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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because

398 Sensory systems

Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because
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Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because

398 Sensory systems

Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.

Current Opinion in Neurobiology 2008, 18:396–402 www.sciencedirect.com

Graphic:
Schneidman et al. 2006

1001000010 

x j = 0,1{ }
P(x1, x2 ,, xN )



Retinal ganglion cells (RGCs) do not fire independently

5

complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
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Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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How we describe spiking activity...
with a pairwise model
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silent. Moreover, within the clusters corresponding to different total
numbers of spikes, the predictions and observations are strongly
anti-correlated.
We conclude that weak correlations among pairs of neurons

coexist with strong correlations in the states of the population as a
whole. One possible explanation is that there are specific multi-
neuron correlations, whether driven by the stimulus or intrinsic to
the network, which simply are not measured by looking at pairs
of cells. Searching for such higher-order effects presents many
challenges22–24. Another scenario is that small correlations among
very many pairs could add up to a strong effect on the network as a
whole. If correct, this would be an enormous simplification in our
description of the network dynamics.

Minimal consequences of pairwise correlations
To describe the network as a whole, we need to write down a

probability distribution for the 2N binary words corresponding to
patterns of spiking and silence in the population. The pairwise
correlations tell us something about this distribution, but there are
an infinite number of models that are consistent with a given set of
pairwise correlations. The difficulty thus is to find a distribution
that is consistent only with the measured correlations, and does
not implicitly assume the existence of unmeasured higher-order
interactions. As the entropy of a distribution measures the random-
ness or lack of interaction among different variables25, this minimally
structured distribution that we are looking for is the maximum
entropy distribution26 consistent with the measured properties of
individual cells and cell pairs27.
We recall that maximum entropy models have a close connection

to statistical mechanics: physical systems in thermal equilibrium are
described by the Boltzmann distribution, which has the maximum
possible entropy given the mean energy of the system26,28. Thus, any
maximum entropy probability distribution defines an energy func-
tion for the system we are studying, and we will see that the energy
function relevant for our problem is an Ising model. Ising models
have been discussed extensively as models for neural networks29,30,
but in these discussions the model arose from specific hypotheses

Figure 1 | Weak pairwise cross-correlations and the failure of the
independent approximation. a, A segment of the simultaneous responses of
40 retinal ganglion cells in the salamander to a natural movie clip. Each dot
represents the time of an action potential. b, Discretization of population
spike trains into a binary pattern is shown for the green boxed area in a.
Every string (bottom panel) describes the activity pattern of the cells at a
given time point. For clarity, 10 out of 40 cells are shown. c, Example cross-
correlogram between two neurons with strong correlations; the average
firing rate of one cell is plotted relative to the time at which the other cell
spikes. Inset shows the same cross-correlogram on an expanded time scale;
x-axis, time (ms); y-axis, spike rate (s21). d, Histogram of correlation
coefficients for all pairs of 40 cells from a. e, Probability distribution of
synchronous spiking events in the 40 cell population in response to a long
natural movie (red) approximates an exponential (dashed red). The
distribution of synchronous events for the same 40 cells after shuffling each
cell’s spike train to eliminate all correlations (blue), compared to the Poisson
distribution (dashed light blue). f, The rate of occurrence of each pattern
predicted if all cells are independent is plotted against the measured rate.
Each dot stands for one of the 210 ¼ 1,024 possible binary activity patterns
for 10 cells. Black line shows equality. Two examples of extreme mis-
estimation of the actual pattern rate by the independent model are
highlighted (see the text).

