When are microcircuits well-modeled by pairwise maximum entropy methods?

Andrea K. Barreiro

Department of Applied Mathematics University of Washington

BIRS, October 2010

1

How we describe spiking activity

Graphic: Shlens, Rieke and Chichilnisky, 2008

How we describe spiking activity

Graphic: Shlens, Rieke and Chichilnisky, 2008

How we describe spiking activity

Graphic: Shlens, Rieke and Chichilnisky, 2008

 $x_j = \{0, 1\}$ $P(x_1, x_2, \cdots, x_N)$

Retinal ganglion cells (RGCs) do not fire independently

 $x_i = \{0, 1\}$ $P(x_1, x_2, \cdots, x_N) \neq P(x_1)P(x_2)\cdots P(x_N)$

Graphic: Shlens, Rieke and Chichilnisky, 2008

Retinal ganglion cells (RGCs) do not fire independently

 $x_i = \{0,1\}$ $P(x_1, x_2, \cdots, x_N) \neq P(x_1)P(x_2)\cdots P(x_N)$

Graphic: Shlens, Rieke and Chichilnisky, 2008

Time to observe event under independent assumption: 100 days

Actual time to observe event: 1 minute

How we describe spiking activity... with a *pairwise* model

How we describe spiking activity... with a *pairwise* model

Suppose we have a distribution, $P(x_1,...,x_n)$, with moments

 $E[x_i] = \mu_i \qquad \text{(firing rate)}$ $E[x_i x_j] = \sigma_{ij} \qquad \text{(covariance)}$

Find, among distributions consistent with these moments, the one with maximal entropy $H(P) = -\sum_{\{\vec{x} \in S\}} P(\vec{x}) \log P(\vec{x})$

Then we know

$$P_2 = \frac{1}{Z} \exp\left(\sum_i \lambda_i x_i + \sum_{i,j} \lambda_{ij} x_i x_j\right)$$

(equivalent to lsing model)

How to quantify higher order correlations?

1) Given P, find pairwise maximum entropy fit P_2

2) Compute distance between P, P_2 using Kullback-Leibler divergence $D_{KL}(P, P_2)$

$$D_{KL}(P,P_2) = H_2 - H_N$$

 H_2 = entropy of P_2 H_N = entropy of P

Retinal ganglion cells (RGCs) are well modeled with pairwise maximum entropy model (PME)

$$x_{j} = \{0,1\}$$

$$P(x_{1}, x_{2}, \dots, x_{N}) \approx \frac{1}{Z} \exp\left(\sum_{i} \lambda_{i} x_{i} + \sum_{i,j} \lambda_{ij} x_{i} x_{j}\right)$$

11

Graphic: Shlens, Rieke and Chichilnisky, 2008

Shlens et al. 2006, Shlens et al. 2009, Schneidman et al. 2006; <u>D_{KL} (bits per neuron)</u> 1.62 x 10⁻⁴ 1.30-1.74 x 10⁻⁴ 0.3-3 x 10⁻⁴

(contrast cortex (Montani et al. 2009, Martingnon 2000, Oizumi et al. 2010, Ohiorhenuan et al. 2010, Tang et al. 2008, Spacek and Swindale (unpublished)))

Retinal ganglion cells share common input

Graphic: Rieke lab

...input is shared among > 2 cells, so where are the higher order correlations?

Which features of RGC pathway to keep?

Idea: quantify higher-order correlations systematically in RGC-like circuit

Simplification 1 – triplet input only

Simplification 2 – "threshold" neuron, 0 / 1 spikes

Testing pairwise methods in feed-forward circuits

 $I_{1,2,3} \sim N(0,(1-c)\sigma^2)$

- *p* observed distribution
- p_2 pairwise fit

<u>There is a triplet common input:</u> <u>so there should be third order</u> <u>correlations, right?</u>

How to quantify higher order correlations?

1) Given P, find pairwise maximum entropy fit P_2

2) Compute distance between P, P_2 using Kullback-Leibler divergence $D_{KL}(P, P_2)$

$$D_{KL}(P,P_2) = H_2 - H_N$$

 H_2 = entropy of P_2 H_N = entropy of P

Our setup with gaussian inputs is wellapproximated by pairwise fit

(this is the dichotomized gaussian: e.g. Macke et al. 2009)

We see this with uniform inputs as well...

