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The near-shore current system

A Obliguely breaking waves create alongshore current

A Alongshore current transports sediment, can be exploited
to prevent erosion

A Displaced/varying alongshore current associated with rip
currents




Overview

A Current dislocation on barred beaches is still
Inadequately explained

A Main idea: Alongshore variation of wave energy on
scale of wave groups can produce current
dislocation

Aldealized experiments

A Near-shore current system is non-turbulent




Alongshore current %

N
Obliquely breaking waves create alongshore current. 23‘;\\6 av\'::,?

o i
The momentum transferred shoreward by surface waves is
defined as “radiation stress”.

Convergence of radiation stress transfers momentum to the
mean current.

Longuet-Higgins (1970) used the momentum balance
between radiation stress convergence and bottom friction to
solve for current.

Result: current is strongest at locations of strongest wave
breaking

- Biihler and Jacobson, 2001



Comparison with experiments (Duck, NC)
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New mechanism for current
dislocation

A Directional/frequency spreading can produce
alongshore inhomogeneous wave breaking on O
(100 m) (Reniers et al. 2002,2004)

A Inhomogeneous wave breaking produces vortex
dipoles, which locate current in trough

A Numerical model, idealized studies




Breaking wave packets produce vortex dipoles

A Peregrine (1998)
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Behavior of vortices on a sloping beach

A Model vortex as e
axisymmetric |
vortex ring

A Properties of
vortex ring
determined by
local slope of
beach




Planar vs. barred beach




Rigid-lid approximation

A For low Froude number flow ( [J << ,,/gh ) we have

Ve(hu)=0

A The last term is the “radiation stress” of Longuet-Higgins
(defined on next slide)

A We now describe the flow by the single dynamic equation
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Rotational part of radiation stress (BJO1) WZ\@-@Q
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In the presence of steady waves, only F makes a contribution
to the curl of the momentum on the previous slide. F is non-
zero in the absence of dissipation.




Wave parameterization

A Geometric ray theory

A Waves “break” when they exceed saturation
threshold

é =0 Waves are forced to break when

dt K they exceed a saturation threshold:
following LH70,

& _ o

dt < sat unsat
A=min(4",4™")

Q(k,x) =,/ghsx t

Y A" = A(othy)

§+V0(Cg/1)=0 a=0041




Numerical model: governing equations

0<x<DO0<y<L
v (x,0) =w (x, L)
v(0,»)=0
V(D,y)=My(D,y)

M is the “Dirichlet-to-
Neumann” map (DtN) of

the operator
\% .(V\y )

p, | forsome

specified h(x) and
boundary conditions at
infinity



Idealized experiments on
current dislocation

A Linear vs. barred topography

A Homogeneous vs. inhomogeneous
(packet)




Vortex dipole
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Idealized study: barred beach,

homogeneous waves

A No current
dislocation




Idealized study: barred beach,

homogeneous waves

A No current
dislocation
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Idealized study: barred beach,

homogeneous waves

A No current
dislocation
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Idealized study: barred beach,

homogeneous waves

A No current
dislocation
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Idealized study: barred beach,

homogeneous waves

A No current
dislocation
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Idealized study: linear beach, packet of waves a%%

A Modest current
dislocation



Idealized study: linear beach, packet of waves

A Modest current
dislocation
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Idealized study: linear beach, packet of waves

A Modest current
dislocation

Mean alongshore velocity (m/s)

| ) 3 1 1 L 1 1 1
0 20 40 60 80 100 120 140 1850 180 200
Distance from shoreline (m)



Idealized study: linear beach, packet of waves

A Modest current
dislocation
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Idealized study: linear beach, packet of waves

A Modest current
dislocation
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Idealized study: barred beach, packet of waves a%%

A Marked current
dislocation



Idealized study: barred beach, packet of waves

A Marked current
dislocation
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Idealized study: barred beach, packet of waves

A Marked current
dislocation
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Idealized study: barred beach, packet of waves

A Marked current
dislocation
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Idealized study: barred beach, packet of waves

A Marked current
dislocation
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Idealized study: barred beach, packet of waves

A Marked current
dislocation
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Longer time velocity observations, ¢=0.014 3
T

Mean alongshore velocity, ¢, = 0014
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Near-shore current system 1s non-turbulent

A Shallow water = 2-D fluid with varying
fluid depth

4 Can we have upward energy cascade
with physical parameters typical of the
beach (Peregrine 1998, 1999)?




2D Turbulence - phenomenology

A Conservation properties

imply “inverse” cascade of o273 =573
energy, “direct” cascade of
enstrophy. £
energy
4 Both cascades “arrested” by transfer

dissipative processes.

4 At which length scale do enstrophy
these dissipative processes transfer
act? Do they depend on the
strength of forcing?

Energy

Wavenumber

Vallis, 2006
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Near-shore current system 1s non-turbulent  @Z"5a

IR
Grainik et al. study cascade phenomenology of
0

g +u-VE=F, + D,

D, =Vx(-C, lulu)

S is forced at large wavenumber &, The upward

energy cascade will be arrested at a scale k,
which is independent of the strength of forcing.
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Near-shore current system 1s non-turbulent
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Near-shore current system 1s non-turbulent

Grainik et al. estimate

k =~51C,

k, =51~

If c,.=0.01, then h
k h=0.5

But we only model mean motions for which

h<l1

(on surf zone, mean flow also subject to littoral friction)




Conclusions and on-going work

4 New numerical model for study of near-shore
region, with open boundary and parameterized
forcing

A Vortex dipole is shown to provide a mechanism
for current dislocation

A Surf zone is non-turbulent (2D)

A Long-term goal: When will low-frequency wave
energy produce vortex dipoles capable of
dislocating current?




Idealized experiment: sinusoidal forcing %5 5
cz-\“b\(s@
A motivated by Reniers et al.(2002,2004)

A directional spreading and/or frequency
spreading cause “groupiness’

A Alongshore and time variation on the order
of 100 m



Vortex dipole: sinusoidal forcing
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Distance from shoreline (m)

Current maximum vs. f,
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