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Linear response theory: for small noise, linear in c (cf. Lindner et al. 2005)
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Compare Type I vs. Type II dynamics: 
• Stimulus selectivity and neurocomputational properties: integrator vs. 
resonator (Agüera y Arcas et al. 2003; Mato and Samengo 2008) 
• Synchronization properties (Ermentrout 1996; Hansel et al. 1995; 
Wang and Buzsáki 1996) 
• Type I/II transition can be effected by regulating slow potassium 
currents (Ermentrout et al. 2001), such as by neuromodulators (Steifel et 
al. 2008a, 2008b) or level of background activity (Prescott et al. 2008)

Type I excitability
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Type II cells transfer 
more correlation at 
short time scales; 
Type I cells transfer 
more correlation at 
long time scales
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Furthermore, in some neurons the concentrations of carbachol
used induced persistent firing that lasted after the current injection
stimulus was removed. We suggest that such persistent firing is
consistent with carbachol blocking currents that control the neurons
excitability and possibly uncovering slow depolarizing currents. For
example, effects we observed might be due the persistent sodium
current that would activate slowly with spiking and persistently keep
the cell above the firing threshold for an extended period after the
current injection is removed. We note here that this kind of
persistent firing appears to be dynamically different than the
bistability that is associated with type II dynamics. For the latter no
persistent depolarizing currents are required and one could switch
between the quiescent and firing states by only a brief stimulus.
Finally, numerical work shows that persistent sodium currents
cannot explain type II behavior (results not shown).
The fact that type II neurons showing a strong carbachol-

dependent decrease in spike-frequency adaptation switched their

PRC type is consistent with the theoretical finding that decreasing
an adaptation current can switch the type of bifurcation leading
from rest to tonic spiking [2]. We suggest that the cholinergic
decrease in a potassium current, possibly IM, was responsible for
the transition from type II to type I. In fact, the cholinergic agonist
we used acts through the muscarinic metabotropic acetylcholine
receptors [20] that in turn control a number of cells parameters.
Carbachol effects include the down-regulation of a number of slow
K-currents as well as possibly non-specific currents such as the
mixed ion current generating the leak. In principle all of those
could be involved in the PRC switch we observed. However
previous theoretical work showed that slow K-currents that
depend on occurrence of spikes to activate (e.g. the IKAHP(Ca))
are not sufficient to cause the switch [2]. We also conducted a
more careful numerical study of the possible carbachol effects on
numerous currents as well as change is in the input resistance etc
[19]. Our results also show that the M-current down-regulation is

Figure 2. Change of PRCs due to cholinergic neuromodulation in single neurons. Left column: control conditions. Center column: bath
application of carbachol. Right column: difference between the charbachol and control conditions. Top plots: raw data. Bottom plots: mean6s.e.m. of
binned data. Filled symbols: significant changes in comparison to the ISIs without a perturbation. Data from example neurons (A) showing a
transition from a type II to a type I PRC and (B) remaining with a type I PRC. Insets: voltage averages of the perturbing pulses in the absence (thin
line) and presence (thick line) of carbachol. Average amplitudes were (A) 3.2/3.5 mV (54/60 sweeps) and (B) 3.2/3.8 mV (67/67 sweeps).
doi:10.1371/journal.pone.0003947.g002

Cholinergic Modulation of PRCs

PLoS ONE | www.plosone.org 4 December 2008 | Volume 3 | Issue 12 | e3947

Control Carbachol

Stiefel et al., PLoS One, 2008

a region of negative slope. In class 2 neurons, on the other
hand, spike initiation occurs through a Hopf bifurcation be-
cause net current is outward at threshold, as reflected in the
monotonic steady-state I-V curve (Fig. 1C, b–d). This means
that INa must compete with IK,dr (or IM) in a time-dependent
manner. Subthreshold MPOs occur when inward current starts
to activate but outward current catches up before a full spike
occurs; this trajectory is manifested on the phase plane as

spiraling around a stable focus (!
1
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!Iinst