Figure 2 | A maximum entropy model including all pairwise interactions
gives an excellent approximation of the full network correlation
structure. a, Using the same group of 10 cells from Fig. 1, the rate of
occurrence of each firing pattern predicted from the maximum entropy
model P2 that takes into account all pairwise correlations is plotted against
the measured rate (red dots). The rates of commonly occurring patterns are
predicted with better than 10% accuracy, and scatter between predictions
and observations is confined largely to rare events for which the
measurement of rates is itself uncertain. For comparison, the independent
model P1 is also plotted (from Fig. 1f; grey dots). Black line shows equality.
b, Histogram of Jensen–Shannon divergences (see Methods) between the
actual probability distribution of activity patterns in 10-cell groups and the
models P1 (grey) and P2 (red); data from 250 groups. c, Fraction of full
network correlation in 10-cell groups that is captured by the maximum
entropy model of second order, I (2)/IN, plotted as a function of the full
network correlation, measured by the multi-information IN (red dots). The
multi-information values are multiplied by 1/Dt to give bin-independent
units. Every dot stands for one group of 10 cells. The 10-cell group featured
in a is shown as a light blue dot. For the same sets of 10 cells, the fraction of
information of full network correlation that is captured by the conditional
independence model, Icond–indep/IN, is shown in black (see the text).
d, Average values of I (2)/IN from 250 groups of 10 cells. Results are shown for
different movies (see Methods), for different species (see Methods), and for
cultured cortical networks; error bars show standard errors of the mean.
Similar results are obtained on changing N and Dt; see Supplementary
Information.
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• # of parameters needed to 
specify pairwise information:
i.e. firing rates and cross-
correlations:       ~N2  (1002 ~ 104)
(vs. 2N (1030))

0



How to specify pairwise model: Maximum entropy

Suppose we have a distribution,                   , with moments 

   

Find, among distributions consistent with these moments,  
the one with maximal entropy

Then we know

P(x1,..., xn )

� 

E xi[ ] = µi

E xix j[ ] = σ ij

P2 =
1
Z
exp λi xi

i
∑ + λij xix j
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∑

⎛

⎝⎜
⎞

⎠⎟

(firing rate)

(covariance)
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H P( ) = − P x( ) logP x( )

{ x∈S}
∑

(equivalent to 
Ising model)



H2-HN=0.0013 H2-HN=1

000   000   100   110   111 100   110   111 

How to quantify higher order correlations?

H2-HN=0.0908

1) Given P, find pairwise maximum entropy fit P2

2) Compute distance between P, P2  using Kullback-Leibler 
divergence 

H2  = entropy of P2
HN  = entropy of P 

10

DKL (P,P2 ) = H2 − HN

DKL (P,P2 )
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complex patterns of activity in the population [38,23].
However, recent work has shown that synchronized firing
in larger groups is largely accounted for by pairwise
interactions between adjacent cells, and thus does not
imply complex or long-range interactions.

To illustrate the approach, consider three cells (A, B, and
C), each of which fires a spike (e.g. A = 1) or does not (e.g.
A = 0). Suppose that P(A,B, C) represents the frequency of
all eight possible patterns of firing in these three cells. The
simplest model is that any given pattern of firing, for
example all three cells firing simultaneously, occurs with

a frequency predicted from statistical independence, for
example P(A = 1,B = 1, C = 1) = P(A = 1)P(B = 1)P(C = 1).
This model fails. This is not surprising because it fails to
describe activity in just two cells, for example P(A = 1,
B = 1) 6¼ P(A = 1)P(B = 1) (see Figure 1).

Given that the independent model fails, the next sim-
plest model is a pairwise model, in which firing patterns
in all pairs of cells, that is P(A, B), P(A, C), and P(B, C),
are sufficient to predict the full pattern of activity in all
three cells, P(A, B, C). However, as stated, the pairwise
model is mathematically underconstrained, because

398 Sensory systems

Figure 2

Multi-neuron firing patterns in primate retinal ganglion cells [25"]. (a) and (c) The frequency of all simultaneous firing patterns was measured in the
presence of steady, spatially uniform illumination (10 ms time bins). In a group of 7 cells, there are 27 = 128 possible firing patterns, ranging from no
cells firing (0000000) to all cells firing (1111111). The observed frequency of each firing pattern was compared to predictions from statistical
independence (black points). Firing patterns with multiple synchronized spikes occurred far more often than expected by chance (below dashed line of
equality) indicating significant multi-neuron synchronized firing. A statistical model that accounts for synchrony between pairs of adjacent neurons
successfully predicted all multi-neuron firing patterns (red points). (b) and (d) A visualization of synchronized firing at select moments in time (cells firing
represented as black). These plots indicate that synchronized firing can encompass well over seven cells in contiguous regions. It is unknown whether
synchrony between adjacent neurons can account for these large patterns of activity.

