
• Eigenvalues:	

• Singular values:
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Network setup

 !x = −x +Gi tanh gx( )( ), x 0( ) = x0
x :
G :
g :

activity variables  !
coupling matrix !
overall coupling parameter

N ×1

N × N

 Gij ∼ P µ,σ 2 ,…( ), i ≠ j

The elements of G are chosen 
from some probability distribution 
P; in general we choose                           
(no self-coupling)                       

Gii = 0

NT

Principal orthogonal decomposition (POD)

Integrate f.r. equations, keeping      snapshots:

U :
Σ :
V :

NT x N projection onto modes at each time slice !
N x N mode energy !
N x N principal orthogonal modes 

Keep enough modes (n) to capture 99% of the energy

 

{x t0( ),x t1( ),…,x tNT( )}, N × NT

x t0 : tNT( ) = VΣUT
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Choice of connectivity matrix ensemble

 Gij ∼ N 0,σ 2 N( ), i ≠ j

Unconstrained networks

 

p λ( )
N
∼ π −1, λ ≤ 1

 

p σ̂( )
N
∼
2
π
1− σ̂ 2

4
, 0 ≤ σ̂ ≤ 2

 

Gij ∼ N µE N ,σ E
2 N( ), i ≠ j, 1 ≤ j ≤ f N

∼ N µI N ,σ I
2 N( ), i ≠ j, f N < j ≤ N

f µE + 1− f( )µI = 0( )

Balanced E/I networks

!
• Mean input currents balanced: can sustain high variability	

• Respects Dale’s Law: most neurons are either excitatory or 
inhibitory	

• no change in eigenvalue distribution (Rajan and Abbott 2006, 
Wei 2012)

We expect a transition to chaotic activity for 
some g > 1 (Sompolinsky et al., 1988) 
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Background: echo-state networks

Abstract : Biological neural circuits display both spontaneous asynchronous activity, and 
complex, yet ordered activity while actively responding to input. Recently, researchers 
have demonstrated this capability in large, recurrently connected neural networks, or 
“echo-state" networks, with chaotic activity (Bertschinger and Natschläger 2004, Jaeger 
and Haas 2004, Sussillo and Abbott 2009). We study the transition to chaos in a family of 
such networks, and use principal orthogonal decomposition (POD) techniques to provide 
a lower-dimensional description of network activity. We find that key characteristics of 
this transition depend critically on whether a fundamental neurobiological constraint — 
that most neurons are either excitatory or inhibitory — is satisfied. Specifically, we find 
that constrained networks exhibit the transition to chaos at much higher coupling 
strengths than unconstrained networks. This property is the consequence of the fact that 
the constrained system may be described as a perturbation from a system with non-
trivial symmetries. These symmetries imply the presence of both fixed points and 
periodic orbits that continue to act as an organizing center for solutions, even for large 
perturbations. In comparison, spectral characteristics of the network coupling matrix 
(Rajan and Abbott 2006, Wei 2012) are relatively uninformative about the behavior of the 
constrained system. 

• Large recurrent neural networks (in simulations here, N = 
200-1000) 

!
• Network receives feedback from trained output units 

(Jaeger and Haass 2004). 
!

• Network is spontaneously chaotic; chaos suppressed 
during training/testing 
!

• Common finding: network dynamics are low-
dimensional (Sussillo and Abbott  2009, 2012; Sussillo 
and Barak 2013)

 

!x = −x +Gi tanh gx( )( ) + JFBz
z = wT tanh gx( )( )
w(t)→ w(t + Δt)

