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Abstract

A method is presented for calculating complex eigenmodes of propagation
in plane-layered structures composed of homogeneous, isotropic materials
having arbitrary complex dielectric properties. The formulation is com-
pletely general, permitting any number of guiding and non-guiding layers,
with loss or gain each layer. All modes having complex propagation con-
stants and field distributions can be calculated with equal ease. These
include modes having gain or attenuation in the direction of propagation,
and having bounded or unbounded, leaky, or radiative properties in the
transverse direction. A 2xX2 vector-matrix representation for the differ-
ential equations, field solutions, and boundary conditions is used, which
permits a simple constructive definition for the characteristic equation
regardless of the complexity of any particular structure. A general complex
root-searching algorithm is used to calculate the mode eigenvalues, and
several novel features greatly improve the efficiency of the search. Field
distributions and power density across the structure may be efficiently
calculated using the same 2x2 matrix multiplications. A FORTRAN program
has been written to implement the calculations, and a listing is included.

The program has proved to be highly efficient and accurate.
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1. INTRODUCTION

1.1 Summarv

This report describes an analytic formulation and computer program for
the calculation of complex modes of electromagnetic wave propagation in
plane-layered dielectric structures. Emphasis throughout is on complete
generallty: structures of any number of layers, any complex material
parameters, and any types of proper or improper modes of the discrete or
continuous spectrum are allowed. An effort was also made to achieve
efficient and accurate numerical calculations.

The structures of interest are composed of any number of plane layers,
having plecewise constant, homogeneous, but isotropic, dielectric material
properties. The dielectric permittivities in the different layers may be
arbitrarily complex, with positive or negative imaginary part representing
absorption loss or active gain. The real part may also be negative, repre-
senting metal or isotropic plasma layers. In directions parallel to the
planes the structures are assumed to be uniform in all parameters. Such
systems of layers are generally viewed as open waveguiding structures.
There are two open semi-infinite outer dielectric layers, so that radiation
can occur in the transverse direction, normal to the planes. Usually some
of the inner layers will have the highest permittivity (index of refraction),
and a finite number of truly bound and gulided modes will exist. But the
method is not limited to such cases. And it is not necessary to make any a
priori assumptions about which layers are guiding layers, or which layers
have large or small, real or complex permittivity. The special case of
constant surface-impedance boundaries, including metals, in place of the

outer semi-infinite layers is easily included.
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Modes of propagation parallel to the planes are characterized by a
normalized propagation coefficient, B; which is common to all layers, and is
allowed to be arbitrarily complex. The imaginary part, positive or negative,
represents the rate of attenuation or gain of the mode in the direction of
propagation. Such complex modes may arise whenever any of the material
parameters are complex-valued or when there is radiation loss into the semi-
infinite layers.

Emphasis is on discrete modes of propagation, which are solutions of a
homogeneous, two-point, eigenvalue problem in the transverse dimension.
These arise when restrictive homogeneous boundary conditions are imposed at
the outer boundaries of the structure. The discrete complex values of 8 for
these modes are roots of a transcendental eigenvalue (characteristic) equa-
tion. A central part of the problem is the formulation of the character-
istic function, and the numerical calculation of its roots.

The discrete modes include those which are proper, bound, modes having
gquare integrable field distributions across the structure. This necessari-
ly implies an outward exponential decay for the fields in the semi-infinite
layers. Other discrete modes include the well known leaky modes, which are
improper, or not square integrable across the guide. But for small imagi-
nary part for B these modes may have some physical interpretation, and can
provide excellent approximate solutions to some field problems. Other
discrete modes also exist as mathematical roots of the same characteristic
equation, but do not necessarily have a physical interpretation. All these
modes are solutions of the same mathematical problem, and the improper modes
are no more difficult to solve for than the proper modes.

The objective of this work was to obtain a method for calculating these

discrete modes in very general structures with any number of layers. And it



was also the objective to be able to calculate leaky modes in particular,
and the improper modes in general, in addition to the proper modes. The
capability to include complex materlal parameters was not initially an
obiective, but it could be provided with little difficulty.

The primary motivation for the work arose in the context of integrated
optics. There was a need to calculate the modes of propagation in planar
optical guiding structures; but the structures of interest were composed of
more than a few layers, including, for example, two dissimilar guiding
layers separated by more than one intermediate layer. And there was a need
to calculate leaky modes in such structures. There has also been an in-
creasing recognition of the usefulness and importance of including leaky
modes in the expansion of field distributions in general dielectric guides.

Motivation for including complex material parameters arises in guiding
structures which include metal layers, or lossy dielectrics such as semi-
conductor materials where free carrier absorption can often be significant.
Also, a complex permittivity with negative imaginary part can describe the
recombination gain in the active layers of semiconductor lasers, and the
popular double heterostructure (DH) GaAlAs lasers are inherently multilayer
structures. For the design of such DH lasers it is highly desirable to have
the capability to calculate complex propagating modes in the presence of

both loss and gain in different layers.

Previou
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formulations and methods for calculating modes in layered
structures are reviewed. Tor structures of only a few layers methods have
frequently been published, but these cannot be extended to more layers. A
few methods exist which are valid for many layers, such as the well known
transverse resonance method. However, the characteristic functions for

these methods are shown to have undesirable analytic properties, which can



make them very inefficient or unusable with numerical complex root searching
routines. These characteristic functions have extraneous zeros or poles,
and for the transverse resonance method aniinfinite number of movable poles
are interspersed among the zeros. Most general methods do not describe an
efficient method for calculating the field distributions once the mode
propagations constants are known.

The field problem is here formulated directly in terms of the actual
E and H field components throughout the structure, with emphasis on the
tangential fields at the boundaries. Maxwell's curl equations reduce to
coupled first-order differential equaticns in the two tangential field
components. Solutions to these equations are easily stated in vector-
matrix form, without the need for reference to a wave equation or any need
for transverse wavelike solutions in the inner layers.

Normalized variables are used throughout to control the order of
magnitude of the field quantities and other parameters to be programmed.

All material parameters and modal propagation constants are normalized to
those of free space. Field variables are normalized so that, by duality,

the same variables serve for either TE or TM polarizations. When programmed,
the one formulation may be used equally well for calculations of both polar-
ization.

The field solutions for any value of B, for a discrete mode or not, are
given in terms of a 2x2 vector-matrix representation. This representation
is most commonly encountered in the analysis of optical multilayer filters,
where propagation is normal to the layers. The formulation remains com-
pletely valid for propagation parallel to the layers, but all quantities

must be allowed to become complex. The tangential fields at any two planes



in the structure are related by a matrix transformation. By chain matrix
multiplication across the structure the field solutions are defined and
easily calculated everywhere in the structure.

Boundary matching conditions at all the material boundaries are satis-
fied at the outset. This is possible because the tangential fields, which
are required to be continuous at the boundaries, are in fact the primary
dependent variables. In particular, a transformation matrix exists for each
layer, depending only on the parameters of that layer. The satisfaction of
the interior boundary matching conditions may be considered to be a part of
the definition of the differential equation throughout the structure, or to
be a part of the construction of the solutions. They need not be considered
a part of the definition of the characteristic function, which arises only
with the imposition of the outer boundary conditions.

The boundary conditions at the outer boundaries are distinct from the
matching conditions at the material discontinuities; they resemble the
radiation condition at infinity, but for the fully complex case and for
improper modes they do not have the same physical interpretation. These
boundary conditions, the definition of the transverse propagation constants
Kl and Ky in the semi-infinite layers, and the classification of the modes,
are all intimately related.

Classification of modes following the conventions of surface waves is
reviewed. But in the present case the classification must be made in the
two semi-infinite layers simultaneously. The classification is described
in terms of the regions of the complex K1 and 3¢ planes. These necessarily

have an additional branch point and branch cut not encountered when there

is a single semi-infinite layer over a surface wave structure.



Principal branch specifications for k., and k in their respective

1 N’
complex planes, are an important part of the statement of the outer
boundary conditions, and of the eigenvalue problem in general. A non-
conventional and completely arbitrary branch specification is used, which
greatly improves the efficiency of root searching for the discrete modes.
Proper and improper modes are not distinguished by their location on a

principal or secondary branch for k. and Ky» OF Riemann sheets for B.

1
Rather, by choice of orientation of branch boundaries and cuts, both proper
and improper modes can exist on the same sheet. As a result, the root
search for improper modes is no more difficult than for proper modes.

Also, there is little difficulty in calculating modes which are "near
cut-off", having roots located near to branch cuts associated with the con-
ventional branch specifications.

The phase integral, of the transverse propagation comstant k, across
all the inner layers of the structure, is used in ordering the discrete
modes and for assigning a mode index to each.

Several special cases of modes are easily included in the formulation.
Field distributions for modes of the continuous spectrum can be calculated
for specified values of B without the need for a root search. But it is
emphasized that these are not solutions of the transverse eigenvalue pro-
blem for the discrete spectrum of modes. The boundary conditions are
different. Allowance for complex material parameters requires some general-
ization of the description of the continuous spectrum beyond that usually
given for the simple three-layer case and for lossless media. The spectrum
of plane waves in the semi-infinite layer is also easily included; for

lossy materials these are not the same as for the continuous spectrum.



Special attention is given to the definition and construction of the
characteristic function. Emphasis is placed on its analytic properties for
the benefit of efficient complex root searching. The characteristic equa-
tion is described from several viewpoints, including that of a mathematical
two-point boundary value problem, in terms of reflection and transmission
coefficients, and as a Wronskian determinant between two specially con-
structed field solutions.

It is shown that the characteristic function is a determinant of only
a 2x2 matrix, regardless of the number of layers. By the sequence of 2x2
matrix transformations across the structure, a single matrix transformation
between the tangential fields at the two outer boundaries is easily calcu-
lated. This matrix completely characterizes the interior structure, quite
independently of the outer semi-infinits layers or boundary conditions.

The characteristic function is then defined in terms of this matrix and a
matrix representation of the boundary conditions. It is also advantageous
to consider 8%, rather than B, to be the eigenvalue parameter whose complex
plane is to be searched for roots.

The characteristic function defined here has no poles or extraneous
roots, and in the B2?-plane it has only one pair of unavoidable branch points
and cuts associated with the two outer boundary conditions. The relation-
ship of this characteristic function to that of the transverse resonance
method is discussed. Explicit expressions for the 2, 3, and u4-layer
structures are listed for comparison with other versions.

A general purpose complex root searching algorithm is used for calcu-
lating the roots of the characteristic equation in the g2-plane. Usually

called Muller's method, it is an iterative procedure based on a local



quadratic approximaticn to the characteristic function. Several important
improvements are incorporated which greatly increase the rate of conver-
gence in the early stages of the iterations. Initial guesses, at which to
start the search for each of several roots, are calculated by interpola-
tions based on the phase integral. Altogether, with the maximally analytic
characteristic function, use of the B%-plane, improvements in the root
searching method, and excellent initial guesses, rapid and efficient
calculation of the discrete modes is realized. As few as 2 or 3 iterations
are needed per root for simple guides where good guesses are possible, or
when only small changes in parameters are made from a previously calculated
case. More commonly, convergence to an accuracy of lO_lO is obtained in 3
to 7 iterations. Where convergence is not obtained in 10 to 15 iterations,
the root search in nearly every case has been found to be entangled in a
branch cut.

Field distributions across the structure, for any value of B, of the
discrete or continuous spectrum, are easily calculated. The values of the
tangential fields at all the boundaries are calculated by the sequence of
matrix multiplications, and constitute a set of values sufficient to
completely characterize a field solution. The same 2x2 matrix method is
then used in an incremental manner to efficiently calculate the fields at
closely spaced points across the structure. These may be used for plotting
purposes or possibly for numerical integrations.

The transverse and propagating Poynting power density for any mode is
easily calculated from the calculated field values with little additional

effort.



Part II describes a FORTRAN computer program which implements the
formulation described for actual calculations. Part I of the report 1is
intended to serve as documentation for the program.

A rather large program results, intended for complete case by case
solutions for any arbitrary structure. The program is made possible by,
and depends on, the complex variable capability of FORTRAN, including the
library functions for complex elementary functions. Complete flexibility
of program usage is available through a large number of input variables.
Large amounts of output are available under users option to provide
detailed information for each case.

The program has proved to be quite efficient and capable of high
accuracy. On a CDC-6400 computer of 14 digit floating point resolution a
convergence criteria of lO—12 has been routinely realized for modes in
structures up to 7 layers. Using a non-optimizing compiler, sets of 7
modes at a time are calculated (to a convergence criteria of lO—lO) for a
seven layer structure in about 2 to 3 seconds of a cost of 25 cents.
Detailed field values across the structure for all seven modes take a
comparable amount of time.