Current Opinion in Neurobiology 2008, 18:396–402 www.sciencedirect.com

Graphic:
Shlens, Rieke and Chichilnisky, 2008
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Retinal ganglion cells (RGCs) are well modeled with 
pairwise maximum entropy model (PME)

Shlens et al. 2006,
Shlens et al. 2009, 
Schneidman et al. 2006;
(contrast cortex (Montani et al. 2009, Martingnon 2000,  
Oizumi et al. 2010, Ohiorhenuan et al. 2010, Tang et al. 2008,
Spacek and Swindale (unpublished)) )

DKL (bits per neuron)
1.62 x 10-4

1.30-1.74 x 10-4

0.3-3 x 10-4 



…input is shared among > 2 cells, 
so where are the higher order correlations?

Retinal ganglion cells share common input 
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FIG. 1: (left) Idealized representation of retinal circuitry, containing four key mechanisms of signal processing
in the retina: convergent inputs from multiple photoreceptors into single RGCs, divergence of photoreceptor
output to contact multiple downstream cells, sources of synaptic and cell membrane-based nonlinearities,
and lateral coupling. (right) Retinal circuits conveying rod signals (white components) and cone signals
(black components) to RGCs; components participating in both circuits appear in grey.

Fig. 1 provides a generalized picture of the flow of signals across the retina. Signals in the
photoreceptor array are simulated by first temporally filtering the light inputs and then adding
noise. Photoreceptor signals are combined, potentially nonlinearly, to produce responses of excita-
tory and inhibitory interneurons. The outputs of excitatory and inhibitory circuits are integrated,
again potentially nonlinearly, to provide the inputs to the RGC layer. Finally, these inputs are
converted the spike outputs of the RGCs.

Essential computational element: single nonlinear-linear stage: Three essential interac-
tions govern the behavior of the circuit of Fig. 1: (1) convergence involving linear and nonlinear
steps (e.g. between photoreceptors and excitatory interneurons); (2) feedback interactions, poten-
tially nonlinear, between inhibitory and excitatory circuits (dashed lines); and (3) spike generation
in RGCs. We begin by assuming that feedback from inhibitory to excitatory circuits can be in-
corporated into the linear and nonlinear steps describing the excitatory input to the RGC layer.
With this assumption the entire circuit becomes effectively feedforward. As needed we will relax
this assumption and incorporate a dynamic model of feedback inhibition.

Each stage of convergence (e.g. photoreceptors → interneurons → RGCs) consists of nonlinear
and linear steps describing how the inputs i are mapped onto the outputs o:

o(x, t) = w(x, t) ∗ f [i(x, t)]. (1)

This stage is fully specified by the linear spatiotemporal filter w and the static nonlinearity f . This
differs from the linear-nonlinear approach that has dominated computational studies in retina, as
the nonlinearity in Eq. 3 operates prior to integration over space and time. Work on Y cells in cat
provides a specific example of such nonlinear integration [26, 34]. added Y cell

stuff here
Spike generation is not well described by Eq. 3 because of its history dependence. Instead we

will use a generalized integrate-and-fire model that incorporates a feedback term and still permits
efficient parameter estimation [55, 56]. This model will take as input a RGC’s excitatory and
inhibitory synaptic conductances and output a predicted spike train. Thus a given retinal circuit
will be described by a sequence of nonlinear-linear terms followed by a model for spike generation.



Which features of RGC pathway to keep?
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output to contact multiple downstream cells, sources of synaptic and cell membrane-based nonlinearities,
and lateral coupling. (right) Retinal circuits conveying rod signals (white components) and cone signals
(black components) to RGCs; components participating in both circuits appear in grey.

Fig. 1 provides a generalized picture of the flow of signals across the retina. Signals in the
photoreceptor array are simulated by first temporally filtering the light inputs and then adding
noise. Photoreceptor signals are combined, potentially nonlinearly, to produce responses of excita-
tory and inhibitory interneurons. The outputs of excitatory and inhibitory circuits are integrated,
again potentially nonlinearly, to provide the inputs to the RGC layer. Finally, these inputs are
converted the spike outputs of the RGCs.