!V
"

#w
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at the fixed

point; Fig. 5A, b and c) (see also Hutcheon and Yarom 2000).
Repetitive spiking occurs when that focus becomes unstable

via a subcritical Hopf bifurcation (!
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By relating the generation of MPOs to the nullcline inter-
section, we can predict how conditions impact MPO frequency.
MPO frequency reflects the rate of spiraling around the focus,
which is reflected in the value of the complex component of the
eigenvalue found by local stability analysis (Kaplan and Glass
1995). Equivalently, MPO frequency can be estimated from the
phase plane: oscillations cannot occur when the V- and w-
nullclines intersect tangentially, but MPO frequency increases
as the nullcline intersection becomes less acute (i.e., as the
angle becomes less sharp) (Fig. 5A, middle row). The preced-
ing is true for a given set of rate constants, but MPO frequency
also depends on how rapidly outward current activates (con-
trolled by #w or $w) relative to instantaneous activation of
inward current. Importantly, MPO frequency and fmin are
directly related insofar as MPO frequency is less than fmin " #f
(Fig. 5A, bottom row), where #f accounts for subthreshold
MPOs occurring in the bistable region of the bifurcation
diagram (Fig. 5B).

Thus based on phase plane geometry, we know that class 2
neurons should oscillate whereas class 1 neurons should not.

Indeed the model did not exhibit subthreshold MPOs when
depolarized to within a few millivolts of threshold under
control conditions, when excitability was class 1 (Fig. 6A,
black), but subthreshold MPOs were observed after the model
was converted to class 2 excitability (Fig. 6A, gray). To show
that MPOs resulted from the switch in excitability rather than
being a specific consequence of shunting or adaptation, the
model shown in Fig. 6A was converted to class 2 excitability
by changing an unrelated parameter, &m, which caused a
depolarizing shift in the voltage-dependent activation curve for
INa. Because greater depolarization was required to activate
INa, this parameter change caused a depolarizing shift in V*
(like in Fig. 2A); as a result, spikes were generated through a
Hopf bifurcation (bifurcation diagram not shown). Reducing
the maximal sodium conductance (g!Na) has a comparable effect
(see following text).

If, instead of adjusting &m, we added adaptation or shunt-
ing to the control model, the model exhibited subthreshold
MPOs as predicted by its conversion to class 2 excitability
(Fig. 6B). Furthermore, as predicted by local stability anal-
ysis (see corresponding phase planes in Fig. 5), the shunted
neuron exhibited higher frequency MPOs than the adapted
neuron given the parameters used (Fig. 6B). Also the am-
plitude (power) of MPOs was substantially less in the
shunted neuron because low input resistance in the shunted
neuron mitigated voltage changes. By stimulating our model
with periodic inputs with different frequencies, we con-
firmed that class 2 models resonated at frequencies near
their oscillation frequency, whereas the class 1 (control)
model did not resonate, which is consistent with its inability
to oscillate (Fig. 6C); both results are consistent with pre-
vious work (e.g., Izhikevich 2007).

We then compared these results with experimental data. Our
recordings revealed subthreshold MPOs when CA1 pyramidal