The original objectives of this work have been fully realized. With
the present formulation and program it is now feasible to obtain quantita-
tive results for any complex modes in arbitrary structures. This is a

capability which has not previously existed.
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1.2 Objectives and Motivating Problems

The work reported here was carried out in the context of integrated
optics, and of wave propagation along multilayered dielectric guiding
structures. This background is assumed of the reader, and is represented by
the book by Marcuse [1], and the one edited by Tamir [2]. A vast literature
in this area now exists, and further reference to it is made only as
specifically needed. Wave propagation in dielectric guides at microwave
frequencies, is, of course, quite equivalent, and this earlier interest is
well represented in the books of Collin [3] and Shevchenko [4]. An even
more general background on fields and waves, and wave propagation including
layered media, is found in Felsen and Marcuvitz [5]. These references may
be consulted for citations to earlier literature.

The overall objective of the present work was to develop a formulation
for direct calculation of complex modes in very general arbitrary structures.
Here, complex modes refer to discrete eigenmodes of propagation parallel to
the planes, and having complex-valued propagation coefficients. Such com-
plex modes arise whenever, a) any of the dielectric materials have losses
(or gain), representable by a complex permittivity, or b) modes are un-
bounded or improper, where the imaginary part can sometimes be interpreted
as attenuation due to radiation loss from the propagating energy. The
calculation of bound modes in simple lossless guides (of 3 or 4 layers)
appears repeatedly in the literature. Provision for material losses is un-
common except for simple cases (say 2 or 3 layers), and is often treated by
approximate methods. Similarly, the well known '"leaky" improper modes are
often treated by approximate methods, and rarely for structures of more

than 4 layers.
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For more complicated structures the only recourse is to direct
numerical methods. FTor more than a few layers, and especially for complex
material parameters, analytical methods become intractable. A few formula-
tions of the field problem for modes in layered structures have appeared
which have the potential for describing a completely arbitrary case. But
these formulations have been found to be unsuitable or inefficient for
numerical purposes, as described later.

Therefore, one objective was to arrive at a formulation more suitable
for being programmed for calculation. Thus, the formulation should be as
simple as possible, not depending on the number of layers, and also be
numerically accurate and efficient. It was anticipated that a 2x2 matrix
method similar to that used for multilayer optical filter analysis would
serve the prupose, and remain valid for complex parameters. The objective
for complex propagation constants is reasonable because of the capability
for complex calculations in the FORTRAN language. When the propagation
constant is allowed to be complex, most field parameters must also become
complex, and there is little difficulty in including the capability for
fully complex material parameters. Hence a capability for a completely
arbitrary complex structure was reasonable.

Once numerical methods are resorted to there is the potential for very
accurate results. So another objective was to use the best possible
numerical techniques. For example, by choice of variables and expressions,
singular and indeterminate situations, where considerable loss of signi-
ficant digits could result, were to be avoided. A relatively efficient
method for complex root searching was known to be available. So there was

hope that results could be obtained which were limited only by the unavoid-
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able accumulation of roundoff error in whatever computer was used.

Initial motivation for this work arose in connection with periodic
coupling between two dissimilar guides in a dielectric structure. Such a
coupler is in contrast to the well known grating couplers between a guide
and an incident or radiated beam. Specifically, there is interest in
periodic coupling between a low index glass fiber transmission line and a
surface guide on a high index substrate. All active integrated optical
devices are fabricated on a relatively high index substrate, such as
LiNbO3 withn ~ 2.2 [2, p. 175], or GaAs with n = 3.5 [2, p. 243]. On the
other hand, the glass fiber has an index and mode propagation constant of
approximately n = 1.5. With this large index mismatch, one of the few
hopes for distributed couplers is to use periodic coupling, introduced in
the layer separating the two guides. Such periodic coupling has been
suggested several times [6-9], but little progress has been made in
analyzing such a structure or demonstrating its feasibility.

The structure of interest is shown in Fig. 1.1, where intially a
planar geometry is assumed for simplicity. It is a five-layer structure
with an externally mounted glass guide [61, layer 2, separated from the
substrate guide, layer 4, by the isolation layer 3. The latter would
incorporate the periodic variation, of a variety of possible types, with
a period A. The permittivity indicated for layer 2 would be the average
over the periodic variations. Depending on the type of periodic structure
used, it may be necessary to subdivide layer 3 intc more layers, say 2 or 3.
The condition for efficient net coupling between the glass guide mode of

B,» and the substrate guide of g, is simply that K = 2M/A = IBl-BQI. But

1
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there are other competing coupling and scattering processes which are also
present and make the coupler difficult to aalyze. Clearly, the periodic
layer also serves as a grating coupler between either guide and radiated
beams in both outer layers. These arise as both negative and positive
higher order diffraction processes, associated with terms inK. Further,
any modes in the glass guide, because of the high index substrate, must be
leaky modes, as for a prism coupler. This structure is unlike the prism
coupler, however, because of the presence of the substrate guide.

The feasibility of this coupler concept depends on whether, by choice
of structure parameters, and perhaps by blazing effects [2, p. 118; 10-11]
or resonance effects (below), the coupling to radiated beams can be mini-
mized, while permitting a useful amount of power to be coupled between
guides.

It is not the purpose of this report to describe any analysis of this
structure. It is mentioned as an example of how quickly practical struc-
tures can become very difficult to analyze. It provides several examples
of types of modes which cannot be described by the familiar methods for
three and four layer structures, and more general methods must be consider-
ed.

When the phase mismatch between two guides is small, and only bound
modes are considered, then familiar coupled mode theory may be used. For
coupling between two rather arbitrary asymmetric guides (a 5-layer structure)
the work of Watts [12] and Wilson and Reinhart [13] may be mentioned.
Except for the leaky mode properties of guide 1, this approach could be

used for approximate analysis of the structure of Fig. 1.1.
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Because the periodic structure introduced in layer 3 is considered to
be weak, the waveguiding properties of the structure are dominated by the
modes, both proper and improper, of the dverall 5-layer structure. The
periodic perturbation then serves as a coupling mechanism between the
modes. It is not appropriate to consider this as a problem of wave propa-
gation in a periodic structure, using representations in terms of Bloch
waves. Therefore, it has been a primary motivation to be able to solve for
propagating modes in the basic 5-layer structure of Fig. 1.1, and this
necessarily includes leaky modes.

An important recent development in the theory of grating couplers has
been the recognition that, even for some simple structures, the traditional
first order approximations for calculating the coupling efficiency fails
completely. This was first pointed out by Kiselev [14], and some quanti-
tative calculations and experimental demonstrations were provided in a
companion paper by Zlenko and Kiselev, et al. [15]. Later, Rigrod and
Marcuse [16] presented a confirming analysis for similar cases, and indica-
ted that equivalent results could be obtained from coupled mode theory.
These results showed that for some configurations (the grating layer
placed between a surface guide and a high index substrate) the coupling
efficiency could be very dependent on the grating periocd and guide thick-
ness. For some combinations of these parameters the coupling efficiency
could be large; but most dramatically, for other slightly changed values,
the efficiency could become essentially zero. The effects were described
as interference effects between two different diffracted orders, which both

contribute to the radiated beam. TFirst order perturbation analysis (repre-
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senting most pravious work on grating couplers) conciders only one
diffracted order at a time, and it assumes that the field distributions
due tc the incident modes are not altered by the presence of scattered
fields. The newly recognized interference effects can also be described
as transverse resonance effects. For some guide thicknesses, and grating
diffraction angles, strong standing wave fields can be excited in the
guide. Then, for even weak diffraction, large diffracted fields can exist
in the guide. This is contrary to the assumptions of the first order
perturbation method.

We point out here that these results can also be described as periodic
coupling between the guided mode and other leaky modes of the same guide.
Thus, if 81 is the propagation constant for the bound mode, and 82 is the
reel part of the propagation constant for a leaky mode, then strong coupling
to the radiated beam (from the leaky mode) can be expected when the phase

matching condition is satisfied, K = 2I/A = IB -B This qualitative

1 2|'

description has been confirmed by using preliminary results of the present
formulation. Leaky modes were calculated for the structure used by the
above authors [15, Fig. 6; 16, Figs. 4 and 6]. For each of six points,
where comparison was possible, the maximum radiation occurs when the phase
match condition was satisfied. The sharp nulls, of apparently zero
coupling efficiency, occur whenever [Bl—Kl is midway between the values of
B, for two adjacent leaky modes. Agreement was within the accuracy with
which values for B could be read from the figures.

Recognition of these transverse resonance effects calls into doubt any
analysis of the structure of Fig. 1.1 which is based on first order pertur-

bation methods. It is likely that the concept of periodic coupling between
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bound and leaky modes can be developed to provide quantitati;e results for
the efficiency of coupling between radiated beams and modes in more arbi-
trary structures. This approach is directly applicable to that of Fig. 1.1,
and provides additional motivation toward a capability for calculating leaky
modes in general.

There has also been an increasing interest recently in the use of leaky
waves for describing field solutions in open guiding structures. Tradition-
ally, leaky waves have been considered nonphysical, and not usable for the
representation of real field solutions; although the usefulness of a single
leaky mode to describe radiation from leaky wave antennas and prism couplers
is well known. Shevchenko [17], Shatrov [18] and others [19-20] have shown,
however, that it is possible to include leaky modes in a general field
expansion. The expansion over the continuous part of the spectrum can be
replaced by a summation over the set of discrete improper modes. Within
the guide, and in its viecinity, the inclusion of a few of these improper
leaky modes can lead to rapidly convergent representations for the fields.
Golichev and Krasnushkin [21] have presented an elegant description of the
alternatives of representations by integrals over continuous spectra or by
summations over sets of discrete modes. For optical fiber guides, Sammut
and Snyder, et al. [22-2u4], have shown that weakly leaky modes play an
important and practical role in excitation and attenuation measurements.

In order to make greater use of leaky modes in describing excitation
and propagation in layered structures it is first necessary to be able to
make quantitative calculations of the propagation constants and field dis-
tributions. Methods for such calculations in general structures are rarely

considered in the literature. Usually, only the bound proper modes are of
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interest; and where improper modes are mentioned, quantitative calculations
of the mode parameters are rarely carried out.

Hence, one of the motives for the present work was to obtain a method
for numerically calculating leaky and improper modes in very general layered
structures. It was believed that, in using numerical methods, and if the
mathematical problem were properly formulated, then improper modes should be
no more difficult to calculate than the proper modes.

Another area where complex modes are important is in propagation in
layered structures which include dissipative losses. In most analysis of
dielectric structures such losses are usually ignored, except perhaps in
the simplest (say, 3-layer) cases. A very important active area at present
is that of semiconductor double heterostructure {(DH) lasers, which are
inherently complicated multilayer structures [2, p. 271; 25-27]1. In many
actual structures the free carrier absorption losses can be significant,
affecting the lasing threshold. It is very desirable to be able to calculate
mode parameters, especially mode attenuation or gain, and field distribu-
tions, in layered structures with losses permitted in any layer. Even more
important is the inclusion of gain (due to the active recombination region)
in some layers. From the viewpoint of a complex permittivity, the differ-
ence between loss and gain is only in the sign of the imaginary part. In
semiconductor lasers leaky modes can also be important because of limita-
tions on the choice of material permittivity. In fact, leaky mode concepts
have been proposed to help control the selection of lasing modes [28]. As
an example of structure complexity Suematsu, et al. [29-30], have demonstra-
ted a 7-layer twin-guide laser with gain in one guide, which is coupled to

an output guide with feedback structure. There can be losses in all layers
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and leaky radiation into the outer layers, though these were not included
in any of their approximate analysis.

If a method were capable of directly solving for modes in general
structures, with material loss or galn, then analysis of semiconductor
heterojunction laser would be an area of immediate practical benefit. This
provided additional motivation to keep the formulation completely general,
with arbitrarily complex material parameters allowed throughout. Two exam-
ples of DH lasers are used later to demonstrate the capabilities of the
present formulation and program.

Even in a simple case, of bound modes in a system of two coupled simi-
lar guides, there is some motivation for direct calculation of the exact
modes of the overall structure. Coupled mode theory is nearly always used
to describe such a structure. The resulting representation of the fields,
in terms of approximate normal modes, can be excellent in the case of weakly
coupled guides; but it is not valid for close, strongly coupled, guides.

If a general method for solving multilayer structures were available, such
coupled guide problems could be solved directly. If sufficient accuracy
were possible, then the effective coupling coefficient between guides (a
parameter of the coupled mode theory) could be obtained by calculating
differences between propagation constants of the isolated guides and of
the system of coupled guides. Since an exact calculation gives the exact
normal modes for the complete structure, it is even possible to suggest
that the fields for modes in the individual guides could be written
approximately as linear combinations of the normal modes. This is the
converse of the viewpoint of coupled mode theory, and would be useful in

the case of strongly coupled guides.

e
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A last example is that of hollow waveguides [1, p. #3], which have a
role in gas laser resonators and for guiding long-wavelength infrared
radiation. The guiding layer is of lower index than the walls, and all
modes are necessarily leaky modes, though the rate of loss for the lowest
order modes can be very small.