 $H_2-H_N < .018$

"Binary" model: moderate departure from max-ent

- Consider symmetric distributions on [0,1]³ -That is, stats of cell 1 = stats of cell 2
- Max-ent $\Rightarrow p(x_1, x_2, x_3) = \frac{1}{Z} \exp(\lambda_1(x_1 + x_2 + x_3) + \lambda_2(x_1 x_2 + x_2 x_3 + x_1 x_3))$

 Consider symmetric distributions on [0,1]³ -That is, stats of cell 1 = stats of cell 2

• Max-ent

$$\Rightarrow p(x_1, x_2, x_3) = \frac{1}{Z} \exp(\lambda_1(x_1 + x_2 + x_3) + \lambda_2(x_1 x_2 + x_2 x_3 + x_1 x_3))$$

$$p_{3} = p(1,1,1)$$

$$p_{2} = p(1,1,0) \implies \left(\frac{p_{3}}{p_{0}}\right) = \left(\frac{p_{2}}{p_{1}}\right)^{3}$$

$$p_{1} = p(1,0,0)$$

$$p_{0} = p(0,0,0)$$

• Consider symmetric distributions on [0,1]³ -That is, stats of cell 1 = stats of cell 2

• Max-ent

$$\Rightarrow p(x_1, x_2, x_3) = \frac{1}{Z} \exp(\lambda_1(x_1 + x_2 + x_3) + \lambda_2(x_1 x_2 + x_2 x_3 + x_1 x_3))$$

$$p_{3} = p(1,1,1)$$

$$p_{2} = p(1,1,0) \implies \left(\frac{p_{3}}{p_{0}}\right) = \left(\frac{p_{2}}{p_{1}}\right)^{3}$$

$$p_{1} = p(1,0,0)$$

$$p_{0} = p(0,0,0)$$

$$(p_1, p_2, p_3) \rightarrow (f_p, f_{1m}, f_{1p})$$

simplifies our constraint...

 Consider symmetric distributions on [0,1]³ -That is, stats of cell 1 = stats of cell 2

• Max-ent

$$\Rightarrow p(x_1, x_2, x_3) = \frac{1}{Z} \exp(\lambda_1(x_1 + x_2 + x_3) + \lambda_2(x_1 x_2 + x_2 x_3 + x_1 x_3))$$

$$p_{3} = p(1,1,1)$$

$$p_{2} = p(1,1,0) \Rightarrow \left(\frac{p_{3}}{p_{0}}\right) = \left(\frac{p_{2}}{p_{1}}\right)^{3}$$

$$p_{1} = p(1,0,0)$$

$$p_{0} = p(0,0,0)$$

$$p_{0} = p(0,0,0)$$

$$p_{1} = \frac{f_{1m}}{1 - 3f_{1m}} + 3f_{1m}^{2}$$

$$p_{1} = \frac{p_{1}(1,0,0)}{1 - 3f_{1m}}$$

Constraint surface in new coordinates

Distance from surface gives info about $D_{KL}(p, p_2)$

For small common inputs, bimodal > unimodal

Start with cells firing independently...

Perturb with *unimodal* common input (variance c):

$$p(x) = \frac{1}{\sqrt{c}} f\left(\frac{x-\mu}{\sqrt{c}}\right) \rightarrow D_{KL}(P,P_2) \approx c^3 C_f^U$$

in special cases

Perturb with *bimodal* common input (variance c):

$$p(x) = \frac{1-c}{\sqrt{c}} f\left(\frac{x}{\sqrt{c}}\right) + c f\left(\frac{x-\mu}{\sqrt{c}}\right) \rightarrow D_{KL}(P,P_2) \approx c^2 C_f^B$$

Patterns persist for larger N ...

Pairwise inputs

Global vs. pairwise for moderate N, all input types

1. Global generates more

than local

Realistic "RGC-like" network

• Construct a detailed model of the response of a primate ON parasol cell: constrain with intracellular recordings

• With correlated noise, and constant light stimuli, responses very well fit by pairwise maximum entropy model

Answer for full-field flicker: no!

 $D_{KL}(P, P_2)$ under 0.007 (0.002333 per cell) for all conditions

What about a spatially variable stimulus?

$$I_{j} = G(f * s_{j} + n_{j})$$
$$s_{j} = c_{j}(t), \forall j$$
$$c_{j}(t) = \int V(\mathbf{x}, t) R_{j}(\mathbf{x}) d\mathbf{x}$$

Feedforward circuits generate limited higher-order interactions

Deterministic, strong, excitatory synapses: 000 -> 000 100 -> 100 110 -> 111 111 -> 111

"Strong synapses": 110 -> 111

Idealized excitatory synapses: 000 -> 000 100 -> 100 110 -> 111 111 -> 111

Excitatory synapses that interact with membrane potential?

Prediction step...

$$y_j = H\left(I_j + I_c - \theta\right)$$

Decision step:

$$x_{j} = H\left(I_{j} + I_{c} - \theta + q\left(\sum_{k \neq j} y_{k}\right)\right)$$

Excitatory synapses that interact with membrane potential?

Are higher order correlations good for coding??

Are higher order correlations good for coding??

Thank you!

Collaborators: Eric Shea-Brown (UW) Fred Rieke (UW) Julijana Gjorgjieva (Cambridge) Evan Thilo (UW)

Funding: Burroughs-Wellcome (ESB) NSF DMS (ESB) Howard Hughes Medical Institute (FMR)