FIG. 4. Shape of the f-I curve depends on stimulus conditions. A: F-I curves from model without adaptation. Shunting shifted the curve rightward and made
it discontinuous, i.e., the shunted neuron could not sustain spiking below a minimum rate (fmin) of $80 spike/s. A continuous f-I curve is consistent with class
1 excitability, whereas a discontinuous one is consistent with class 2 excitability. B: F-I curves from CA1 pyramidal neurons exhibited the same effects of
shunting. Instantaneous firing rate (finst) was measured from the reciprocal of interspike intervals (ISIs); initial finst was calculated from the first ISI, which is
relatively unaffected by slow adaptation. Sample responses highlight the shunting-induced increase in fmin, which was determined as initial finst for the minimum
stimulus intensity eliciting '2 spikes (Imin2). Rectangles labeled a and b indicate responses shown in D. Arrow here and in D point to the subthreshold oscillation
that follows the last spike of the initial burst; presence of an oscillation is consistent with class 2 excitability, whereas its absence is consistent with class 1
excitability (see Fig. 7). C: based on responses to Imin2, shunting caused a significant increase in fmin (P % 0.001, paired t-test, n & 6 cells). D: sample responses
from same cell as in B show adaptation-induced increase in fmin. Instantaneous firing rate was measured from successive ISIs. Istim was adjusted to give the same
initial firing rate in the low- and high-conductance states (like in Fig. 1A); each graph shows different initial firing rates as indicated in B. Regardless of initial
firing rate (i.e., a and b show equivalent results), fmin calculated from the last ISI of the burst was higher than fmin calculated from the first ISI elicited by Imin2
(compare with B). E: adaptation caused a significant increase in fmin according to comparison of fmin calculated from the last ISI (elicited by 80 pA ' Imin2) with
fmin calculated from the 1st ISI (elicited by Imin2); that was true in both the low- and high-conductance states (P % 0.005, paired t-test, n & 6 cells).
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• Can be used in the subthreshold (excitable) 
regime 

• Time window (T)-specific prediction 
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Theory 
Simulation

STA is very predictive of correlation transfer

subthreshold 
(fluctuation-driven)

superthreshold 
(mean-driven)
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???

Type I cells will be more 
effective than Type II cells at 
driving long time constant 
neurons 

 τ
!V = −V + I t( )

“Hears”            ..... larger 
fluctuations in this sum  
trigger more frequent spikes
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Type I/Type II switch occurs at 
biophysically meaningful 
timescale: τ ~ 5 −10 ms
Destexhe et al. 2003; Prescott and 
De Koninck 2009



On-going work: a novel excitability mechanism: “Type IV”
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4 Methods: Correlation transfer in systems with large time-scale

separation

In this section, we outline some general considerations that pertain to systems that have very large
time-scale separation. Some of these issues were also explored by (cite Izhikevich here: relaxation
oscillators).

4.1 Correlation transfer when PRC has small support

Recall that we identified the following function of the phase response curve as governing long-time
correlation transfer from common input:

⇢ ⇡ cS (33)

= c
hZi

2

hZ2

i

(34)

Now suppose that the PRC, Z, has support on a small part of the interval [0, 1]: i.e. it can be
described as

Z(x) =

⇢
Ẑ
�
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�
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(35)
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Such PRCs are typical of relaxation oscillators [AKB: cite Izhikevich here, maybe also Kopell
paper?]. For example, the present oscillator shows PRCs which are concentrated near the spike
boundary, as illustrated in Fig. 16. In contrast, the Connor-Stevens model studied in [AKB:
cite J Neurophys here] shows PRCS with significant support throughout the interval (Fig. 17).
Therefore, we can in general expect the model studied here, other factors being equal, to have a
roughly five-fold decreased correlation transfer, compared to the Connor-Stevens model.
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Ẑ
E
;

similarly
⌦
Z(x)2

↵
= ✏

D
Ẑ2
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Is the PRC prediction accurate?
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Possible issues: 
• relaxation oscillator with strong time scale separation: 

insensitive to noisy current except at specific times in 
cycle  

• very hard to get long T statistics 
• very hard to get joint statistics 
• How long is long enough (for T)? 
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In Conclusion  
• We study common input correlation transfer in both conductance-based 
(Connor-Stevens) and phase-oscillator models, focusing on the transition from 
Type I to Type II neural dynamics 
!
• Type II neurons are more correlated at short time scales, but Type I neurons 
are more correlated at long time scales. 
!

• The Type I/Type II transition can modulate downstream firing rate at 
biophysically relevant timescales    
!
• Common input spike-triggered average methodology generalizes well to other 
excitability types (Type IV) 
!
• PRC-based predictions less accurate: more study needed in relaxation 
oscillators 
!
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