In most practical structures the magnitudes of coupling coefficients
and the rates of power loss for leaky modes are relatively small. These

3 to 10_8, say, relative to the magnitude of the

may be on the order of 10
real part of the propagation coefficient. For direct calculations of these
quantities the propagation coefficients must then be calculated to better
than this in relative accuracy. For example, if an 8 digit floating point
computer is used, and there is a minimum of round-off error in calculating
8, then a value of coupling coefficient or leakage rate of 10*5 could be
obtained with 2 to 3 digit accuracy.

These considerations provide some motivation for obtaining maximum
possible numerical accuracy from any implementation of the formulation.
It is worth investing some attention to questions of efficient and accurate
numerical methods. Because of the many layers, complex parameters, and the
need for finding roots by iterative procedures, numerically efficient

procedures and minimization of round-off error can make the difference

whether or not it is feasible to calculate modes in some structures.
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1.3 Previous Methods

The three-layer asymmetric dielectric structure, and its character-
istic equation for bound guided modes, is ubiquitous in the literature of
integrated optics [1, Sect. 1.3; 2, Sect. 2.3]. This is shown in Fig. 1.2
for the TE modes. This structure is the prototype for all planar dielec-
tric guides, and is also used to obtain approximate solutions for modes in
rectangular guides [1, Sect. 1.7]. The reader is assumed to be familiar
with the formulation for the fields in the three layer problem, the tradi-
tional characteristic equation, and with the properties of the bound guided
modes.

In this report we are interested in the calculation of more general
structures: of arbitrary numbers of layers, and for dielectric properties
which may be lossy, or active (lasers, with gain), or even having a negative
permittivity (metals and plasmas). We are also interested in arbitrarily
complex modes which may have attenuation or gain the direction of propaga-
tion, due to either the material properties, or due to radiation loss
(leaky, unbounded modes) in the transverse direction.

With some care, the formulation for the three-layer structure can be
used when the material parameters are complex, and also used for leaky un-
bound modes beyond cut-off. Tor the single symmetric guide, Burke [31] has
presented extensive results for the general case of lossy materials, and
included improper modes. His method does not generalize to the asymmetric
guide.

Several attempts have been made to extend the formulation for the three
layer case, particularly the form of the characteristic equation, to de-

scribe modes in four-layer structures. These are of interest for beam



22

3 o, i
2 n, PL —z
| n, n(x)

Propagation  factor exp i(k,z- wt):
2 2 — 2 2
K, + kK, = K,n , k

o= 2W/ A= w/c
B = k;/ky, k=

viy = k /K,
2
k2= -y2=n2- B, L£=12,3

Characteristic  Equation for TE_ mode:

f(B) = kyr,t, - ¢, - ¢, — mm = O

= -1 _ -
¢, = Tan" ¥ /k, ; ¢, = Tan y,/k,

n|: r13 SE [3 S; ng ) O 5; 4% ’ d%g 5; m

Figure 1.2 Three-layer Dielectric Guide and Characteristic Equation.






coupling to guides (prism couplers) [32] and also for guides involving an
additional layer of perturbing material [33, 34], often a metal [35-401.
In extending the formulation in this way, a priori assumptions are usually
made about the additional layer being either a part of the guiding layer or
not. The choice of notation and range of values for the parameters strongly
reflects these assumptions. It is not unfair to say that it is impossible,
by extension of the three-layer formulas, to obtain the characteristic
equation for more than four layers; or to obtain a four-layer characteristic
equation which is valid for all physically interesting values for the index
of the two inner layers.

One relatively simple procedure for calculating propagation constants
of modes in layered structures is the so-called transverse resonance
metrod [2, p. 1073 5, p. 2153 41]. It is applicable to any number of layers,
of complex dielectric materials, and can be adapted to complex modes. The
method is based on the close analogy between the transverse propagation of
the fields in the layered structure, and the more familiar voltage-current
propagation on two-wire transmission lines. The layered structure can be
modeled by cascaded sections of transmission lines, having appropriate
characteristic impedances and (transverse) propagation constants, but which
are functions of the mode propagation constant. By imposing conditions on
the sclutions in the semi-infinite layers (transmission lines), the wave
impedance can be transformed from layer to layer, leading to the definition
of a characteristic equation whose roots are the mode eigenvalues for the
layered structure. The transverse resonance method has a close relation
to the method described here, since many of the numerical quantities needed

for the recursive calculation are the same.
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The transverse resonance method has some undesirable numerical pro-
perties, however, which makes 1t unusable for complex root searching. And
the method itself does not provide a procedure for calculating the field
distributions once the eigenvalues are found. The relationship to the
present method is pointed out later.

Harris has developed an extensive formulation for fields and modes in
layered structures of arbitrary number of layers [41-47]. A representation
in terms of vector potentials was chosen, assuming exponential solutions to
the wave equation, with two undetermined amplitude coefficients, in each
layer. The field continuity conditions, at each interface between layers,
lead to a pair of simultaneous equations for the amplitudes in any two
adjacent layers. For eigenmodes, a single exponential solution (an "out-
going wave" only) is assumed in each semi-infinite layer. For N+1 material
layers, there are a total of 2N simultaneous equations, homogeneous in as
many unknown amplitude coefficients. The characteristic function for the

modes is taken to be the determinant, D N? of the 2N by 2N matrix of coef-

1
ficients, all being functions of the common modal propagation constant and
of the layer parameters. The characteristic equation, in the propagation
constant kz say, is simply that DlN(kZ) = 0; that is, the condition for the
existence of nonzero solutions for the 2N amplitudes.

This method considers the eigen-condition to be the simultaneous satis-
faction of all boundary conditions. Because of the use of DlN’ it might be
called the grand-determinant approach to the characteristic equation. The
determinant is of order 2N, and for all but the smallest N it becomes im-
practicable to calculate directly. Harris showed that DlN may be calculated

recursively; starting with a single boundary, the effect of each additional
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layer 1s incorporated by use of a two-term recurrence relation [43, Lq. A8
45, p. 334]. This is possible only because the coefficient matrixz is sparse,
belng pentadisgonal, and Harris' recursive method appears to be a special
case of a more general recurrence relation for determinants of such matrices

L%3]. One unfortunate aspect of D as defined, is that it also has roots

1N’
which are not eigenmodes. It becomes zero whenever the transverse propaga-

2)1/2 2

" . ve, becomes zero in any interior

. 2
1 const = -
ion constant, kx (k2 k
layer indexed by 2. That is, in addition to the eigenvalue roots, kZ,
u,w(k7) has additional zeros, branch points, and associated branch cuts,

a4l

for every kz = kg of the inner layers. This has serious, though somewhat
correctable, consequences for numerical root searching methods.

Harris used his formulation in the analysis of prism and periodic beam
couplers [43, 45, 46], and several others have used it for periodic couplers
F49] and metal-clad wave guides [50]. Interestingly, and in spite of its
potential generality, the method does not appear to have been used for
structures of more than five layers. And, with one exception [51], the
formulation does not appear to have been used for direct calculation of
leaky modes in prism couplers or for modes beyond cut off in normal guides.
Rather, the formulation has been used as a basis for first order approxi-
mations for leakage rates of tunneling modes [431, for losses in metal clad
guides [50], and for coupling between two guides [47]. Had a general root
searching procedure been used with the formulation, some exact numerical
results could have been obtained for these problems.

For any modal propagation coefficient, kz, the field solutions in
Harris' formulation (the set of amplitude coefficients in all layers) were

stated in terms of Cramer's rule, requiring 2N additional determinant
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evaluations. These can also be carried cut recursively. However, the
current state of the art of computational linear algebra considers Cramer's
rule and use of determinants as numerically very inefficient and of poor
accuracy.

Canosa and de Oliviera [52], and Ixaru [53], have also used a grand
determinant method for calculating the energy eigenvalues for a one-
dimensional Schroedinger equation. The potential is approximated by a set
of stepwise constant intervals (layers), and continuity conditions are
applied to the scalar function and its derivative at all the boundaries.

By a sequence of elementary matrix operations, on the coefficient matrix
for the resulting set of equations, they showed that the grand determinant
for the characteristic equation could be evaluated as a determinant of a

2x2 reduced matrix. The latter is obtained as a 2N-fold product of 2x2
submatrices, and inverses of some submatrices, of the 2Nx2N coefficient
matrix. Theilr interest was limited to real potentials and real eigenvalues,
but otherwise it is very similar to Harris' method. Because of the 2x2
matrix operations it is closer to the method presented here. In [52] a
root searching method similar to the one used here was used to locate the
eigenvalues, but it was not used for finding complex roots.

C. A. Ward, et al. [54], have obtained a general expression for the
dispersion (characteristic) equation for TM modes in structures of N layers
of complex dielectrics. Their applications were primarily to surface plasma
waves (polaritons, plasmons) along metal-dielectric boundaries, where TE
modes are unimportant. By examining their characteristic equations for 2,
3, 4 and 5 layers they were able, by induction, to deduce a general expres-

sion., This is a sum over Q(N—Q) terms, each term being a product of N-1
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factors. It was implied that their general expression was easily pro-

crammed for calculation, and that it offered some advantages over recur-

@]

ively calculated expressions. This does not agree with the common under-
standing, in computational mathematics, that recursively defined functions,
and calculations based on a recursive procedure, offer the highest ef-
ficiency (minimum number of operations) and minimum programming complexity.
An expression similar to Ward's was preveiously obtained, but not empha-
sized, by Harris for the characteristic equation in his formulation [42,
Eq. 5; u7].

Ward's characteristic equations have a property even more serious than
Harris'., Namely, for all layers, the same points kz = kQ in the kz plane,
for which the transverse propagation constants, kX, become zero, are now
branch poles of the characteristic function. The function behaves as l/kX
in the neighborhood of each of these points; and there is a branch cut
connecting each to the point kz = =, which is an additional N-fold multiple
zero of the characteristic function. This situation is evident from the
equation in Fig. 2 of Ref. 54, where, for all layers, the individual kX as
used here (their o = kmz) appear in the denominators throughout. An
approximation to first order in kx’ for any layer as kX -+ 0, shows the
function to behave as l/kX. These branch poles probably make this
characteristic function unusable for general root searching methods.
Certainly it would be nearly impossible to calculate mode propagation con-
stants, kz, which happened to lie close to the poles at kz for any of the
layers. Approximate pole-zero cancellation could make the zero invisible
to the root searching routine. Further, it is possible for the root
searching procedure to wander off to kZ + o, seeking the additional roots

there.
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The extraneous zeros or poles in these characteristic functions can be
numerically removed. This is done by dividing Harris' function by the
product of kx over all the inner layers, or by multiplying Ward's function
by the same product. If this is done numerically, after calculation of the
function as originally defined, then an indeterminate form of 0/0 or «/=
can result, with éonsiderable risk of round off error. It is best to
define the characteristic functions to have a well behaved form in the
first place.

It may be argued that characteristic functions should have a property
of maximum analyticity. That is, in the eigenvalue parameter, the charac-
teristic function should have only those zeros which are true eigenvalues of
the problem; and elsewhere the function should have no singularities, except
those which are unavoidable and fundamental to the problem. Characteristic
functions are not unique. For, multiplication by any analytic function
will leave the eigenvalues unchanged, but it may Introduce additional zeros
which are not eigenvalues. Multiplication by a nonanalytic function will
ordinarily leave the eigenvalues unchanged, but will introduce additional
singularities. Such a situation exists with Ward's characteristic function,
and as seen later, is also true of the transverse resonance method. Other
transformations of the characteristic function are sometimes made which can
introduce additional singularities. Tor example, if D(A) is a characteris-
tic function, having zeros in the complex A-plane, then f(A) = Tan D(XA), or
£(A) = Atan D(A), will have the same zeros; but f(A) then can also have
additional zeros, infinities, or branch points. This is the case for the
traditional characteristic function for the three layer case. The method

presented here has attempted to avoid unnecessary roots and singularities.
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By choice of variables, and sequences of operations, all quantities are
well behaved and finite throughout the calculations leading to the
characteristic equation.

A extensive background literature in wave propagation in plane-layered
media exists since before the advent of interest in optical waveguilding
[55-58]. This work can be considered for various alternatives in formula-
ting the general problem, but it has remained largely uncited in the
literature of integrated optics. The reasons are probably that some pro-
blems are best approached by different formulations, and previous methods
have not been the most convenient for guided wave optics.

Radio propagation in the earth-ionosphere region [56, 58] is dominated
by an interest in point observers, and real electric and magnetic point
sources. In most cases both points are located within the one guiding
region, which often has continuously varying parameters. Thus, there is
emphasis on representations in terms of vector potentials, Green's func-
tions, and approximations methods. Budden [56, 57] formulated the charac-
teristic equation almost exclusively in terms of a round trip phase integral
across the guiding region, including reflection coefficients and phase
shifts at the outer boundaries. This method is poorly suited *to a problem
with multiple separated guiding layers.