Figure 1A. However, the power of FORCE learning allows us to
train networks with the architectures shown in Figures 1B and
1C, in which modifications are not restricted to network outputs.
For reasons discussed below, these architectures are more
biologically plausible than the network in Figure 1A.
The third problem we address is training in the face of chaotic

spontaneous activity. Jaeger and Haas (2004) avoided this
problem by starting with networks that were inactive in the
absence of input (which is the basis for calling them echo-state
networks). As we show in the Results, there are significant
advantages in using a network that exhibits chaotic activity prior
to training. To exploit these advantages, however, wemust avoid
chaotic network activity during training. The solution for learning
in a recurrent network and for suppressing chaos turn out to be
one and the same: synaptic modifications must be strong and
rapid during the initial phases of training. This is precisely what
the FORCE procedure achieves.
FORCE learning operates quite differently from traditional

training in neural networks. Usually, training consists of perform-
ing a sequence of modifications that slowly reduce initially large
errors in network output. In FORCE learning, errors are always
small, even from the beginning of the training process. As
a result, the goal of training is not significant error reduction,
but rather reducing the amount of modification needed to keep
the errors small. By the end of the training period, modification
is no longer needed, and the network can generate the desired
output autonomously.
From a machine learning point of view, the FORCE procedure

we propose provides a powerful algorithm for constructing
recurrent neural networks that generate complex and control-
lable patterns of activity either in the absence of or in response
to input. From a biological perspective, it can be viewed either
as a model for training-induced modification or, more conserva-
tively, as a method for building functioning circuit models for
further study. Either way, our approach introduces a novel way
to think about learning in neural networks and to make contact
with experimental data.

RESULTS

The recurrent network that forms the basis of our studies is
a conventional model in which the outputs of individual neurons
are characterized by firing rates and neurons are sparsely inter-
connected through excitatory and inhibitory synapses of various
strengths (Experimental Procedures). Following ideas devel-
oped in the context of liquid-state (Maass et al., 2002) and
echo-state (Jaeger, 2003) models, we assume that this basic
network is not designed for any specific task but is instead
a general purpose dynamical system that will be co-opted for
particular applications through subsequent synaptic modifica-
tion. As a result, the connectivity and synaptic strengths of the
network are chosen randomly (Experimental Procedures). For
the parameters we use, the initial state of the network is chaotic
(Figure 2A).
To specify a task for the networks of Figure 1, we must define

their outputs. In a full model, this would involve simulating activity
all the way out to the periphery. In the absence of such a
complete model, we need to have a way of describing what

the network is ‘‘doing,’’ and here we follow another suggestion
from the liquid- and echo-state approach (Maass et al., 2002;
Jaeger, 2003; see also Buonomano and Merzenich, 1995). We
define the network output through a weighted sum of its activi-
ties. Denoting the activities of the network neurons at time t by
assembling them into a column vector r(t) and the weights

A

B

C

Figure 1. Network Architectures
In all three cases, a recurrent generator networkwith firing rates r drives a linear

readout unit with output z through weights w (red) that are modified during

training. Only connections shown in red are subject to modification.

(A) Feedback to the generator network (large network circle) is provided by the

readout unit.

(B) Feedback to the generator network is provided by a separate feedback

network (smaller network circle). Neurons of the feedback network are recur-

rently connected and receive input from the generator network through

synapses of strength JFG (red), which are modified during training.

(C) A network with no external feedback. Instead, feedback is generated within

the network and modified by applying FORCE learning to the synapses with

strengths JGG internal to the network (red).
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Figure 2. FORCE Learning in the Network of Figure 1A
(A–C) The FORCE training sequence. Network output, z, is in red, the firing rates of 10 sample neurons from the network are in blue and the orange trace is the

magnitude of the time derivative of the readout weight vector. (A) Before learning, network activity and output are chaotic. (B) During learning, the output matches

the target function, in this case a triangle wave and the network activity is periodic because the readout weights fluctuate rapidly. These fluctuations subside as

learning progresses. (C) After training, the network activity is periodic and the output matches the target without requiring any weight modification.

