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Abstract We develop new algorithms for target detection in multi-sensor environ-
ments. These methods are applied to study point vortex motion based on Lagrangian
tracer information. First we solve analytically the nonlinear filtering problem for the
special case of equal strength vortices. Recently developed methods, the particle fil-
ters that are based on importance sampling Monte Carlo simulations, are used for
the detection of vortices in the the general case. Unlike the well-known extended
Kalman filter, it is applicable to highly nonlinear systems with non-Gaussian uncer-
tainties.

1 Introduction

Nonlinear filtering methods are used to dynamically integrate the computational
and measurement aspects of real-time applications. The range of subjects in which
nonlinearity and noise play a significant role is enormous. In this paper, we are
interested in the development and application of prediction techniques to a specific
fluid mechanics problem — vortex-driven tracer dynamics. Because of low viscosity
vortices are long-lived structures. We study the conditional law of the vortices on
the basis of the tracer observations.

The main focus of filtering is to combine computational models with sensor data
to predict the dynamics of large-scale evolving systems. Filtering deals with re-
cursive estimation of a signal or state of a random dynamical system from noisy
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measurements. When the signal and the observation model is linear and Gaussian,
the filtering equation is linear as well and it is given by the well-known Kalman-
Bucy filter. Otherwise the filter has a more complicated nonlinear structure. The
signal that is represented by a Markov process cannot be accessed or observed di-
rectly and is to be “filtered” from the trajectory of the observation process which is
statistically related to the signal. Suppose we make a forecast about the behavior at
a future time of a complex system with some uncertainties (randomness) and there
is near-continuous data available from remote sensing instrumentation networks. As
new information becomes available through observations, it is natural to ask how to
best incorporate this new information into the estimation and prediction.

The optimal estimate is given by the conditional expectation and can be generated
by a recursive equation, called filter, driven by the observation process. Sensor data
usually contain noise, and mathematical models are limited in accuracy due to model
uncertainties. But, when used together, the resulting prediction of the state of large-
scale dynamical systems must be superior to using either models or data alone.

2 Modeling: Vortex-Driven Tracer Dynamics

To obtain the point-vortex model, one starts with the 2-D vorticity equations. If vis-
cous and external forces are neglected, the vorticity-transport equation correspond-
ing to the Euler equations is [9, 12]:

%‘;’Hll.v)w:(w.wu with V.0 =0, (1)

where the vorticity vector @ =V x u. These equations simplify for two-dimensional
flows in (x1,x) plane to
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where @ = @y, is the vorticity component normal to the (x1,x,) plane and v is the
stream function defined by

If  consists of isolated, well-separated vortices, then a reasonable approximation
is to consider the vortices as singularities or “point” vortices. In this case we express
the vorticity field as

o(x,7)=Y L5 (xi—x) with xj=x 3)
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where I # 0 is the circulation of vortex i. By inserting (3) in the Euler equations (1),
and using the divergence free constraint along with Biot-Savart law, one obtains
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Point vortex models that account for viscous effects also exist. Chorin [3] introduced
the first random point vortex method to simulate viscous incompressible flows.
Later Marchioro and Pulvirenti in [10] considered a continuous-time random vortex
method with Gaussian random walks replaced by independent Brownian motions
and proved a corresponding mean field type result. It was shown by Marchioro and
Pulvirenti [10] and Agullo and Verga [1] that a stochastic vortex dynamics model
approximates the evolution of vorticity with viscosity, in the same way in which the
deterministic vortex dynamics simulates the Euler equations. Vortex dynamics with
viscosity are governed by set of Langevin or stochastic differential equations:

I/ —xi|?
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where Ei(¢) = (€] (t),Ei(r)) are zero mean white noise processes and equations (5)
show that the velocity of each vortex is the sum of two terms, namely, the fluid
velocity at the vortex position and a diffusive (stochastic) perturbation proportional
to the fluid viscosity.