Radio propagation over plane layered models of the earth has similar
emphasis [58], but source and observer are often taken to be outside the
layered region. Propagation along the plane surface of a structure then
may emphasize reflection coéfficients as seen from the outside. Propagating
modes, as seen from the outside, form the context for most literature on

surface wave properties of complex modes.
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A very different emphasis exists in the analysis of optical multilayer
filters [59, 61], where there are no point sources or point observers.
Interest is primarily in wave propagation transversely to the layers, due to
plane waves incident from the outside. The formulation is usually in terms
of the actual field variables, angles of incidence and reflection, and re-
flection and transmission coefficients. A well developed matrix method
exists for analysis and design of different types of filters. There is no
interest in wave propagating or guiding properties along the planes.

Losses are rarely included.

On the other hand, for optical guiding structures there is little
interest in transverse propagation properties, but propagation along the
Plane is of paramount interest. The mode concept is used, and there is
little use for reflection or transmission coefficients. No point sources
are used, and interest in incident beams is primarily in the degree to
which specific modes are excited, rather than how the beams are reflected
and transmitted.

The present formulation was chosen to be as simple as possible, with
the fewest possible field quantities, and directly related to the quantities
of interest. (There was no need for vector potentials or Green's functions.)
The components of E and H are sufficient, without the need even to define
the wave equation or oppositely traveling wave amplitudes. The field com-
ponents across the structure are simply related by the matrix transforma-
tions as used in optical multilayer filter analysis. However, all quanti-

ties must now be allowed to become complex. Formally., the 2x2 matrix method

remains completely valid even in the fully complex case. But there is

little reason to retain the notion of angles of propagation in each layer,




since as often as not these angles become imaginary or complex. It is
simpler to use the geometric components, kx and k , of a complex propaga-

tion vector; but it becomes necessary to keep in mind some specifications
of branches in defining these quantities, since they involve square root
relationships.

The choice of the 2x2 matrix representation was also influenced by the
fact that it leads to a very direct and useful definition for the character-
istic equation. Because of the problems-of analyticity of the characteristic

function for other methods, some care was used in its definition. Consider-

0

able help is available from the mathematical literature on two-point
boundary-value problems involving vector-matrix differential equations.

The phase integral concept is adopted for the purpose of indexing the
modes, and for calculating some initial guesses at which to start the com-
plex root search.

For the benefit of the reader several additional papers may be cited,
which include one aspect or another of the formulation used here. Hansen
[62] includes the case of material absorption, and also a matrix represen-
tation for the N-layer case. But he did not consider propagating modes.

Berreman [63] gives an extensive description of a Ux4 matrix formulation,

Q
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sentlal for anisotropic material. But he also was interested in

]
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true guided modes in multilayers of anisotropic materials. His formulation
is the closest to that used here; the fourth order system and lack of
separation into simple TE and TM polarizations make his case necessarily a
more complicated problem. He recognized that the characteristic function
was a determinant of fourth order, but no root searching method was proposed
for actually calculating the modes in a general case. Complex modes were
not considered. Finally, Heitman and van den Berg [66] present a con-
trasting formulation for the fields in a multilayer for a very different
purpose. Their representation was entirely in terms of propagating wave
amplitudes in all layers, with amplitudes all related by wave transforma-
tion matrices. These papers may be consulted for additional details and
alternatives in formulating the field problem in layered media.

In the literature on modal propagation there is essentially no dis-
cussion of the problem of calculating the roots of the characteristic
equation once it is formulated. For the simple three layer case and real
variables, the graphic method is often described. And for a slightly more
complicated case, of four layers or for complex permittivity, a numerical
method is sometimes mentioned but not described. In the literature and
texts on numerical methods, and on optimization methods, the calculation of
roots is extensively discussed. A very limited portion of these methods are
directly applicable to calculating roots of complex functions. For calcula-
tion of modes in the most general case here, an efficient complex root
search method is essential. An existing method has been chosen for use;
and, with severai important improvements, appears to be ideally suited to

the problem. This is described in Chapter 5.
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9. TORMULATION OF THE T'IELD PROBLEM

2.1 The Layered Structure. Geometry and Variables.

The geometry chosen for the layered structure is shown in Fig. 2.1,
together with the field variables and other quantities defined later.

The +z direction is chosen as the direction of mode propagation, with k
denoting the propagation coefficient. Thus, a propagation factor
exp i(kzz _ wt) is being assumed, but not shown, for all field components in
all layers 1 through N. Note the sign in the time factor exp(-iwt), and that

kZ is the same in all layers. With this propagation factor the differentials

in Maxwell's equations have the following implications:
9/%z -~ +ikZ, and 3/%t - -iw.

That kZ is common to all layers is a statement of the concept of propa-
gating modes. Attention is restricted to field solutions for which it is
true, and for which further requirements of physical admissibility are
satisfied. These modes may also be described as solutions of the eigenvalue
equation in the operator (-i3/9z); that is (-13/93z)F = kZF, with ]<Z being
the eigenvalue. The latter may be considered a continuous spectral trans-
form variable, in terms of which the general fields might be expressed by
integral representations; or k_ may be considered at fixed values for which
solutions are sought and which also satisfy the further conditions.

In this report central interest is on kz (or rather ki in a normalized
form as described later) as the eigenvalue parameter of a transverse eigen-
value problem (in x rather than in z). The discrete values of kZ are sought
for which the fields solutions satisfy additional boundary conditions in the

outer layers, 1 and N.
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In the transverse direction, y, the structure is taken to be uniform and
infinite. So for all material properties and field variables it is being

assumed that
3/d3y ~ 0.

The stratification is taken to be in the x direction, in which the ma-
terial layers are to be piecewise homogeneous and isotropic. There are a

total of N layers and N-1 boundaries, located at x The choice of origin is

%
arbitrary. Two semi-infinite layers are separated by N-2 layers of finite
thickness. The layers and boundaries are indexed from 1 to N in the direc-
tion of increasing x. Note that each material layer and its upper boundary
have corresponding indices. A layer % has X1 and X, as its lower '‘and upper
boundaries respectively, and X, separates layers % and 2+l. Boundaries X,
and Xy are taken to be reference planes for exponential solutions in the semi-
infinite layers, and do not imply a material discontinuity. They are used to
simplify the discussion of the boundary conditions imposed on solutions in
the outer layers, as distinct from the boundary matching conditions at all
the material discontinuities at 2y to Xy_1*

and for actual calculations, X, and Xy may be taken to coincide with %y and

When this distinction is made,

Xyo1? respectively. Only if these are different is it necessary to define
the distances tl and Ty otherwise the finite material layers are indexed

only from & = 2 to N-1 (i.e., t2 to tN_l).|

In this formulation the complex valued u and e are considered to be the
fundamental constituitive parameters for the materials. These are taken to
have given numerical values, and no model for any material dispersion is

included. This specifically applies to the imaginary part of e, which

usually varies with frequency but depends on the particular model assumed.
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Figure 2.1 Geometry and field variables for layered structure. There are N
different material layers, and N-1 boundaries located at Xg e Two semi~

infinite layers, 1 and N, are separated by N-2 layers of finite thickness, T,
The structure is uniform in z, the direction of mode propagation; it is also

uniform in the transverse direction, y. zy and ®y are reference planes in

s s e s . . +
the semi-infinite layers, at which complex amplitudes AB

and A§ are defined
for exponential solutions. FX, Fy, and FZ are normalized field variables

corresponding to the E- and H-fields shown for the two polarizations.
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If dispersion curvesof kz vs. frequency are of interest then the values of
fm ¢ must be zupplied, or the formulation must be extended by assuming some
particular model (say for a metal, plasma, or recombination gain in semi-
conductor). The index of refraction, n, is often more convenient (when

p o= uo) for numerical values and for discussion purposes, but it is not as
fundamental a physical parameter as e. Tor example, when a material varies
rapidly compared to a wavelength (say in periodic structures or finely
stratified media) it is the average of e rather than the average of n which
determines the wave propagation properties [10, 11; 55, p. 84].

In this report many quantities should be indexed according to the
material layer or boundary; such as ¢ and u, the field solutions in each
layer, and the tangential fields at the boundaries. However, to simplify the
notation such indexing will be avoided as much as possible. Most quantities
should be understood to be defined and different in each layer, and so in-
dexed; only if reference to a specific layer or boundary is needed will be
index, &, be used.

In the coordinate system shown, and with the assumed propagation factor,

Maxwell's curl equations reduce to the following six components:

kK E = -wpH , k H = +weE (2.1x)
zy P zZy %

SHZ 3EZ

—% - ik H_ = +iweE —=2 - ik E_ = -ieuH .13
= &nsz ++ueuy, P 1?2 < WU . (2.1y)
oFE oH

5§1 = +1wuHZ, 5§1-= —1w€EZ (2.12z)

Equations (2.1x) simply establish a proportionality between x and y field

components, while the other four equations are coupled first-order differ-



ential equations among the field components.

Maxwell's divergence equations will be satisfied everywhere if the
boundary conditions at all the internal material boundaries, R are satis-
fied. These are field-continuity conditions, and are most easily stated in

A

terms of the tangential field components. That is, By, H , Hy’ and EZ are

each to be continuous at every x Therefore, the field solutions for

e
Eqs. (2.1) in adjacent layers, as functions of x, must reduce to the same
values for the tangential fields at their common boundary. If FQ(X)’

X1 S XS X, represents any one of the tangential fields within layer 2%,

then the boundary conditions may be stated as
F(x )=F (x ) £ =1, N-1 (2.2)

for all components.

It is, of course, equivalent to state the boundary conditions in terms
of the continuity of the normal components of D and B at the interfaces. But
this is not as useful and direct as the above form.

The field components in Egs. (2.1) separate naturally into two inde-
pendent sets, corresponding to the two polarizations designated as TE and TM.
For example, if Ey = 0, then HZ and HX are necessarily zero; and similarly,
if Hy = 0, then Ez and EX are also zero. Therefore, the twe sets (E , Hz’ HX)
for the TE case and (Hy’ EZ, EX) for the TM case may separately be zero or
non-zero, and solutions for the two cases may be considered separately. It is
only because the structure has been assumed to be uniform in the y and z
directions, and because the material parameters are isotropic, that this is
possible. Otherwise all six field components will be non-zero and must be

considered together.

The non-zero Ey or Hy components are the namesakes for the designation as
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TE or TM polarization. They are transverse both to the z-direction of propa-
gation and to the x~direction normal to planar layers, and are tangential to
the planes. The non-zero HZ or EZ are the two other tangential components,
and lie in the direction of propagation. (These are the namesakes for the
alternative polarization designation as H- or E-modes, respectively.) The
normal components, HX and EX, are also transverse to the direction of propa-
gation and, together with Ey and HZ, determine the propagating Poynting power
density; e.g., SZ = (l/Z)EyHi for the TE case. The tangential components, Ey
and HZ for the TE case say, determine the transverse Poynting power flow
across the layers or boundaries, Sx = (l/2)EyH§. This power is usually zero
and ignored for guided modes, but it is very useful in giving the rate of
power loss for a leaky mode. In semiconductor lasers it also can give
directly the rate of power flow from an active guide to a parallel passive
guide.

Most formulations for propagation in layered structures consider a
reduced second-order wave equation; obtained by differentiation of one of
Eas. (2.1y) or (2.1z), and elimination of two field components, to obtain an
equation in a single component, usually Ey or Hy. The other two components
may then be expressed (by means of Egs. (2.1)) in terms of the solutions
obtained for the second-order equation.

Here we choose to emphasize Egqs. (2.1) as being a set of coupled first-
order equations in all the field variables simultaneously. By using (2.1x)
to eliminate one variable, the system reduces to two coupled first-order
equations, (2.ly) and (2.1z). For the TM case, for example, the two coupled

equations in Hy and Ez are
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These coupled first-order equations lead directly to a vector-matrix form for
the differential equation, and also directly to the matrix representation for
the solutions, and to the chain-matrix representations for layered structures
as used in thin-film optics.

It is possible to take the viewpoint that because Maxwell's equations
are in fact coupled first-order equations, then such equations are more basic
or fundamental than the second-order wave equation; that the reduction to the
second-order equation involves a loss of information (an integration factor);
and that, if solutions to the first-order equations are directly obtainable,
then it is unnecessary to consider the second-order wave equation. The
latter situation exists in the case of numerical solution of differential
equations, for which highly accurate and reliable programs have been developed
in recent years. In every such program higher n-th order differential equa-
tions are solved numerically by first transforming them to an equivalent set
of n coupled first-order equations. The same situation exists in the present
case; since solutions to the first-order equation are easily stated, there is
no need to consider the wave equation.

To simplify the notation, and to permit simultaneous treatment of both

TE and TM polarizations, we first introduce some normalized variables.

