distribution (p0, p1, p2, p3)

is moved away from the constraint surface while fixing lower-order
moments, the strain increases monotonically.

From the definition of lower-order moments,

μ = E[Xi] = p1 + 2p2 + p3

ρ̂ = E[XiXj] = p2 + p3

we can verify that in order to keep μ, ρ̂ constant, if p1 increases
by z (i.e., p1 → p1 + z), then we must also have p2 → p2 − z and
p3 → p3 + z. Then if each probability is strictly positive, then the
derivative

∂γ

∂z
= 1

p3 + z
+ 1

1 − p3 − 3p1 − 3p2 − z
+ 3

p1 + z
+ 3

p2 − z

is strictly positive as well. In particular, it is strictly positive at z = 0
and will remain positive until z reaches a value such that one of the
denominators reaches 0. Therefore γ increases monotonically for
z > 0 and decreases monotonically for z < 0.

A.3 AN ANALYTICAL EXPLANATION FOR UNIMODAL vs. BIMODAL
EFFECTS

We consider an analytical argument to support the numeri-
cal results that bimodal inputs generate larger deviations from
PME model fits than unimodal inputs. As a metric, we consider
DKL(P, P̃)—where P and P̃ are again the true and model distri-
butions, respectively—when we perturb an independent spiking
distribution by adding a common, global input of variance c. To
simplify notation, the small parameter in the calculation will be
denoted ε = √

c.
We now compute S(P) and S(P̃) (defined in an earlier

Appendix) by deriving a series expansion for each set of event
probabilities. We can compute the true distribution P using the
expressions derived in Equation (18); to recap, let the common
input Ic have probability density p(Ic), and the independent input
to each cell, x, have density ps(x). Let � be the threshold for gener-
ating a spike (i.e., a “1” response). For each cell, a spike is generated
if x + Ic > �, i.e., with probability

d(Ic) =
∫ ∞

�−Ic

ps(x)dx.
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Given Ic, this is conditionally independent for each cell. We can
therefore write our probabilities by integrating over Ic as follows:

p0 =
∫ ∞

−∞
p(Ic)(1 − d(Ic))

3 dIc

p1 =
∫ ∞

−∞
p(Ic)d(Ic)(1 − d(Ic))

2 dIc (20)

p2 =
∫ ∞

−∞
p(Ic)d(Ic)

2(1 − d(Ic)) dIc

p3 =
∫ ∞

−∞
p(Ic)d(Ic)

3 dIc

We develop a perturbation argument in the limit of very weak com-
mon input. That is, p(Ic) is close to a delta function centered at
Ic = 0. Take p(Ic) to be a scaled function

p(Ic) = 1

ε
f

(
Ic

ε

)
(21)

We place no constraints on f (x), other than that it must be
normalized (E[1] = 1) and that its moments must be finite
(so that E[Ic], E[I2

c ], and so forth will exist, where E[g(x)] ≡∫∞
−∞ g(x)f (x) dx).

For the moment, assume that the function f (x) has a single
maximum at x = 0. To evaluate the integrals above, we Taylor-
expand d(x) around x = 0. Anticipating a sixth-order term to
survive, we keep all terms up to this order. This gives, for
small x,

d(x) ≈ d(0) +
6∑

k = 1

akxk + O(x7)

where a1 = ps(�) (the other coefficients a2-a6 can be given sim-
ilarly in terms of the independent input distribution at �).
Substituting this into the expressions for p0, etc., above, with p(Ic)

given as in Equation (21), gives us each event as a series in ε; for
example,

p3 = d3
0 + (

3a1d2
0 E[x]) ε + (

(3a2
1d0 + 3a2d2

0) E[x2]) ε2 + . . . ,

where expectations are, again, with respect to the unscaled PDF
f (x). The entropy S(P) is now given by using these series expan-
sions in Equation (18).