Essential computational element: single nonlinear-linear stage: Three essential interac-
tions govern the behavior of the circuit of Fig. 1: (1) convergence involving linear and nonlinear
steps (e.g. between photoreceptors and excitatory interneurons); (2) feedback interactions, poten-
tially nonlinear, between inhibitory and excitatory circuits (dashed lines); and (3) spike generation
in RGCs. We begin by assuming that feedback from inhibitory to excitatory circuits can be in-
corporated into the linear and nonlinear steps describing the excitatory input to the RGC layer.
With this assumption the entire circuit becomes effectively feedforward. As needed we will relax
this assumption and incorporate a dynamic model of feedback inhibition.

Each stage of convergence (e.g. photoreceptors → interneurons → RGCs) consists of nonlinear
and linear steps describing how the inputs i are mapped onto the outputs o:

o(x, t) = w(x, t) ∗ f [i(x, t)]. (1)

This stage is fully specified by the linear spatiotemporal filter w and the static nonlinearity f . This
differs from the linear-nonlinear approach that has dominated computational studies in retina, as
the nonlinearity in Eq. 3 operates prior to integration over space and time. Work on Y cells in cat
provides a specific example of such nonlinear integration [26, 34]. added Y cell

stuff here
Spike generation is not well described by Eq. 3 because of its history dependence. Instead we

will use a generalized integrate-and-fire model that incorporates a feedback term and still permits
efficient parameter estimation [55, 56]. This model will take as input a RGC’s excitatory and
inhibitory synaptic conductances and output a predicted spike train. Thus a given retinal circuit
will be described by a sequence of nonlinear-linear terms followed by a model for spike generation.
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FIG. 3: Key retinal motifs: (a) Nonlinear convergence motif, (b) reciprocal coupling motif, (c) common
input motif, (d) mixed motif (e) multiple-input motif.

Noise in RGC responses is also often far from from independent [46, 72]. How do such noise cor-
relations impact coding? How does this depend on the presence or absence of reciprocal coupling
among RGCs, e.g. in ON vs. OFF parasol pathways? added Y cell

stuff here

Several common mechanistic motifs are central to understanding these computational issues:
Fig. 3a illustrates a nonlinear convergence motif. This motif is critical to the operation of

the rod bipolar pathway. Nonlinear convergence is also prominent in the cone circuitry, where it
may produce sensitivity to spatial structure not captured by classical center-surround receptive
field models [26, 34]. We will focus particularly this motif within ON and OFF sustained (OFFs)
alpha-like circuits in mouse (Aim 1).

Figs. 3b and c illustrate two motifs that contribute to correlated activity among RGCs. Thus
nearby RGCs can receive shared synaptic input (Fig. 3b) and/or can be coupled reciprocally
(Fig. 3c, d). The relative contribution of these mechanisms to correlated activity, and the resulting
functional implications, are not clear. This issue is exemplified by a comparison of correlated
activity in the ON and OFF parasol circuits (Aim 2).

Fig. 3e illustrates the multiple-input motif, which we will use to explore the relation between
network architecture and output statistics. Here, common input (Ic) can potentially create high-
order correlations (third order in this case) among the outputs. This motif is the starting point
for our investigation of the conditions in which retinal pathways are dominated by second-order
correlations and the conditions under which high-order interactions emerge (Aim 3).

Aim 1: Nonlinear convergence, extracted information and stimulus features in single RGCs

Individual RGCs are often classified by their sensitivity to distinct stimulus features [17, 30]. What
circuit mechanisms produce this selectivity? The nonlinear convergence motif (Fig. 3a) is prominent
in many retinal circuits, where it is likely to play a central role in feature selectivity. We will focus
on the impact of this motif on the rod bipolar pathway and the cone circuits controlling responses
of ON and OFFs alpha-like RGCs, due to the experimental accessibility of these pathways. We
begin with what is arguably the most tractable setting among all retinal circuits.

altered above
re
nonlinearities
and feature
selectivity per
your earlier
concern

Nonlinear convergence near absolute visual threshold in the rod bipolar circuit: At
low light levels the stimulus “feature” extracted by the rod bipolar pathway is clear — it is the
signals produced in the sparse collection of rods that absorb photons. Under these conditions, we
can focus on the consequences of nonlinear convergence for information coding.