2,2 Normalization and Duality

For numerical and programming purposes, it is advantageous to use
normalized variables, which for typical problems have values not too many

orders of magnitude different from unity. This should be true in a general
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sense, and alsc in the sense of not choosing variables which accidentally
may become infinite at certain points in the solution or in some limiting
case of the parameter values. For example, in standard units the permit-
tivity, ¢, the permeability, u, and the velocity of light, all differ from
unity by about eight orders of magnitude. Further, in the optical regime,
the wavelength and frequency differ from unity by six to fourteen orders of
magnitude. Therefore, it is essential to use some form of normalized
variables for the closely related parameters of the modal propagation con-
stants, phase and group velocities, mode wavelengths, etc. An additional
example 1s that of the E and H field values, which generally will differ in
magnitude by a factor of 377, the impedance of free space. It is useful to
normalize both E and H to comparable units having the dimensions of the
square root of power or energy density. There is the added advantage of the
normalized E and H then having comparable values for TE and TM cases.

When a formulation for numerical calculations is to be programmed for
both TE and TM polarizations, a great savings of effort is realized by
choosing variables so that, by duality, as much of the program as possible is
identical for the two cases. Duality, as a transformation which leaves
Maxwell's equations unchanged, is well-known [3, p. 291, and in some problems
duality can be used to convert a known solution in one polarization into the
solution for the other polarization. Here, duality is used to allow one set
of variables to serve equally well for both polarizations. In the present
case this can be done in a rather complete way, because no explicit electric
or magnetic current sources are considered. Therefore, it is possible to
choose field variables which represent both electric or magnetic fields,
alternatively for the two polarizations. The ratio of these fields, the wave

impedance or admittance, alsorequires a dual interpretation. After initial
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definition of some guantities, which use either u or ¢ depending on polar-
ization, the formulation and programming serves for both polarizations.

The concept of wave impedance and wave admittance plays an important
role in the present formulation. For reasons discussed below, the variables
representing these quantities are chosen, by duality, to represent admittances
(H/E) for the TE case and impedances (E/H) for the TM case.

All material parameter values are normalized to the characteristic values
of free space. In each layer the permittivity, e, and the permeability, u,

are always taken in the relative sense.

= and € = egfe
W u/uO r / o

The characteristic impedance or admittance of each material, or the wave
impedance/admittance for any solutions, E/H, are also normalized to the values

in free space; that is, by the impedance

_ 1/2
Ny = (uo/eo) .

For quantities which depend additionally on frequency or wavelength, a
convenient reference value, say w, or Ao’ or even ko, is chosen to be used in
normalizing related quantities. Specifically, all frequencies and wavelengths

are referred to Wy and AO,

€
It

= w/wo and AP = x/xo

But, more importantly, all propagation constants are then normalized to ko,

that of free space (at the reference frequency);

= 1/2 = =
kO = wo(uo EO) = wo/c = 2w/ko s

where c is the free-space velocity of light.
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The zero subscript has a double implication; it refers to both free-
space values and to the reference value assumed, for say Ko. The latter may
be the wavelength of interest for a specific problem, in which case w, = xp =
L. Or Xo may be used to set the units in which the wavelengths are cxpressed;
such as for optical use Xo = lym, and Xr states the wavelength for particular
problems in units of microns. Also, Ao may be used to specify a central
value about which a range of wavelengths is considered, as for dispersion
curves asl)\r is varied. If w, is not unity then the appearance of Maxwell's
equation and other derived equations remains unchanged by the normalization;
w, U, and & are simply replaced by their relative values.

All propagation coefficients are normalized to ko and are therefore

dimensionless. Thus, we define for the modal propagation constant
B = k_/k
z' o
In each material layer, for a common B or kz, the different transverse

propagation coefficients kx are defined by

K2z oPue - k2 = k2 - K2
X pA Z

and in normalized form are denoted by «,

K = kx/kO )

If w, = 1, then v becomes the index of refraction, n, for the layer material.
Since all quantities may be complex, a principal branch specification for the
complex square root is needed in defining k from K2 (above). This definition

of k(B?) must be considered with care, especially when needed in integral
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representations where B8 is taken to be the independent variable [5, p. 459].
In the present problem there is particular interest in « for the two semi-
infinite layers, and is discussed in Sect. 3.3. Note that k has a consistent
definition in all‘layers. For real v and B, then k 1s pure real or imagi-
nary, respectively, as B8 is less or greater than v. Often in the literature
the transverse constant is defined differently in different layers, depending
on a priori assumptions about the magnitude of B relative to v in each layer.
This is done to keep the constant real, but it results in a formulation
which does not easily generalize to structures or modes not satisfying the
initial assumptions. With some attention to branch specifications the
present formulation is completely general.

For use with the normalized propagation constants, it is also useful to

define normalized distances in the x direction. Let
g = kox, and 1, =k t

so £ is a free-space radian distance and 1, the free-space radian thickness

2
of each layer &. In each material layer a phase, optical, or electrical

distance, 6, will be
6 = kg = kxx = KkoX .
and the corresponding thickness of each layer may be defined as 62,

8, =k T, = KZ(E2

TR TRG

If ¢ is real, and for B2 > v2 both real, then 6 and 62 will be real and true
radian phase distances. However, k may also be imaginary, and in general
complex, in which case 6 also includes the total exponential growth or decay

factor for the distance. Of course 6 depends on B2 through k(Bg2).
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Table 2.1 chows the {leld varlablen and quantitics which have dual
meanings for the TE and TM cases.

Parameters ¢ and o are alternatively proportional to u and €, and permit
some simplification of expressions, but are infrequently used. Also po = v2 =
wgurer, where v has the nature of an index of refraction multiplied by W, .

2 . . . .
If w. = 1 then po = n" = urer and v = n 1s the index of refraction in each

T
material.

YX(Bz) is, for given 82, defined and different in each layer. It is the
characteristic transverse wave admittance (TE) or impedance (TM) for the
layer, and plays an important role in the formulation. It is well to keep in
mind that YX is always proportional to k(B2) in each layer; it is generally
complex, may be pure imaginary, and can become zero. YX is, of course,
affected by choice of principal branch for «(g2). It is because k can become
zero that YX is used, rather than the characteristic impedance, ZX = l/YX, for
a layer. Formally, the impedance can be used equally well in formulating the
problem; and is perhaps more common, as for the transverse resonance method.
However, then k will appear in the denominator. So if the impedance (TE) or
admittance (TM) are used, they can become infinite and unusable as a
numerical parameter for calculations.

YZ is the longitudinal wave admittance (TE) or impedance (TM) and re-
lates FX and Fy. Since Y, is proportional to B it depends on the choice of
sign for B. In this report B will always be taken to have positive real part,
so all modes are assumed to have phase propagation in the positive z direc-
tion. For any such mode there will always exist a corresponding backward
propagating mode with opposite sign for B and YZ. The only difference in the

field distribution for the two modes will be the opposite sign of FX relative

to F .
N
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Neither YX or YZ is the characteristic admittance (impedance) of the
material of a layer, Y = (Cp/ur)l/z. Rather, YX and YZ should be considered
parameters of the field distribution in the layer, not of the material.

The E and H field components, in addition to being normalized by /ﬁ;'to
become the F-variables, are taken with different signs as required by
duality. The resulting equations then have exactly the same form for either
polarization. The sign differences are closely related to the directional
sense for the Poynting vectors and wave admittances when defined in terms of
the F-variables. Positive FX, Fy, and FZ geometrically form a right handed
triad.

Fy and FZ are the tangential fields of principal interest, being in-
volved in the coupled first order equations and the boundary matching con-
ditions at all Xy (or 52). Fy may be emphasized somewhat because it is
never zero in general, and the other two, FZ and FX, may always be expressed
in terms of Fy. PZ can vanish identically "at cut-off" in a layer when
Kk = 0 at 82 = vz, in which case the other fields cannot be expressed in
terms of FZ. FX is the field component normal to the planes; it is always
strictly proportional to Fy (though the proportionality depends on 8), and is
needed only for calculating the z-directed Poynting power.

SX and Sy are the complex, time-averaged, Poynting power densities in
the respective directions. They have a directional sense, and when positive-
real represent power flow in the positive x or z direction. As defined, the
imaginary part represents alternatively, by duality, the net magnetic or
electric reactive stored energy exchange.

The energy density due to the respective field components is denoted by
W, WZ, and WX. These represent real stored energy of the electric or magne-

y
tic type depending on the polarization. The imaginary part (only if u or e
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POLARIZATION

VARIABLE TE T™
P wrur WrEy
g err w Ur
YX(BZ) = k/p K/w b, k/w €
v (82) = 8/p = FX/Fy B/w 1 B/uw e,
Ey +E //rz +Hy/rz
I:‘Z +HZ‘/H—O— _EZ/)/YI)—
Fx _HX/TT(; +Ex/‘/§
SX:%FY FZ %Ey Hz '%‘Ez Hy
SZE%F;’; Fy _%Ey HE %BX Hy
0 2 Ig-;iyylZ (e/w)|E |? (u/u>lHy|2
W= ﬁ;l?zlz (u/L+)lHZ|2 (€/‘+)|EZ|2
L ;Z—;[FXP (w/w)ln, |2 e/ e, |?

Table 2.1 Normalized variables having dual meanings for TE and TM polar-
izations. All values are defined separately in each layer; and depend on

Moo Ehs W values relative to free-space at a reference frequency.

n? = u /e , k2(B2) = v2 - g2 = pog - B2, For w, = 1 then v? = n? = yu_e_,
e} o o r

with n the index of refraction.
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are complex) represents the density of energy absorption or gain at a point.
Identification of components of the energy density as due to the transverse

(ij Wy) or tc the longitudinal (WZ) fields is useful in power-energy rela-

tionships. Sums and differences in these components are directly related to
the phase and group velocity for bound modes (see Sect. 6.3).

Duality extends completely to all quantities, always implying the inter-
change of electric and magnetic quantities between the two polarization
cases. As an example of this completeness note that the imaginary part of
the Poynting power changes meaning also. A positive imaginary part, over a
closed volume, represents for the TE case an excess of electric energy over
magnetic energy density; whereas for the TM case the opposite is true. This
may be seen in the definition of the Poynting components SZ and SX, where FX
and Fz are conjugated but not F . So in the TE case H is conjugated as usual,
but for the TM case it is E that is conjugated. A similar situation exists
with regard to the various terms of the energy density, the transverse and
longitudinal fields contributing to the type of energy depending on the
polarization.

In the remainder of this report, and for programming purposes, the
normalized variables will be used (although for discussion purposes it is
often simpler to still refer to x rather than £). Turther reference to u
and € should be understood to mean the relative values without using the
subscript, r. The frequency and wavelength for the problem will be taken
to be the reference values W and AO so that the relative frequency W, =1,
and W will not appear. Only for programming purposes is it useful to re-
tain the capability of an operating frequency other than the reference
frequency. (So that propagation constants can be normalized to a fixed

reference value, rather than to a value that varies from case to case as the
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frequerncy (ko) is varied.)
For w, = 1 all propagation constants are normalized to the free space
value of ko at the frequency of interest, and have the form of indices of

refraction, n. Thus we will write in each layer

v2 = n? = qe, K = n

and numerical values of k and B can always be compared to the index of
refraction of the material in each layer. n, as defined from n2, will always
be taken to have positive real part. So the sign of the imaginary part of n
will be the same as that of n2, positive for dissipative material and negative
for media with gain.

In this report B2 (rather than B) is considered to be the primary mode
parameter. This is possible because B8 alwayc enters into the problem as g2,
no parameters of the problem depend on the sign of B. For any eigenvalue
found for B2 there are two modes with opposite signs for B8, and so propa-
gating in opposite directions. (It may be mentioned that the use of g2
corresponds to the use of the energy as the eigenvalue parameter in quantum
mechanics. Further, R2 corresponds to the parameter - used by Felsen and
Marcuvitz [5, Sect. 3.3] in the description of characteristic Green's func-
tions for waveguides. The integral representations may be carried out in the
B2 = -A plane, rather than in the B-plane.)

For the numerical eigenvalue search it is much more efficient to use
the characteristic function in 82. As seen later, the characteristic func-
tion then has better analytical properties than it would have if B were used

as the independent variable.
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2.3 Transverse Differential Equation

In terms of the normalirzed variables, Maxwell's equations are listad in
Table 2.2 along with their equivalents for the two polarizations.

The last two equations in the table constitute the transverse differ-
ential equations for the tangential field components. These may be written

in vector-matrix form as

7 T T

[F (o 1/Y N

%E- y' = (+ik) | i ! y; (2.5a)
F Y 0 i F
|72 | Y Fz)

or 4as
dr(e) _ 2y . )
- K(Bs) « F(g) 3 (2.5b)

where F(£) = col[Fy,FZ] is a vector, and K(B2) is the coefficient matrix on
the right, including the factor (+ik).

Equation 2.5 is defined in each layer, with parameters «k and YX differ-
ent in each, but always dependent on the value of 82 common to all layers.
Within each layer the differential equation has a constant coefficient and
relatively simple solutions. The system is second order (in the sense of the
dependent variable being a two-component vector), so within each layer there
always exist two linearly independent vector solutions. It is useful to
allow F(£) to also represent a matrix solution composed of two independent
column vectors.