Lagrangian meters, such as ocean drifters and floats, provide a substantial part
of ocean data which are used to reconstruct mean large-scale currents, estimate the
rate of relative dispersion and give insight into the formation, movement and in-
teractions of coherent structures such as point vortices and eddies. Based on the
near-continuous data available from these instrumentation networks and to lower
computational costs, we would like to develop more practical techniques required
to analyze and interpret the data for dispersion modeling.

Trajectories of a Lagrangian tracer contain quantitative information about the
dynamics of the of the underlying flow [6]; a tracer is advected according to

. G i Xj . . .
Vi = JZ 4= ]t +v2vn, and y;=Yy" (6)
r —Xp

The coupling between the dynamical model of the vortices and the tracer allows us
to extract maximal information about the vortices by tracking the tracer. We can also
correct the model variables on the fly using data from the tracers.

The theory of nonlinear filtering forms the framework in which problems of data
assimilation for the nonlinear models will be treated. This can also be achieved using
the idea of reduced dimensional nonlinear filtering as explained in Park et al. [13],
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where dimensional reduction made it possible in principle to reduce the cost of such
filtering algorithms by a considerable factor.

3 Analytical Results:Continuous Signal and Discrete
Observations

The theoretical aspect of data assimilation will be accomplished by constructing
nonlinear filter equations based on continuous dynamics and discrete observation.
Consider, for example, a two-vortex problem. Its state variables are the positions
and velocities of the vortices. In the deterministic two-vortex problem, the distance
between the vortices r is a constant of motion and the pair of point vortices ro-
tate rigidly about the center of vorticity with a constant angular frequency. We use
(x1,x2) and (x3,x4) to represent the position coordinates of the first and second vor-
tices respectively. The dynamics of the signal process X; = {x},x?,x}, x*} is gov-
erned by

I 2 4 I 1_.3
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where r = \/(x! —x3)2 + (x2 —x*)2. For various practical reasons, the initial value
of the signal Xy = & is unknown, but the distribution of the initial condition x is given
by p(x). Now we introduce relative and “center of mass” coordinates as

1 3
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Then by It6 lemma
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the generator of the Markov process is given by
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1 f 2f
+ﬁ 2423 ( Zz&zl +Z18z2)+2v(7%( )“‘TZ%(Z)) (12)
for f € CZ(R4). The probability density is governed by the forward Kolmogorov
equation

o .
E:D?P (13)

where £ is the adjoint operator.

3.1 Continuous Signal : Two-vortices with Equal Strengths

In this section, we consider a special case of the signal process. Our signal pro-
cess is given by the two-vortex dynamics given in (8) with equal vortex strengths,
that is, k] = k» = 1/2. Then the generator (12) of the signal process is separable
into the “relative” and “center of mass” coordinates. The center of mass (x°,y*)
and relative distance (x”,y") evolve independently; if one solves the forward equa-
tion (13) with initial conditions such that p(z,f0) = pc(x“,y%,10)pr(x",y",t0), then
p(z,1) = pe(x©,y°,1)pr(x",y",t) for all time ¢ > fo. This suggests that the evolution
equation - here a PDE with four spatial dimensions - can be simplified by consider-
ing the evolution of (x°,y“) and (x",y") separately.

The evolution equation for the density of (x¢,y°) is simply the heat equation. So
we are left with the evolution of the density of (x”,y"), which in polar coordinates is
given by the generator

2 2
(grﬁf):f 18f+v(8f 1df 18f>.

T (LT 14
27 r2 90 + + (19
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We can rescale time and redefine v so that the constant 7/27 is removed from the
equations.

We use a Green’s function approach to find a solution from an arbitrary initial
condition. Let p(r, 0,¢) be a probability distribution evolving according to this law.
Then

21
p(r0.1)= [dss [ do P(r6,1:5,0)p(s.9.0) (1s)
0
where P(r,0,1;s,¢) is the solution to
opP 0
i 1
n =(Z"")'P (16)

with initial condition P(r,0,0;s,¢) = 6(r —s)3(0 — ¢). Without loss of generality
we can set ¢ = 0.