(D–K) Examples of FORCE learning. Red traces are network outputs after training with the network running autonomously. Green traces, where not covered by

the matching red traces, are target functions. (D) Periodic function composed of four sinusoids. (E) Periodic function composed of 16 sinusoids. (F) Periodic

function of four sinusoids learned from a noisy target function. (G) Square-wave. (H) The Lorenz attractor. Initial conditions of the network and the target

were matched at the beginning of the traces. (I) Sine waves with periods of 60 ms and 8 s. (J) A one-shot example using a network with two readout units (circuit

insert). The red trace is the output of unit 2. When unit 1 is activated, its feedback creates the fixed point to the left of the left-most blue arrow, establishing the

appropriate initial condition. Feedback from unit 2 then produces the sequence between the two blue arrows. When the sequence is concluded, the network

output returns to being chaotic. (K) A low amplitude sine wave (right of gray line) for which the FORCE procedure does not control network chaos (blue traces)

and learning fails.
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We investigate behavior of RNNs (before and 
after training) with two choices of internal 
connectivity structures G
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Solutions persist as randomness is added

σ 2 = 1

σ 2 = 0.25

σ 2 ≈ 0.1

σ 2 ≈ 0.01

σ 2 = 0

Here we pick a specific 
realization of a random 
network and compute 
bifurcation diagrams as  
varies (N = 10).

Gij =
µE N +σAij , i ≠ j, 1 ≤ j ≤ nE
µI N +σAij , i ≠ j, nE < j ≤ N
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On-going work: impact on learning tasks

 

!x = −x +Gi tanh gx( )( ) +WFBz + Bu

z = WFF( )T tanh gx( )( )
WFF (t)→WFF (t + Δt)
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Figure 2: Example inputs and outputs for the 3-bit flip-flop task. (Left) Sample
input and output to the 3-bit flip-flop network. The three inputs and outputs are
shown in pairs (dark red/red, dark green/green, and dark blue/blue, respec-
tively). Brief input pulses come in with random timing. For a given input-output
pair, the output should transition to +1 or stay at +1 for an input pulse of +1.
The output should transition to −1 or stay at −1 if the corresponding input pulse
is −1. Finally, all three outputs should ignore their nonmatching input pulses.
(Right) Network with echostate architecture used to learn the 3-bit flip-flop task.
Trained weights are shown in red.

example, the first green pulse does not change the memory state because the
green output is already at +1. The second green pulse, however, does. Also,
the blue and red pulses should be ignored by the green output. An RNN
that performs this task for three input-output pairs must then represent
23 = 8 memories and so is a 3-bit flip-flop device, while ignoring the cross
talk between differing input-output pairs.

We trained a randomly connected network (N = 1000) to perform the
3-bit flip-flop task using the FORCE learning algorithm (Sussillo & Abbott,
2009) (see section 6). We then performed the linearization analysis, using the
trajectories of the system during operation as ICs. Specifically, we spanned
all possible transitions between the memory states using the inputs to the
network and then randomly selected 600 network states out of these tra-
jectories to serve as ICs for the q optimization. The algorithm resulted in
26 distinct fixed points, on which we performed a linear stability analy-
sis. Specifically, we computed the Jacobian matrix, equation 3.12, around
each fixed point and performed an eigenvector decomposition on these
matrices.

The resulting stable fixed points and saddle points are shown in
Figure 3 (left). To display the results of these analyses, the network state x(t)
is plotted in the basis of the first three principal components of the network
activations (the transient pulses reside in other dimensions; one is shown in
the right panel of Figure 3). In black x are the fixed points corresponding to
each of the eight memory states. These fixed points are attractors, and the

Graphic: Sussillo and Barak, Neural Comp, 2013

400 450 500 550 600 650 700 750 800 850 900

−1

0

1

400 450 500 550 600 650 700 750 800 850 900

−1

0

1

400 450 500 550 600 650 700 750 800 850 900

−1

0

1

0.8 1 1.2 1.4 1.6 1.8

0

0.2

0.4

0.6

0.8

1
Average testing error on unfamiliar inputs

 

 
p = 0.1
p = 0.2
p = 0.5
p = 0.8
p = 1

No obvious difference in 
performance between 
unconstrained and balanced 
networks

gg

Unconstrained networks Balanced E/I networks

Balanced E/I networks exhibit a delayed transition to chaos

g g

# 
m

od
es

 (n
)

# 
m

od
es

 (n
)

Unconstrained networks Balanced E/I networks

1 2 3 4 5 6 70

10

20

30

40

50

60

70

80

90

100

110
nmodes to reach E=0.99; all G

 