Differential equations in adjacent layers are related by having the
same values of F(£) at their common boundaries (the boundary matching con-
ditions). That is, proceeding in either the positive or negative £ (the x)

direction, the final value of I' in each layer is the initial value of F for
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the differential equation in the next layer. In this sense Eq. (2.5) is a
differential equation defined for the whole structure, and it has unique
solutions F(f) defined everywhere on the structure.

Two properties of the coefficient matrix K(B2) are noteworthy. First,
det K = k2, and the matrix eigenvalues of K are +ik and -ik. Thus, if a
linear transformation were chosen to diagonalize K and transform I, the
solutions would be exp(+ikg), and exptikf), and any other F-solutions are
expressible as linear combinations of these two. «k is the transverse propa-
gation constant in each layer. Further, unless k2 = 0, K(82) is nonsingular
with distinct eigenvalues, which assures the linear independence of the
solutions throughout the layer. At k2 = 0 the eigenvalues are repeated (zero)
and exp(+0) = 1 are not independent solutions; but two independent solutions
still do exist, as shown later.

Secondly, the trace of K is zero, TrK = 0, with the consequence that the
Wronskian determinant for any matrix solution, F(£), is a constant [67, p. 75;
68, p. 302]1; Det F(g) = const. for all £, and has the same value in all
layers. This property corresponds to the fact that the second order differ-
ential (wave) equation for any one field component contains no term in the
first derivative; and, more physically, it corresponds to the reciprocity
property [3, p. 39].

In addition, because Yx is proportional to x, K is an even function of
k in all layers; and consequently K does not depend on the choice of sign or
principal branch specification for k(82). K is analytic everywhere in the
complex B2-plane, and it is also an analytic function of the parameters u and
€. In consequence, solutions will always be continuous functions of the

parameters of the structure [69, p. 40]. Any general solutions to the

differential equation are being referred to here, not necessarily eigenmode
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soluticens, which arise only with the imposition of additional outer boundary

condition.

2.4 Tield Solutions and Transformation Matrices for Layers

Within any layer the general solution of Eq. (2.5) is

i 3 r R 7
F (g) cos6  +(i/Y Jsinei i F (£ )1
y b ! ey (2.6a)
LFZ(gb)J {+(in)81n9 cosh j LFZ(ga)j
or in matrix notation
F(g)) = C(EL,E ) « F(E)) (2.6b)

where 6 = K(Eb—ga), and ga and Eb are any two points within the layer %,
&z_l < ga,gb < gﬂ. There is no implication about which of &a or Eb is
larger or smaller. All other quantities may be complex, and an additional
layer index, 2, 1s understood, especially for k and YX.

This solution is easily obtained using the techniques for systems of
differential equations having constant coefficients. These methods are well
known [67-69], and in engineering applications are most frequently encountered
in state-variable methods for analysis of linear systems [70]. Here (2.6) is
simply stated as the solution, as is easily shown by direct substitution into
(2.5), Specific solutions obtain if, at either Ea or gb, F is specified as
an initial condition, and the solution is taken as a function of the other £.

Equation (2.6b) also represents the general solution if F(£) is taken to
be a matrix; c(gb,ga) is unchanged. If Ea is a useful initial point, and

F(éa) = I, is the unit matrix, then the matrix solution at any £
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F(E) = C(&,8)

is referred to as a fundamental matrix, in terms of which any vector solutions
may be expressed [68, Sect. 7.9; 69, p. 44]. The matrix C(E,&a) itself satis-
fies the differential equation (2.5), its two columns being independent vector
solutions.

The inverse transformation from Eb to ga, for expressing F(ga) in terms
of F(éb), is simply obtained by the inverse matrix relation. And the inverse
of C(gb,ia) can be written by inspection: eitner by interchanging gb and ga,
reversing the sign of 8, or reversing the sign of the off diagonal elements.

That is,
-1
F(Ea) =C (Eb,Ea) . F(Eb) 5

with

-1 coshH —(i/YX)sine
cHE,LE) = CE_LE,) ,
: —(iYX)sine cos6

and 9 is defined as before.
If ga and gb in (2.6) are taken to be the boundaries of any finite layer,
then (2.6) becomes the general relation (a linear

say Eb =& and £, ° Ez_l,

transformation) between the tangential fields at successive boundaries:

where



54

e

cosb +(1/Y. )sin®
cozC(e 5 )= * =k (2.7)
2 S +(iY )sinb cosf
i /8y v
with 8 = - = i s ; £
with bﬁ Kz(g2 &2_1) KTy being the complex (phase) thickness of the

layer.

The matrix C2 for a layer (sometimes called the characteristic matrix) is
the quantity of central interest in the matrix methods for the analysis of
multilayer optical filters [59; 60, p. 19; 61, Sect. 2.6]. It is also
analogous to the ABCD matrix relating voltages and currents between cascaded
two-ports or sections of transmission lines [3, p. 87]. The inverse matrix
for a complete layer is easily written, just as for any two points in the
layer.

Fields at any two boundaries separated by more than one layer are also
related by a matrix transformation. The matrix is easily obtained as the

product of all matrices for the intervening layers. By induction,

- C

Py = Sy B 7 Sl g Feeny

and in general,

P = C +F
P P4 q
%
c = n c, ., D >q .
P A geqer *

The pre- and post-subscripts for the matrix are useful in designating the two

boundary indices (and their order) between which the matrix is defined. In-
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verse matrices are easily designated by reversed order of the subscripts.

The properties and use of the subscripts may be summarized:

_ _ -1

ZC(2~1) - cz’ (z—l)cz - Cz
-1

c =1 ¢ = C

28 qQp DPg

cC = C. +«¢C for any £.

pqg pLig Y

The last relation indicates that the matrix for any part of the structure may
be factored as a product of the two matrices for any partition of the struc-
ture. {(Mathematically, % need not lie between p and q.)

A matrix transformation also exists between any two points which lie
within different layers. The necessary matrix will have two factors for the
transformations from each interior point to a reference boundary for each
layer, and a factor for the transformation between boundaries. Thus, one may

write for Eb in layer p, and & in layer q:
F(Eb) = [c(gbagp) * ch * C(Eqaga)] ¢ F(ga)

Therefore, c(gb,ga) is defined for any two points & in the structure, pro-
vided the factor qu is understood whenever the two points are not within the
same layer.

A matrix for a single layer, %, will always be referred to, by the single

post-subscript, as C It is emphasized that CQ(BZ) depends only on the

IE
parameters p,e, and the thickness for the one layer. Changes in parameters
of adjacent layers or elsewhere in the structure have no effect on CQ.
Similarly, any changes in £, say € or its thickness, are fully characterized

by the changes in Cg3 and the effects on the overall structure are isolated to

the single factor CQ in any overall matrix product.
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The matrix C(B2) = NCO for the overall structure between the two outer

boundaries EO and § completely characterizes the finite part of the struc-

N’
ture. Once C(R2) is known for some value of 82, then the transformation be-
tween the fields at the outer boundaries is determined; no other information
about the interior structure or the field distributions 1s needed. Neither
the semi-infinite layers in which the finite layers are embedded, nor the
outer boundary conditions, have any effect on the function Cc(B?). This is
the great advantage of the present formulation over a grand-determinant
method.

The eigenvalue problem can be completely stated in terms of the matrix
function C(82) and the outer boundary conditions. By the definition of C,
the interior boundary-matching conditions are always satisfied, so these may
be considered to not be a part of the eigenconditions leading to discrete
modes.,

. . . . + - .
For the overall matrix, and its inverse, another notation, C and C , 1is

useful. We let

(@}
n
(@]

N O, and C = OCN = (C ) 5

so then

at the outer boundaries.

The matrix transformations here are defined with a sense of direction.
Multiplication from the left always implies transformation of the fields to
increasing values of the index % or Increasing x. Often in the literature
the opposite sense of direction is used. For cascaded two-ports, matrix

multiplication on the left always represents transformations from the output
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back toward the input, from higher to lower index values. The matrices of
Eq. (2.6) and (2.7), or their analogs in other applications, often appear
with negative signs for the off-diagonal elements. This is due either to the
opposite choice for the sense of direction for the transformation, or to the
opposite choice for the sign of the exponential time factor, say as
exp(-jwt). The present choice is logically more useful for programming pur-
poses. (e.g., for do-loop indexing.)

The following properties are held by a C-matrix for any layer, the whole
structure, or between any two points in the structure.

The determinant is unity, det C = 1. This may be shown directly from
the defining form in (2.6) and (2.7); and for the whole structure it follows
from the fact that the determinant of products of matrices is the product of
the individual determinants. Physically this corresponds to the reciprocity
relation for the tangential field components. Had non-reciprocal materials
been assumed the determinant would no longer be constant, and generally a 2x2
matrix formulation would not be adequate. (In Ref. 59 this property is mis-
takenly attributed to energy conservation.)

In layers of purely lossless material, and for real B, the diagonal
elements are pure real and the off-diagonal elements pure imaginary. This
remains true for the product of any number of similar matrices. For complex
B, for leaky modes, or for a structure with any layer having a complex e, or
p (any loss or gain), it can no longer be true.

Within any homogeneous layer the two diagonal elements of the matrix will
be equal, but for more than a single layer it will generally not be true. The
only exception is for a symmetric structure, which can be shown to have a C-
matrix of the same form as (2.6) [61, p. 248]. That is, for an overall

symmetric structure there will be an equivalent 6 and Y , but these will be a
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complicated function of 82 and of the parameters of all the intervening
layers. A general non-symmetric structure matrix can be shown to be repre-
sentable as the product of two matrices having the form of (2.6) [61,
P. 247]. These properties are useful in the design of multiple-layer thin
film filters.

The C-matrix for any number of layers is an even function of KR(BZ) for
all the included layers. This follows because cosf, YXsine, and (l/YX)sine
for all even functions of the respective KQ. (Recall that 62 and YX2 are

proportional teo k_.) Since cos® and sin® are analytic functions of k, then,

L
and in spite of the square root in defining k(B?) = (nZ—Bz)l/2

, the matrix C
for any number of layers is an analytic and single-valued function of B2
everywhere. C(82) has no singularities in the finite plane; the potential
branch points at Ky = 0 for B2 = nﬁ do not occur because of the even func-
tions involved. Consequently, the formulation and calculations are never
affected by the choice of principal branch specification for Ky in the inner
layers. This fact is of fundamental importance to the analyticity of the
characteristic equation and to the complex root search for eigenmodes.

The special case of a layer "at cut-off", with g2 = n%, Kg = 0, is of
some concern. Physically this corresponds to plane-wave components propa-
gating parallel to the layer, with no component of transverse phase propa-
gation or exponential change in the field components across the layer. Al-
though the coefficient matrix K(B2) in (2.5) is then singular, with « = 0 a

repeated eigenvalue, the solution within the layer and the matrix C, are

well behaved with only a slight numerical problem. For x =+ 0, C2 becomes
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C ~ s (2-8)

i

Recall that p = l/wrur (TE), l/wrer (TM); and that YX = k/p, so that
Yxsine + k21/p and (l/Yx)sine »> p1. That is, to first order in small k, C
is independent of k. For numerical purposes (l/YX)sine becomes indeterminate
in the form 0/0; however, it is easy to use a power series expansion for
(sinb)/9 = sinchd for accurate evaluation of this term. This series would be
(l/YXsine ~ pt(1l - 62/31 + 8%/51 - 086/7! + ...). The other elements of CR
do not require any special consideration. Across a layer at cut-off, F_ is
constant and FZ is zero (the first column of C above), or Fy changes linearly
with x and F is constant (the second column of C).

For calculating detailed field values, incrementally as a function of

x, the matrix representation provides a rapid and efficient method. This is

described in Sect. 6.2.

2.5 Exponential Solutions and Outer Layers

It is, of course, possible to express the fields in any layer as linear
combinations of positive and negative exponentials (e.g., as "waves" propa-
gating transversely in the layer if k is real, or as real exponentials if «
is imaginary). This form of solution is important in the two semi-infinite
layers, because they are directly related to the boundary conditions imposed
at the outer boundaries for the eigenmode problem.