An exact solution is available for this initial value problem, due to Agullo and
Verga[1]; we state the final result here.
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where I,,,(z) is the modified Bessel function of the first kind with order m and argu-
ment z and [,112, = p*+ip/v, and the root should be chosen so that Re(i,) < 0. In
terms of the variables (x°,y°,x",y") our probability density is

P(x",y" x5, 1) = pr(x, ", 1) pe(x€,¥°,1) (13)
where
1 s 2 (B2
rr ) — —([F[*+[&17)/(4vt)
pr(x", Y1) Tavi / l/dédne X
[Z eiptan"(yr/x’)fiptan’](ﬂ/é)]ﬂp(|x2Uf‘) Pr(€7n70)a (19)
PEZ
ey, 1) = e (BP0 () (20)

vt

and ¥ = (x',y") and € = (€,7).
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Fig. 1 The left figure shows the superimposed distributions of (x',x?) and (x3,x*) at r = 1. The
right figure shows t = 5.

We use this formula to observe the evolution of a pair of vortices, initially at a
distance r = 1 and 0 = 0. We evaluate the modified Bessel functions using a freely
available code developed for Coulomb functions [14], of which the Bessel functions
are a subset. We show the distribution of the vortex positions at # = 1 and t = 5.
These can be compared to the histograms presented in Fig. 3 of [1].
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3.1.1 Nonseparable probability densities

In general, particularly after the incorporation of an observation, the probability
density will no longer be separable into radial and center coordinates as in (18).
In this general case, the forward Kolmogorv equation (13) must be solved by first
dividing the density into separable components with a spectral transform. We apply
the cosine tranform to P, that is

P(x",y",x,¥°,0) = ZﬁkJ (x",y",0) cos(kmx‘ /L) cos(Imy“ /L) 21
il

if x¢,y¢ are defined on (0,L) (if x° and y© are defined on another interval, such as
(—L/2,L/2), then the argument of the cosine functions would be shifted appropri-
ately).

We choose the cosine tranform as most natural to a probability distribution,
where we wish to have “no-flux” boundaries (ideally, we would resolve the prob-
ability distribution on a large enough grid that the probability would be negligible
near the boundaries).

For each pair k,I we compute I3k7l(x’, y",t) to be the solution of (16), with initial
condition f’kJ(x’, y",0). This solution is given explicitly by equation (19).

The final answer is given by applying the diffusion operator to the (x¢,y) coor-
dinates that is appropriate to the Fourier mode, and taking the inverse transform to
yield

P(x",y" x° )y 1) = Ze’v(kzﬂz)”z’/mﬁkﬁ, (x",y",t) cos(kmx® /L) cos(Imy“ /L). (22)
[

3.2 Discrete Observations: Tracer Advection

The observations are defined by the tracers and are taken at discrete time instants #;.
The model that we will use for y is the following:
i

yk:hi(Zb)’k*l)‘i‘V;{y Lk = .y Y;<:)’;k7 i=1...2n (23)

The sensor functions are given by first-order approximation to the tracers’ equations
of evolution (6); in the case of one tracer, we have

—e =0 =y/2) | =0k —0°+Y/2)
i (26, Yk-1) = Yy + At kol +—=l 24
W) T34
1 c r 1 c r
Veor — (€ =x7/2) oy — (€ +x7/2)
ha(zk,ye1) = yi_y +Ar | 21— +H== (25)
W) T34

where
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ra =007 — ()P =007 — (= /2,5 =y /2),

r3a = |01%) = (P =101y — (0 +x7/2, +y/2)]
give the distances of the tracer from the first and second vortices respectively.
Vk =V, is a R2-valued white Gaussian noise process independent of zi, that is
v ~N(0,R,,). Here z= (x!,x?), (x*,x*) are the signal variables, and (y',y?) are the
observation variables; corresponding formulas would be used for additional tracers.
Once again the observation o-field

F=0o{y sup 0<t;<t}={y; sup [=1,2,---,m;nT <t}
0<t<T 0<1<T

where 7 is the sampling intervals. .%} contains all the information available upto
time instant 7. To solve the filtering problem, for each ¢ > 0, we would like to find the
conditional pdf called the posterior density. Assume that the conditional probability
distribution of the state z;, given the observation up time ¢, denoted by

m(dz) =P (z € dz| 7))

has a conditional pdf p(z,t|.%}).

