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Why seek equilibria of point vortex systems?

Quasi-2D, vortex-dominated fluid flows
Rotating superfluid 4He
Electron columns in a Malmberg-Penning trap

Figure: From Durbin and Fajan, Physics of Fluids, 2000
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Some motivation for our work

Many known techniques rely on symmetries (for an
exception see Aref and Vainchtein, Nature, 1998)
Complete classification is likely to be difficult (O’Neil 1987,
Hampton and Moeckel 2006, Trans. AMS) particularly for
large numbers of vortices.
What is needed: a fast, reliable method for finding large N
asymmetric equilibria.
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N-point vortex problem

~xα ∈ R2, Γα ∈ R, 1 ≤ α ≤ N

Γα~̇xα = J∇αH

H = − 1
2π

N∑
α<β

ΓαΓβ ln(rαβ)

J =

(
0 1
−1 0

)
Conserved quantities: H, I =

∑N
α=1 Γα|~xα|2, V =

∑N
α=1 ~xα
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N-point vortex problem

N point vortices at position zα = xα + iyα, circulations Γα

Dynamics given by

Γαżα = −2i
∂H
∂z∗α

H = − 1
2π

N∑
α<β

ΓαΓβ ln |zα − zβ|

Or

dzα
dt

= − 1
2πi

∑
β 6=α

Γβ
z∗α − z∗β
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N-point vortex problem

How to find relative/stationary/translating equilibria?
Rotating

dzα
dt

= iωzα

for some ω
Stationary

dzα
dt

= 0

Translating

dzα
dt

= 1
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The essential observation is that ~dz
dt is linear in ~Γ (Newton and

Chamoun, Proc. Roy. Soc. A, 2007). If I define

M(~z) =



0 i
z∗1−z∗2

i
z∗1−z∗3

i
z∗1−z∗4

· · · i
z∗1−z∗N

iz1
i

z∗2−z∗1
0 i

z∗2−z∗3
i

z∗2−z∗4
· · · i

z∗2−z∗N
iz2

...
...

...
. . .

i
z∗N−z∗1

i
z∗N−z∗2

i
z∗N−z∗3

· · · i
z∗N−z∗N−1

0 izN

−iz1 −iz2 −iz3 · · · −izN−1 −izN 0


then we must find ~z, ~Γ such that

M(~z)~Γ = M(~z)


Γ1
Γ2
...
ω

 = 0
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M(~z) = MR(~z) + iMI(~z)

So we need to find vortex positions such that MR, MI share a
real nullspace. ~Γ can then take any value in the nullspace.

One equivalent condition is that

f (~z) = det(MT
R MR + MT

I MI) = 0
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We propose driving f (~z) to zero via a gradient flow. Define the
gradient of f with respect to a n × n real matrix M as

(∇M f )j,k =
∂f

∂Mj,k
.

Using the chain rule, we evolve coordinates according the
equation

dxi

ds
= − ∂

∂xi
f (M)

= −
∑
j,k

dMj,k

dxi
(∇M f )j,k
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The flow on det(MT
R MR + MT

I MI) has some nice properties.
Because

Ms = det(M)M−1

the singular value basis is unchanged under the flow.
Therefore we can write it in terms of the singular values of M:

dσj

ds
= −2σj

∏
k 6=j

σ2
k

and show that the difference in squares of singular values is
conserved.

σ2
j − σ2

k = Cjk
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Practical problem: gradient descent is slow.

To speed convergence, we use a subspace trust region
minimization algorithm (suitable for large-scale problems),
Implemented in the Matlab Optimization Toolbox (Branch et al.,
SIAM J. Sci. Comp, 1999).

(So I just threw my nice properties out the window, for now)
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Here are some examples found by minimizing
det(MT

R MR + MT
I MI): rotating equilibria, with free vortex

strengths
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We can choose other functions to minimize which (if they
can be driven to zero) would imply an equilibrium.
Suppose we specify vortex strengths ~Γ ≡ ~v . Then we could
minimize

‖ MR~v ‖2 + ‖ MI~v ‖2
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These are rotating equilibria, with fixed vortex strengths. Vortex
strengths have been chosen to be identical.
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Or, we can seek translating vortex patterns, by finding ~z,~Γ s.t.

M̃R(~z)~Γ = ~1

M̃I(~z) = ~0

where M̃ is obtained from the previous M by the last (the
(N + 1)th) row and column.
So we minimize ‖ M̃−1

I M̃R ‖2 and recover ~Γ = M̃−1
R
~1.

We find fixed strength patterns by minimizing

‖ M̃R − ~1 ‖2 + ‖ M̃I ‖2
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Some examples of translating solutions, for free vortex
strengths...
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...and for fixed vortex strengths.

−25 −20 −15 −10 −5 0 5 10

−15

−10

−5

0

5

10

Here we begin to notice something interesting: clustering into
locally rigid configurations.
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We seek stationary solutions by minimizing

‖ M̃R~v ‖2 + ‖ M̃I~v ‖2, ~v fixed
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We can also find solutions with clustering into locally rigid or
stationary configurations.

Figure: (right inset: see, for example, Aref, Fluid Dynamics Research,
2007
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Future Work

We have little analytical understanding of equilibria.
Can we make gradient descent viable?
Can we drive equilibria to stability?
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