Expenential solutions, denoted by A+(§) and A_(E), may be considered to
be solutions of the second order wave equation, or as vector solutions of

the diagonalized form of the matrix equation (2.5). Either way, the field



variables in any layer, &, may be written as

T r 3 '_+ -
ENGY N FURET I AP
[ ¥ = < , (2.9)
sz(g) v —YXJ _A (£)
with
atey | lexp(+ig) o A;}
) = ]2 (2.10)
A (E)J ] 0 exp(-16) Alj

where 6(£) = KE(E—EQ) as before, and A+, A; are complex amplitude coef-
ficients with gi as a reference plane. That is, A2 = A(ég). Equation (2.9)

is, in fact, the transformation which diagonalizes the coefficient matrix K
in (2.5), and A(E) = col[A+(€),A—(£)] is a vector solution of the diagonal-
ized equation dA/df = diag[+ik,-ik]*A. The two columns of the transforma-
tion matrix in (2.9), col[l,+YX] and col[l,—YX], are matrix eigenvectors of
K.

ey

Duality extends to the interpretation of the AJl

coefficients, which may
be viewed as wave amplitudes of the same type as Fy, electric for the TE
case, and magnetic for the TM case. FZ, a field of the complementary type,
is cbtained from A(Z) by multiplicaticn by Yx’ the wave admittance/impedance.
This contrasts with the usual representation, of incident and reflected
waves say, always in terms of the E-field amplitude regardless of polar-
ization.

At the outer boundaries (with the understanding that go = gl and

gN_l = EN) the solutions of (2.9) are matched to the field solutions in the

inner layers via the tangential boundary fields F,, and FN:
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r T + ]

(2.11)

where Y. = Y _(B%) and Y_ = Y ,(B%) are the admittances in the semi-infinite
1 x1l N xN
layers.

The field solutions in the semi-infinite layers are assumed to be of the

1y determined by the outer boundary

form of Eqs. (2.9), (2.10) with A} and A
conditions. These conditions nearly always imply that only one of the two is
nonzero, that only a single exponential solution exists. This is discussed in
the next chapter. Of course, even in this case, the F-solution in layers 1
and N can still be expressed in form of Eq. (2.5) also, and may be more con-
venient for calculations.

The physical interpretation of A+(5) and A (£) is determined by the real
and imaginary parts of « in the layer, and therefore is very dependent on the
principal branch specification for k. For a half space above a surface-wave
structure the conventional specification is that Im k > 0; in which case N
represents solutions having exponential decay in the positive x direction,
and A" solutions having exponential growth. The real part of k may have
either sign, so N may imply either (but opposite) direction for the
phase propagation. If primary interest is in real waves propagating across
a structure (not eigenmodes), then the branch specification for « might be
Re k 2 0; in which case the superscript of At implies the direction (in x) of
the phase propagation, and the real exponential behavior may be in either
direction. If the branch specification is arbitrary (see Sect. 3.3), then no

fixed physical interpretation can be made of the A(f) solutions. So it is
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emphasized that the superscripts of A+ and A refer only to the sign of the
associated exponent in (2.10), exp(+ixg), regardless of how k is defined.
(As an extreme example, 1t is possible to specify Re « < 0, in which case
the direction of phase propagation would be opposite to that implied by the
superscript.) Howe?er « may be specified, the physical interpretation of
any exponential solution can always be made on the basis of the actual signs
found for the real and imaginary parts of x for any mode.

To allow physical intuition in discussing modes it is still useful to
refer to exponentials as positive or negative solutions, assuming that in
general Re x and/or Im x are positive. Then positive and negative refers to
the direction of phase propagation or exponential decay, although in any
specific solution (e.g., a leaky mode) one or the other may have the opposite
sense. Even more useful in the semi-infinite layers is to be able to refer
to the direction of the solution as being outward or inward. In layer N

this corresponds, respectively, to the positive and negative direction; but

+

in layer 1 the sense 1s reversed. Thus, in layer N, AN

may be referred to

as the amplitude of the outward solution, and Al

the amplitude of the inward

solution. But in layer 1, Al

is the amplitude of the outward (negative)
solution, and Az is the amplitude of the inward (positive) solution. These
implied directions are shown in Fig. 2.1. Generally, the boundary condi-
tions allow only one or the other in each region. (A common description, as
outgeing or incoming "waves', is being avoided because it does not apply to
solutions dominated by a real sxponential factor; as for bound modes and weak-
ly leaky modes.)

Exponential solutions are not as useful for the inner layers although

it is possible to develop a matrix approach based on a transition matrix re-

lating the amplitudes of exponential solutions in any two layers [60, p. 29].
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The boundary matching conditions necessarily require equating the tangential
fields in the two layers, at their common boundary, in terms of the A(f)
solutions according to (2.10) and (2.11). The resulting transformation at a
boundary, between the Ai(g) in the two layers, corresponds to reflection-
transmission at an impedance discontinuity. When this is followed by an
additional phase propagation matrix for the transition from EQ to &

g1 2@

.. . . .. + - .
transition matrix T results, relating the coefficients Az = col[Ag,Al] in

successive layers

A A

gl - (atl)

For real k, the T-matrices correspond to wave transition matrices for cas-
caded sections of transmission lines [3, p. 29].

The matrices for all the layers may be chain multiplied to-

T
(2+1)7° 2
gether (as for the C-matrices) to give an overall transition matrix for the

structure

that is, relating the amplitudes of the exponential solutions in the two
semi-infinite layers. As for the C-matrices, the T-matrix for any part of

the structure may be factored at any boundary index to write,

T = T T for any R.
pq pLig Y
The formulation used by Harris was dependent on a so-called general
partition relation for the recursive calculation of the characteristic

determinant. That partition relation can be shown to be equivalent to one

of the four elements of the above equation for the wave transition matrices.
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Conversely, it can be chown that the alpebra of Harrino
recursive relations can conveniently be written in the form of 2x2 matrix
operations, though this was not noted by him.

This representation is not as convenient as that in terms of the fields
and C-matrices, basically because the dependent variables, A+(£) and A (£),
are not those required to match at the boundaries. The boundary matching
equations are more complicated, and the T-matrices for each layer depend on
the material parameters in two adjacent layers (depending on k, u, £, and
YX for both £ and 2+1). A T-matrix is about twice as complicated as the
corresponding C-matrix to compute. Further, the matrix RTm is singular for
g2 = n% as Y2 + 0, and corresponds to the non-existence of the inverse
transformation of (2.9), at boundary &, from Fo back to AZ' For example,
the limiting form of CQ(KQ + 0) in Eq. (2.8) cannot be written in terms of
exponentials in k unless A; is first allowed to be proportioned to 1l/k.  and

L

the limiting form as Ke ™ 0 is used. That is, A; becomes infinite. This is
not acceptable numerically, even though the probability of occurrence is an
actual calculation may be small. For these reasons, and because there
appear to be no compensating advantages, the representation in terms of
exponential solutions and T-matrices is not considered suitable for
numerical purposes.

Becausze of the importance of the exponential solutions in the semi-
infinite layers it is, nevertheless, useful to define the overall T-matrix

for the structure, but this is most conveniently done in terms of the C-

matrix. If the fields Fl and FN expressed as in Eq. (2.11) are related by

+ .
the C matrix as FN = C+-Fl, then the vectors Al and AN are related by the

following two reciprocal relations
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= T.-» A = T o
AN N1 Al > 1 1'N A
with
[ J-1
. T'l i 1 1 ot 1 1
N1 LN Y -y Y. -Y
N N 1 1

A similar definition could be written in terms of C , or also written for

lTN. Note that det NTl = Yl/YN and det lTN = YN/Yl.

The overall T-matrix permits some physical interpretation in terms of
transmission and reflection coefficients for the structure, particularly for

+ - .
real B? < ni, nﬁ, when A and A vrepresent real waves having some component

. . +
of propagation in the transverse direction. Thus, Al and AN may represent

the amplitudes of incoming waves; while Al

represents a reflected or trans-

+

mitted outgoing wave in layer 1, and AN

an outgoing wave in layer N. The
ratios of these components may be taken to be the reflection and trans-
mission coefficients for the structure. However, for eigenmodes the Ai
amplitudes do not generally represent propagating waves, especially since
the branch specifications for Ky and Ky may be arbitrary, and a positive
exponential solution does not necessarily represent a positive going wave.
Here, therefore, reflection and transmission coefficlents must be understood
only in a generalized sense as the ratios of the amplitudes of the exponen-
tial solutions at X, and Xy

For an inward solution in layer 1 only (A& =0, Ai # 0), let v be the
reflection coefficient at %) and t' the transmission coefficient into layer
N. Similarly, for an inward solution in layer N only (AI = 0, A& # 0), let
v’ be the reflection coefficient at x_ and t the transmission coefficient

N

into layer 1. Note that the superscript -/+ refers, respectively, to both
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the direction (negative or positive) as well as the layer (1 or N) of the

reflected or transmitted component. In terms of the eclements of NTl these

coefficients can be written as

t AN/Al = Yl/(YN T22) (Al = 0)
v o= AT/AT = 17 (A7 = 0)
[ i RS Kt v 1
t7 = AT/AD = 1/T af = o)
IS Rk 22 1

+ +,,- +
r = AN/AN = Tl2/T22 (Al = 0)

Note that all reflection and transmission coefficients depend on l/T22.
In the present problem there is some interest in the T-matrix and the
transmission/reflection coefficients for the insight they can give to the
characteristic equation or eigenmode condition. Namely, that eigenmodes
imply the existence of outward solutions in the absence of any inward,
excitating, fields; that is, at poles of the reflection and transmission
coefficients, or zeros of T22 above. This leads to one representation of

the characteristic equation, and is discussed further in Sect. 4.4,

2.6 Application to Continuously Varying Material Parameters

An advantage of the present formulation of the complex mode problem is
that for numerical purposes it remains applicable to structures containing
plane stratified but nonhomogeneous layers. Whenever the material parameters
vary continuously with x (rather than being stepwise constant) it is still
possible to numerically integrate the coupled first-order equation (2.5)

between any two points in £. An accurate solution can be obtalned which
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corresponds to (2.6) for the constant coefficient case. Subroutines for
such numerical integration of systems of first order differential equations
have recently reached an advanced state of the art and are readily available
[71-7u].

It is emphasized that characteristic matrices, C(&b,éa), also exist for
nonhomogeneous layers. That is, the transformation for the tangential fields
between any two points is still linear and described by a single matrix,
although it cannot be written in terms of elementary functions, resembling
(2.7). Though these characteristic matrices must be calculated numerically,
they have all the properties listed in Sect. 2.3, just as for a homogeneous
layer. Therefore, an inhomogeneous layer can be embedded between any other
homogeneous layers of a structure, or the whole structure itself may be in-
homogeneous. The characteristic matrix for any inhomogeneous layer may be
chain multiplied together with other matrices, to obtain the o&erall matrix
for the structure between the outer boundaries. In particular, the role of
the overall characteristic matrix in defining the eigenvalue problem
(Sect. 4.1) in no way depends or whether it is for a structure which is
piecewise homogeneous or continuously varying. When an inhomogeneous layer
is encountered a call to a numerical integration subroutine would replace
the evaluation of Eq. (2.7).

Frequently an inhomogeneous structure is approximated by a number of
pilecewise homogeneous steps [52]. Accurate results can be obtained by using
a sufficiently large number of small steps, but it is very difficult to state
the degree of accuracy obtained or to determine the number of steps needed.
Recent advances in numerical integration have emphasized provision for
objective error control, and automatic changing of step size [73, 74]1. The

user can specify in advance the accuracy desired, and the program repeatedly
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chanpes the otep silze an necessary.  Where the coefficlents or the solution
change rapidly small steps are used, and where the changes are slow the step
size is made large. When low accuracy is acceptable the numerical integration
can be rapid, the step size being no smaller than necessary for the stated
accuracy.

For wave-guiding structures the variation of the material parameters,
n2(x)ﬁ is usually simple and quite slow (compared to the wavelength). To
integrate (2.5) it is only necessary to provide a formula for n2 at any x
requested by the program. The numerical integration can then be quite
efficient for low order modes having few oscillations across the structure;
integration could become costly only for higher order modes having a large
total number of oscillations, because these must be calculated in detail
using a large number of steps. It may also be mentioned that there is no
difficulty in numerically integrating through any point where k becomes
zZero, as n2(x) passes through the value B2. These are the so-called turning
points at which WKB approximate solutions become singular and invalid; Eq.
(2.5) is well behaved there. Lastly, the advantages of using first order
differential equations over the second order wave equation are significant.
In the former, the material parameters u or ¢ always enter as simple linear
coefficients; but in the latter non-constant v and e lead to additional
first order derivative terms in the wave equation, requiring evaluation of
the derivatives of p or e as well [5, p. 11].

It is unlikely that any user-developed piecewise approximation method
or finite difference solution can compete with presently available numerical

integration subroutines in terms of accuracy and efficiency.
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2.7 The Field Admittance/Impedance

The ratio of tangential fields F and Fy for any solution is of some
interest as a field quantity, primarily because of its use in the transverse
resonance method. This may be written as an admittance (TE) or an impedance

(TM) as [3, p. 78]
Y(x) = Fz(x)/F (x)
y

Since Y(x) depends on the field solution, and varies with x, it is not a
characteristic parameter of a material or a layer (as is YX). Rather, Y(x)
is a property of the solution.