3.3 Nonlinear Filters

Hence, between observarions, the conditional pdf p(z,¢|.%;) is governed by the
Kolmogrov’s forward equation [7, 8], that is,

5P F) = LTt 7)), e <t <t (26)
with  lim p(z,1|.73) = p(z,ul- 7).
— g

where ((£)* is the adjoint of the operator given in (12). This implies that in the
discrete observation case, once we know the initial condition at t = #; given by
p(z, 1| ), we can compute the conditional pdf p(z,7|.7; ) using the explicit solu-
tion (18) at any time ¢ > ;. However, at time t = #;, |, we get more information from
the observation y |, which has to be used to update this conditional pdf att =1; ;.

The natural question is how to determine the initial conditional pdf p(z7tk|<%i)
at 1 = ;. given in (26), knowing the previous evolution p(z,#|.%, ) evaluated at
t = tx, and the new information y;. Then, by Bayes’ rule we have

p ()’k’{ZJk}ngzi,l)P (thk"%{,l)
p(zatk’yti) =
P(Yk|t%i,1)

27)
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The denominator in (27) is just the normalization of the numerator and can be cal-
culated from

p (yk!%{,l) = /p (yk|{z,tk},%{,l) p (L&!%{,l)dz (28)
The conditional pdf on the right-hand side of (27)
p (Z7[k|‘%l‘y,,1 )

is given by (18). Since {v;} is a white noise and z; is independent of v, the condi-
tional pdf

p (ﬂHZJkL%L),

from the observation y; can be simplified somewhat. The observation y; at time k
conditioned on z, is independent of all other measurements but y_.

p (yk\ {z.0c}, %ﬁ,l) = p (e[{z 1t y6—1) = P (k|2 yi—1) - (29)

Once p (yk|z,yk—1) is determined, we can get the desired map for the conditional
density at an instant of observation.

Consider the observation equation (23). Since v, is Gaussian and yy, is linear in
vy, for a given value of zy = zand yy,_; =y

8vk
P, (Vk|zk = 2,361 =) = po, (k — h(z,3:1)) ITWI = py, Ok —h(z,y,1))

Since v; ~ N(0,R) we can explicitly write

1 1 o }
p (%|z,y) (2n)”£|RkieXp{ 2(yk (zy1))" R (ke —h(z,y1)) ¢ (30)

We can summarise the results by combining the equations (18), (27), (29)
and (30) as follows. The conditional pdf p(z,7|.%;) satisfies the following partial
differential equation

0 X
Ep(z,tle%yﬁf*p(z,tle%y), te <t <tpil, 31

with the initial conditions at #; given by the updating equations
Pl 7)) = Cewi(z) p(z.1|. 77, ), (32)

where

Vi(z) = exp {—; Ok — (2, yi—1,1) T R (ke — h(z, i ,tk))} )
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Cy is a normalizing factor and 34‘[’]:7 , the information on Y up to the instant in time
right before #;. The equation (31) has an explicit solution given by (18). The first
equation (31) is the Kolmogorov’s forward equation which is used to compute pre-
dictions between measurements, while the second equation (32) is used to update
the information about the state via Bayes’ rule.

4 Numerical Results: Particle Filters

One of the recent, more efficient and most popular classes of filtering methods
is called particle methods. Importance sampling Monte Carlo offers powerful ap-
proaches to approximating Bayesian updating in sequential problems. Specific
classes of such approaches are known as particle filters. The particles in these meth-
ods refer to independent samples generated with the Monte Carlo method, and they
include sequential Monte Carlo, ensemble Kalman filter and interacting particle fil-
ters. The popularity of particle methods is attested by the recent surge of papers in
this area. Particle algorithms are techniques for implementing a recursive Bayesian
filter by MC simulations [5] (see for example, Arulampalam et al [2]). In all particle
methods, we evolve the particles between measurements by a set of random samples
with associated weights and update the ensemble using Bayes’ rule at the measure-
ment time based on these samples and weights. Particle methods are very flexible
and easy to implement; also they are ideally suited for a parallel computing archi-
tecture. This method has recently given rise to extensive mathematically rigorous
studies, see for instance [11, 4] for the nonlinear filtering problem.