Each of the stages of convergence in the rod bipolar pathway threatens to inextricably mix
sparse single photon responses with noise; our focus is on how this is avoided — specifically we will
test the hypothesis that nonlinear integration of rod-mediated signals protects signals from noise
at each stage of convergence. While there is experimental evidence for such nonlinear convergence
between rods and rod bipolar cells [5, 31, 60], we do not have a general theoretical understanding

6

(a)

f2f2

(b) (c) (d) (e)

Ic

I1 I2 I3

FIG. 3: Key retinal motifs: (a) Nonlinear convergence motif, (b) reciprocal coupling motif, (c) common
input motif, (d) mixed motif (e) multiple-input motif.

Noise in RGC responses is also often far from from independent [46, 72]. How do such noise cor-
relations impact coding? How does this depend on the presence or absence of reciprocal coupling
among RGCs, e.g. in ON vs. OFF parasol pathways? added Y cell

stuff here

Several common mechanistic motifs are central to understanding these computational issues:
Fig. 3a illustrates a nonlinear convergence motif. This motif is critical to the operation of

the rod bipolar pathway. Nonlinear convergence is also prominent in the cone circuitry, where it
may produce sensitivity to spatial structure not captured by classical center-surround receptive
field models [26, 34]. We will focus particularly this motif within ON and OFF sustained (OFFs)
alpha-like circuits in mouse (Aim 1).

Figs. 3b and c illustrate two motifs that contribute to correlated activity among RGCs. Thus
nearby RGCs can receive shared synaptic input (Fig. 3b) and/or can be coupled reciprocally
(Fig. 3c, d). The relative contribution of these mechanisms to correlated activity, and the resulting
functional implications, are not clear. This issue is exemplified by a comparison of correlated
activity in the ON and OFF parasol circuits (Aim 2).

Fig. 3e illustrates the multiple-input motif, which we will use to explore the relation between
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order correlations (third order in this case) among the outputs. This motif is the starting point
for our investigation of the conditions in which retinal pathways are dominated by second-order
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Idea: quantify higher-order correlations 
systematically in RGC-like circuit
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common input



Simplification 2 – “threshold” neuron, 0 / 1 spikes
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Simplification 1 – triplet input only



Testing pairwise methods in feed-forward 
circuits

There is a triplet common input: 
so there should be third order 

correlations, right?

� 

Ic ~ N(0,cσ
2)

� 

I1,2,3 ~ N(0,(1− c)σ
2)

- observed distribution

- pairwise fit

� 

p

� 

p2
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How to quantify higher order correlations?

H2-HN=0.0908

1) Given P, find pairwise maximum entropy fit P2

2) Compute distance between P, P2  using Kullback-Leibler 
divergence 

H2  = entropy of P2
HN  = entropy of P 

17

DKL (P,P2 ) = H2 − HN

DKL (P,P2 )
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Our setup with gaussian inputs is well-
approximated by pairwise fit

H2-HN < .0038
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c

σ

(this is the dichotomized gaussian:
e.g. Macke et al. 2009)
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We see this with uniform inputs as well…
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H2-HN < .018



“Binary” model: moderate departure from max-ent

p

s
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0 < S2-SN < 0.1
(25 times larger than in unimodal 
case)
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How can we interpret these results?
• Consider symmetric distributions on [0,1]3 - 

That is, stats of cell 1 = stats of cell 2 

• Max-ent 
 

� 

⇒ p(x1,x2,x3) = 1
Z
exp λ1(x1 + x2 + x3) + λ2(x1x2 + x2x3 + x1x3)( )
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a coordinate 
change 

simplifies our 
constraint...

(p1, p2 , p3)→ ( fp , f1m , f1p )
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⇒ f1p =
f1m
3

1− 3 f1m + 3 f1m
2

a coordinate 
change 

simplifies our 
constraint...

(p1, p2 , p3)→ ( fp , f1m , f1p )



Constraint surface in new coordinates
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Distance from surface gives info about DKL (p, p2 )

27



Gaussian Uniform

Bimodal

28

γ < 0

Skewed



• Start with cells firing independently...