We note that our derivation does not rely on the fact that the
distribution of common input is peaked at Ic = 0 in particular. For
example, we could have a common input centered around μ. The
common input distribution function would be of the form

p(Ic) = 1

ε
f

(
Ic − μ

ε

)

Changing ε regulates the variance, but doesn’t change the mean
or the peak (assuming, without loss of generality, that the peak
of f occurs at zero). The peak of p(Ic) now occurs at μ, and the

appropriate Taylor expansion of d(x) is

d(x) ≈ d(μ) +
6∑

k = 1

bk(x − μ)k + O(x7),

where the coefficients bk now depend on the local behavior of d
around μ. The expectations that appear in the expansion of p3,
and so forth, are now centered moments taken around μ; the cal-
culations are otherwise identical. In other words, the perturbation
expansion requires the variance of the common input to be small,
but not the mean.

For bimodal inputs, we consider a common input with a prob-
ability distribution of the following form:

p (Ic) = (
1 − ε2) 1

ε
f

(
Ic

ε

)
+ ε2 1

ε
f

(
Ic − 1

ε

)

so that most of the probability distribution is peaked at zero, but
there is a second peak of higher order (here taken at Ic = 1, with-
out loss of generality). Again, we approximate the integrals given in
Equation (20), and therefore the entropy S(P), by Taylor expanding
d(x);

d(x) ≈ d(0) +
6∑

k = 1

akxk + O(x7); (x ≈ 0)

≈ d(1) +
6∑

k = 1

bk (x − 1)k + O
(
(x − 1)7) ; (x ≈ 1)

around the two peaks 0 and 1, respectively. For each integral we
have the same contributions from the unimodal case, multiplied
by (1 − ε2), as well as the corresponding contributions from the
second peak multiplied by ε2 (these weightings are chosen so that
the common input has variance of order ε2, as in the unimodal
case). This makes clear at what order every term enters.

We now construct an expansion for the PME model P̃:

P̃ (x1, x2, x3) = 1

Z
exp (λ1 (x1 + x2 + x3)

+λ2 (x1x2 + x2x3 + x1x3))

We approach this problem by describing λ1 and λ2 as a series in ε.
We match coefficients by forcing the first and second moments of
P̃ to match those of P—as they must. Specifically, take

λ1 = λ̃ +
6∑

k=1

εkuk + O
(
ε7)

λ2 =
6∑

k = 1

εkvk + O
(
ε7)

where λ1 = λ̃, λ2 = 0 are the corresponding parameters from the
independent case. The events p̃0, p̃1, p̃2, and p̃3 can be written as
a series in ε. We then require that the mean and centered second
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moments of P̃ match those of P; that is

p1 + 2p2 + p3 = p̃1 + 2p̃2 + p̃3

p2 + p3 − (
p1 + 2p2 + p3

)2 = p̃2 + p̃3 − (
p̃1 + 2p̃2 + p̃3

)2
.

At each order k, this yields a system of two linear equations in uk

and vk; we solve, inductively, up to the desired order; we now have
P̃, and therefore S(P̃), as a series in ε.

Finally, we combine the two series to find that in the unimodal
case,

DKL
(
P, P̃

) = S
(
P̃
)− S(P)

= ε6

[
a6

1

(
2 E[x]3 − 3 E[x] E[x2] + E[x3])2

2 (1 − d0)
3 d3

0

]
(22)

+O
(
ε7)

If the first two odd moments of the distribution are zero

(something we can expect for “symmetric” distributions, such as a
Gaussian), then this sixth-order term is zero as well.

For the bimodal case

DKL
(
P, P̃

) = S
(
P̃
)− S(P)

= ε4

[
(d1 − d0)

6

2 (1 − d0)
3 d3

0

]
+ O

(
ε5)

This last term depends on the distance d1 − d0, in other words,
how much more likely the independent input is to push the cell
over threshold when common input is “ON”. We can also view this
as depending on the ratio d1−d0

1−d0
, which gives the fraction of previ-

ously non-spiking cells that now spike as a result of the common
input.

The main point here, of course, is that DKL(P, P̃) is of order ε4

rather than ε6. So, as the strength of a common binary vs. unimodal
input increases, spiking distributions depart from the PME more
rapidly.
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