The idea is based on the Importance Sampling technique, that is, we can calculate
an expected value

Elf(z)) = J F@)p(alya)da = [ £(a) FRAHEE, (o |y )dze (33)

by using a known and simple proposal distribution ¢(-). This can be further simpli-
fied to

B[f ()] = J f(26) 2% gzl yr)dz, where wy(z) = PLAELPE) - (34)

is defined as the filtering non-normalized weight at step k. Hence,

Eq[wi(zx) f N N w
E[f(a)] = BHS6 _ g iy (5) f(z)], where i(a) = g2 (35)
These procedures rely on the simulation of samples or ensembles of the unknown
quantities and the calculation of associated weights for the ensemble members.
Hence, using Monte-Carlo sampling from the distribution g(zx|y;.x) we can write

k() S). where Wk<zi>—m

=

E[f (zx)] ~ (36)

1
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In addition if our proposal distribution ¢(-) satisfies the Markov property, it can be
shown that Wy (z}c) satisfies a cursive relationship. The basic ideas of particle filters
are: 1) represent the required posterior density function by a set of random samples
with associated weights; 2) compute estimates based on these samples and weights.

In principle, armed with these algorithms, we should be able to handle a large
class of nonlinear filtering problems. The problem of this method is that for high di-
mensional systems, these stochastic algorithms are usually slow and computational
complexity grows too quickly with dimension. In extreme cases, after a sequence of
updates the particle system can collapse to a single point or to several particles with
so much internal correlation that summary statistics behave as if they are derived
from a substantially smaller sample. To compensate, large numbers of particles are
required in realistic problems. Hence, the method is not always implementable in
real time nonlinear applications when the state space is too large.
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Fig. 2 The left figure shows the mean value of estimated position of the vortices by tracking the
single tracer. The right figure shows the conditioned pdf of the position

4.1 Data Fusion

The results presented thus far are, in general, well understood in terms of single
sensor filtering theory. However, when there are multiple sensors, then the problem
of combining information from them arises. We consider some approaches generally
proposed in the literature and discuss some criticisms associated with them.

To begin with, we assume that M sensors are available and the observations from
the k™ are given by the vector y* € R™ ( i.e., the number of observations m is the
same for all sensors). What is now required is to compute the global posterior dis-
tribution p(z[y',y%,---,yM), given the information contributed by each sensor. We
shall assume that each sensor provides either a local posterior distribution p(z|y*),
or a likelihood function p(y*|z).

Since the information is received from different sensors, the natural question to
ask in tackling the problem of fusion, is how relevant and how reliable is the infor-
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Fig. 3 The left figure shows the vortex-tracer dynamics.The right figure shows that with two or
more tracers, the extraction results can be improved.

mation from each sensor. One of the ways to address this problem is by attaching a
weight to the information provided by each sensor.

On the other hand when each information source has common prior information,
i.e. information obtained from the same origin, the situation is better described by
the independent likelihood pool, which is derived as follows. According to Bayes’
theorem for the global posterior, we obtain

(37)

M) — p()}layza"'yM'Z)p(x) )

1 .2
Py Yy, Yy
< pyLy?, .- yM)

For a system of tracers it is reasonable to assume that the likelihoods from each
tracer p(y"|z),m = 1,2,---,M are independent since the only parameter they have
in common is the state x of the vortices., that is,

pO' M 2) = p(3 ) p(PL2) - pOM 2).

Thus, the Independent Likelihood Pool is defined by the following equation

p(ely' %,y = p() L p(y"]2). (38)

As may be seen from the above both the Independent Opinion Pool and the In-
dependent Likelihood Pool more accurately describe the situation in multi-sensor
systems where the conditional distribution of the observation can be shown to be
independent. However, in most cases in sensing the Independent Likelihood Pool
is the most appropriate way of combining information since the prior information
tends to be from the same origin. If there are dependencies between information
sources the Linear Opinion Pool should be used.
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