• Perturb with unimodal common input (variance c):

• Perturb with bimodal common input (variance c):

p(x) = 1
c
f x − µ

c
⎛
⎝⎜

⎞
⎠⎟

→ DKL P,P2( ) ≈ c3Cf
U

For small common inputs, bimodal > unimodal
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p(x) = 1− c
c
f x

c
⎛
⎝⎜

⎞
⎠⎟
+ c f x − µ

c
⎛
⎝⎜

⎞
⎠⎟

→ DKL P,P2( ) ≈ c2Cf
B

in special cases,
c3       c4



Patterns persist for larger N …
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Pairwise inputs
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Global vs. pairwise for moderate N, all input types
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Global bimodal

Local bimodal

}
}

Global unimodal

Local unimodal

1. Global generates more 
than local
2. Bimodal generates 
more than unimodal...

3. But for all 
parameters, level is 
far below 
theoretical 
maximum (1/3)

max DKL (P,P2 )( ) / N



Realistic “RGC-like” network

• Construct a detailed model of the response of a primate ON 
parasol cell: constrain with intracellular recordings
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f

G

dV
dt

spike generator

} processing of 
stimuli by 

upstream circuitry

s1 s2 s3n1 n2 n3



Can any light stimuli bring out higher order statistics in 
this circuit, and if so, what are the required 
spatiotemporal statistics?



• With correlated noise, and constant light stimuli, responses very 
well fit by pairwise maximum entropy model

I j = G( f * s j + nj )

Cov ni ,nj( ) ≈ 0.3

1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
S2−SN = 5.43751e−08, (S1−S2)/(S1−SN) = 0.99997
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s j = 0,∀j



Can any light stimuli bring out higher order statistics in 
this circuit, and if so, what are the required 
spatiotemporal statistics?

ex: full-field flicker

36

I j = G( f * s j + nj )
s j = c(t),∀j



Can any light stimuli bring out higher order statistics in 
this circuit, and if so, what are the required 
spatiotemporal statistics?

ex: full-field flicker

37

I j = G( f * s j + nj )
s j = c(t),∀j
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Can any light stimuli bring out higher order statistics in 
this circuit, and if so, what are the required 
spatiotemporal statistics?

ex: full-field flicker
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I j = G( f * s j + nj )
s j = c(t),∀j
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Answer for full-field flicker: no!
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Full-field stimulus: Excitatory 
conductances 

(marginal)
Model output

  DKL (P,P2) under 0.007 (0.002333 per cell) for all conditions



What about a spatially variable stimulus?
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remains under 
0.0045 (0.0015 
per cell) for all 
conditions

  DKL (P,P2)

200 150 100 50 0 50 100 150 200 250
200

150

100

50

0

50

100

150

200

Retinal circuitry produces nearly pairwise interactions

I j = G( f * s j + nj )
s j = cj (t),∀j

cj (t) = V (x,t)∫ Rj (x)dx



Feedforward circuits generate limited 
higher-order interactions
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What if I add recurrence to this circuit?
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What if I add recurrence to this circuit?

43

“Strong synapses”:
  110 -> 111

Deterministic, strong, 
excitatory synapses:

000 -> 000
100 -> 100
110 -> 111
111 -> 111



What if I add recurrence to this circuit?
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Idealized excitatory 
synapses:
000 -> 000
100 -> 100
110 -> 111
111 -> 111

p3
p0

=
p2
p1

⎛
⎝⎜

⎞
⎠⎟

3



What if I add recurrence to this circuit?
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max(DKL)            = 0.0037 = 0.45

Deterministic, strong, 
excitatory synapses:

000 -> 000
100 -> 100
110 -> 111
111 -> 111



Excitatory synapses that interact with membrane 
potential?
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Prediction step...

Decision step:

x j = H I j + Ic −θ + q yk
k≠ j
∑

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

yj = H I j + Ic −θ( )



Excitatory synapses that interact with membrane 
potential?
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Prediction step...

Decision step:

x j = H I j + Ic −θ + q yk
k≠ j
∑

⎛

⎝⎜
⎞

⎠⎟
⎛

⎝
⎜

⎞

⎠
⎟

yj = H I j + Ic −θ( )

DKL   = 0.073

(compare with 0.0038)



Are higher order correlations good for coding??
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Are higher order correlations good for coding??
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A) Higher-order correlations develop in FFW nets (Project 2) B) Higher-order correlations impact stimulus coding (Project 3)
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Thank you!
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