 

nModes; mean+error bars
max nModes
min nModes
# pos λ

1 2 3 4 5 6 70

10

20

30

40

50

60

70

80

90

100

110
nmodes to reach E=0.99; all G

 

 

nModes; mean+error bars
max nModes
min nModes
# pos λ

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

110
nModes to reach E=0.99, RA06, f=0.8, G4

1 2 3 4 5 6 7
0

10

20

30

40

50

60

70

80

90

100

110
nModes to reach E=0.99, RA06, f=0.8, G7

−8 −6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

 

 
� = 1
�=0.25
�=0.0625
�=0

−5 0 5
−10

−8

−6

−4

−2

0

2

4

6

8

10

 

 

m = 1
m=0.25
m=0.0625
m=0

Large networks This bifurcation structure does not depend on N; here we 
demonstrate an example for N = 200, g = 6.

Excitatory Inhibitory

contrast with the 
corresponding 
unconstrained network:

Figure 8: (A-B) Solutions for two di↵erent networks of size N = 20: g = 3. Here,
p

NG ⌘

H + ✏A1,2. From top to bottom: ✏

2 = 1, 2�1, 2�2, 2�3, 2�4, 2�5, 2�6, and 0). (C) Solutions for
a network of size N = 200. The connectivity matrix is given by

p

NG ⌘ H + ✏A, for a single
A. From top to bottom: ✏

2 = 1, 2�1, 2�2, 2�3, 2�4, 2�5, 2�6, and 0) (D) Solutions for a network
of size N = 200, but where

p

NG ⌘ ✏A (i.e. no mean). The random connectivity matrix A is
the same as in panel (C). In all panels, the traces of nE excitatory (blue) and nI inhibitory (red)
neurons are shown. In (C-D), only a subset (10 each of E and I cells) is displayed [AKB: Check].

6 Discussion

Points for discussion?

1. Computational power

2. Recent research focused on the computational power of random networks in the (nominally
unpredictable) chaotic regime. Such networks enjoy high computational power because their
chaotic dynamics give them access to a rich, complicated phase space, which can be exploited
during training to perform complex tasks (cites here).

Future work?

1. Making generalizations across the entire family of random networks is challenging: in theory,
every A might yield a new system with distinct behavior. So far, we mostly have examples.

6.1 Relationship to other work: port some of this to discussion?

More points for lit review:

• Dense networks:

– Sompolinsky 1988, mean field eqns and transition to chaos
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neurons are shown. In (C-D), only a subset (10 each of E and I cells) is displayed [AKB: Check].
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1. Making generalizations across the entire family of random networks is challenging: in theory,
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Balanced E/I network has underlying symmetry 

 

Gij ∼ N µE N ,0( ), i ≠ j, 1 ≤ j ≤ f N

∼ N µI N ,0( ), i ≠ j, f N < j ≤ N

(e.g.                                           )
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Under these conditions the ODE	
has                 symmetry SnE

× SnI

 !x = −x +Gi Φ gx( )( ), x 0( ) = x0

• Branch of fixed points; emerges at	
!
!

• Limit cycle from Hopf bifurcation:	
!
!
• Limit cycle from Hopf at origin: 

x = xE t( ), xI t( )( )

x = xE t( ), xI ,1 t( ), xI ,2 t( )( )
g ≈ N αµE

g ≈ N µE

x = xE t( ), xI ,1 t( ), xI ,2 t( )( )

Equivariant bifurcation theory characterizes the solutions we will see:

N = 8; f = 0.75Left: example with 

N = 10; f = 0.8Above: bifurcation diagram for  

Symmetries constrain dynamics in a family of balanced neural networks
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On-going work: impact on coding tasks
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Separating 2 inputs in phase space

Encoding average firing rate

We integrate networks with 2 distinct 
sinusoidal inputs:

We test the ability of 
neural subpopulations 
to encode the average 
firing rate (on Input 1 
below): 

Unconstrained 
Constrained

Input 1 
Input 2

Input 1, IC 1 
Input 1, IC 2 
Input 2, IC 1 
Input 2, IC 2
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