From the solution, as in Eq. (2.6), Y(£) may be written as

(iYX) sin 6 + Y(Ea) cos 6
Y(g, ) = ;
b cos B + Y(Ea)(i/Yx) sin 6

where 9 = K(&b - Ea), and a layer index is implied. If numerator and
denominator of this expression are multiplied by YX/cos 6 the more familiar
form using tan 6 is obtained [2, p. 1081, as for the transformation of a
wave impedance from one point on a transmission line to another. TFor
numerical purposes the above form is more desirable because it avoids the
possibility of indeterminate forms («/®) arising from the tan 6 coefficients.
In any form though, Y(£) can become infinite since the denominator may go to
zero; that is at a node for Fy. As elsewhere, there is a preference for
Y(£) rather than its reciprocal Z(g) = Fy/FZ, because the latter can become
nearly infinite all across a layer which is near cut off.

Because Fy and F_ are continuous at all boundaries then Y(&) is also

continuous everywhere. Hence the well known property that Y(&) can be
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transformed between any two points in £ by a sequence of transformations.
In particular, using 62 for each layer, Y(§) can be transformed from boundary
to boundary all across a structure.

The transverse resonance method makes use of Y(&) defined for two
special field solutions. Namely, the solution for which there is only an
outgoing wave in layer N leads to the concept of the admittance Y(g) "seen"
at a point £ "looking" in the positive direction. Similary ?(6), seen when
looking in the negative direction, corresponds to the solution for which
there is only an outgoing wave in layer 1. The characteristic equation for

the transverse resonance method is that [2, p. 108; 6, p. 217, p. 279]
< >
Y(&) + Y(g) = 03

where the left side is a function of B2 as a parameter. It is important to
mention that the same equation is obtained regardless of the choice for the
point §. However, since each term can become infinite, there is the risk of
obtaining the indeterminate form (» - «) for some cholices of £.

There is a direct relation between the chain matrix multiplication of
the previous sections and the successive transformations of the field
admittance/impedance. It is well known that the transformation of Y from
Ea to gb above is a bilinear or Mobius (conformal) transformation in a com-

plex plane of Y [3, p. 374]. Such a transformation may be written in an

elegant form using matrices [75, p. 299; 76]. And if, for purposes of

11

illustration, the impedance Z(g) 1/Y(g) = FZ/Fy is used rather than Y,
then the matrices involved are in fact the C-matrices.
A general Mobius transformation from a complex variable z to w(z) is

w(z) = (az + b)/(cz + d4); with a, b, ¢, d being the parameters of the trans-

formation, and ad - bec # 0. The inverse transformation exists,
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z(w) = (dw - b)/(-cw + a). If the parameters are displayed as a matrix M,

then the Mdbius transformation may be written in an operator notation M: as

az + b

Tzt a’ with M =

w(z) = M:iz =

That is, M is a matrix, and M: denotes the operator whose action on z is
defined by the equation. The inverse transformation is easily written as
z(w) = M:—l, where M_l is just the matrix inverse of M. That det M # 0 is
important, and it may usually be chosen to be unity. The great advantage of
this operator form is that the composition of successive transformations and
the inverse transformations all follow the rules of matrix algebra and
inversion.

If Z(%) denotes the field impedance Z(EQ) at the boundaries, then by
using the matrix C'Q the transformation from Z(2-1) may be written in opera-
tor form using CR: as

7 + (i .
-1 cos 62 (1/Y2) sin 6

Ty -
ZZ-l(l 2) sin 62 + cos 9

L

Z(2) = C :72(2-1) =
% £

Similarly, Z(q) = qcp:Z(p—l) for any two boundaries p and q. This notation
is compact; the matrices involved in the successive transformations may be
multiplied together before writing out the impedance transformation. Thus,

the transverse resonance relation may be written as

- . = _lt
Z(p) = SOy F gl iy
+
- = 1A
4(p) pcl 1
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where Zl and ZN are the impedances of the two semi-infinite layers. (Tor
the outward-only waves in these layers these are the same as the field
impedances.) Therefore, the algebra of the chain matrix representation and
that of the admittance/impedance transformatlons 1s essentially equivalent.
For continuously varying material stratification Y(&) is a continuous
function of £ (except at possible points where Y(£) is infinite). Y(£) and

Z(£) then satisfy Riccati (non-linear) differential equations [77]. Using

Eq. (2.5) these can be found to be

av/de - (ikY) + (ik/¥,) ¥°

1
o

"
o

az/dg - (ik/Y) + (ik¥ ) 72

Given the reciprocal relation between Y and Z, these are entirely equivalent
equations. The expression for Y(Eb) above 1is simply the solution of the
first equation with constant coefficients in a uniform layer, with Ea being
some initial point. The continuous Y(£), and the Riccati equations, form
the basis for the so called invariant embedding method [771. Therefore it
can be said that the use of the field admittance/impedance, and the trans-
verse resocnance method, correspond to the formulation of the invariant em-
bedding method when applied to the case of piecewlse constant coefficilents

layers).

]

It may be argued that, because Y(£) is only a single field variable, to

{t

be solved for or transformed across a structure, the invariant embedding and
the transverse resonance methods are simpler than dealing with two components
Fy and FZ and the matrix operations as done here. In any particular case
this is not necessarily true. For example, the matrix transformation of T
across one laver requires four complex multiplications; whereas the trans-

formation of Y requires the same four multiplications plus a complex division
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as well. In the inhomogeneous case, as either Y(g) or Z(f) passes through
zero, it is necessary to repeatedly switch from one Riccati equation to the
other. Also, use of Y(Z) as the ratio between field variables, sacrifices
all knowledge about the magnitudes of the fields in the different regions of
the structure. As discussed in Sect. 4.6, structures exist in which the
fields can become exponentially very large or very small, and subject to
considerable round off error. In these, nearly indeterminate cases, the

use of Y(£) above would give no hint that it may be very inaccurate.

2.8 The Phase Integral

Integration of k across the structure for any value of g2 gives a

useful characteristic quantity, namely the phase integral:

£
3(82) = f kd
EO

The integral across any one layer, gg, is just the phase thickness, eg, used
before. Across the complete layered structure the phase integral reduces to

the summation of the 6 _,

2
N
Q(Bz) = Z 62 s
1
where 6£ = KQ(BZ)ER. If, as usual, EO and gN coincide with the outer

material boundaries then the summation is over the finite layers, & = 2 to
N-1. For the piecewise homogeneous structure, there is some ambiguity in
the definition of ¢ because it depends on the branch specification (the
sign) of «. For complex modes & is, of course, complex. The real part

gives a measure of the total radian thickness of the structure of any mode
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and is useful for ordering and indexing the modes. The imaginary part of &
gives a measure of the maximum possible exponential growth or decay of the
field distribution across the guide.

The phase integral plays a central role in WKB methods, for approximate
solutions in guides of continuously varying index profiles [6, p. 337].
Budden [56, Chapt. 93 57, Chapt. 7-8] used it for calculating modes in
ionospheric waveguides. TFor a single guiding layer, the characteristic equa-
tion for the modes can be stated in terms of the transverse round-trip phase
integral plus complex phase shifts at the boundaries (turning points). For
successively higher bound modes in a guide the phase integral increases by
abeut 7 for each higher mode index. Thus, it is possible to propose a mode

indexing scheme by assigning an index m to any discrete mode Bm2 as
m = integer[@(smz)/ﬂj

For single graded index guides, with quadratic variation of

n2(g) for all £, the WKB solutions are exact [2, p. 54]. Then,

o = w(m + 1/2), 82=n2-(mn+1/2)n /k t
m m O o O

where no2 is the peak value of n2, and t is the point (a full width) at
. 2 . .

which n~ = 0. So ¢ increases as integer numbers of w, and 8m2 decreases

from no2 linearly with m.

- . . . . 2 .
For a siab guide, with uniform index n and total thickness t, then

=gk t= + ;
@m K mm ¢ 3

where ¢ 1s the sum of the two phase shifts at the boundaries, as in Fig. 1.2.

T

2 .
When no is large, and for modes far from cutoff, ¢ z 73 and for modes near
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cutoff, ¢ ~ 0. (In the quadratic case above ¢ = nw/2.) The eigenvalues are
B2=mn2- (mr+ ¢)2/(k t)2,
m o o)

As before @m increases as mm; but now Bm2 decreases linearly with m2, not
with m.

When an arbitrary structure contains a single guiding region (though
made up of several layers) the phase integral can be expected to increase
linearly about as mm for successive modes. The decrease of Bmz with m will
be somewhere between gquadratic and linear, or perhaps slower. For true
bound modes, with small losses, the above proposed indexing method corre-
sponds to that based on counting nodes across the structure. The simple
variation expected of Bmz vs m (or vs the phase integral) also provides an
excellent method for generating initial guesses for g2; at which to start
the complex root search; as described later in Sect. 5.5.

In the fully complex case of arbitrary structures the above model is
not as dependable. If, for example, there are several separated guiding
regions (say three weakly coupled guides) then ¢ for the lowest order mode
will not be on the order of w (but perhaps 3m). And @m may be spaced only
approximately at intervals of w. Near and beyond cutoff, where with increas-
ing m all Bmz have large imaginary parts,the mode spacing with the real part
of & may be very poor. In fact it is not possible then to uniquely order
and index the modes [57, p. 137]. Nevertheless, the integer part of ¢(82)/m
is a useful characteristic to calculate for each mode that is found.

Because of the ambiguity in defining ¢ for the fully complex case, it
has been found useful to accumulate instead two sums, ¢_ and ¢_, separately

R I

taking real and imaginary parts of 6 6 always positive. That is

2
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N N
3, = E )Reeil 3 = § ]ImeZ[

1
£

Tha first, in units of w, provides a measure of the mode index. The latter
quantity provides an estimate for the maximum possible exponential change
(in factors of e), of the field solutions across the structure. If @I is too

large, such as for very weakly coupled guides, then there is risk of

numerical error. This is discussed in Sect. 4.6.
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3. BOUNDARY CONDITIONS, MODE CLASSIFICATION, AND BRANCH SPECIFICATIONS

Previous sections describe the transverse differential equation and its
general solutions for arbitrary initial conditions anywhere in x. Addi-
tional boundary conditions must be imposed at the outer boundaries %, and X
to restrict the domain of solutions to those which are physically allowed or
mathematically useful. These conditions are distinct from the boundary-
matching conditions at the outermost material discontinuities at ®y and

Rather, the boundary conditions at x. and x_, because of the unifor-

N-1” 0 N®

ity of the semi-infinite layer, correspond to conditions imposed at in-
finity. They resemble the so-called radiation condition requirement on
fields at large distances from sources in finite regions.

In order to calculate complex modes, including both bound and unbound
leaky modes, it is necessary to consider the relationship between the
boundary conditions and the principal branch specification for Ky and Ky in
the semi-infinite layers. These specifications restrict the solutions to
certain regions of the complex planes; and, similarly, different sectors
of these planes imply different physical characteristics for the modes.
These characteristics are useful in classifying the different possible modes.
Two simple special cases are also described. When only one boundary condi-
tion is imposed, the continuous spectrum of (non-eigen) modes results. And
in some cases a fixed value of surface impedance can approximate one or
both boundary conditlons; the resulting problem is greatly simplified,

being independent of branch specifications.

3.1 Boundary Conditions

Conceptually the simplest statement of the boundary condition at

either Ry OF Xy is that the field solutions are restricted to a single,
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either inward or outward, exponential solution in the semi-infinite layers.
. + - .
From Eq. (2.9), assuming that A, and AN are zero, for outward-only solutions,

this condition may be written in a normalization independent manner as

i
(@]

at x Y. T +F (3.1a)
y z

0 1

tl
(@

at x Y F - FZ (3.1b)

N N "y

(If inward-only solutions are instead specified at a boundary then the re-
spective sign appearing before the Y would be reversed.) These conditions
may be described as impedance-type boundary conditions, in that the ratio
between the two components of the solution is being specified. The equa-
tions are homogeneous in the field components-- there are no source terms
on the right. Sometimes these are described as mixed boundary conditions.

With the imposition of two boundary conditions, at opposite sides of
the structure, the field problem has become a two-point boundary value pro-
blem. Because both the differential equation and the boundary conditions
are homogeneous in the field variables (no sources) it is an eigenvalue
problem; only for discreet values of the eigenvalue parameter, g2, do solu-
tions for Fy and Fz exist. These values of B? are roots of a characteristic
equation D(B2) = 0, whose construction is described in Chapter 4.

It is of fundamental importance that the coefficients Yl and YN in the
boundary conditions (3.1) depend on the eigenvalue parameter (through their
proportionality to x(82)). This dependence distinguishes the open waveguide
problem from that of the closed waveguide, and distinguishes this problem
from nearly all text-book discussions of two-point eigenvalue problems. It

is necessary then to consider the principal branch specifications for the k;

these specifications become an important part of the statement of the
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boundary conditions. As a consequence, the associated branch points and cuts
in the g% plane become unavoidable singularities of the characteristic func-
tion D(BR%2).

For any value of B2 a solution always exists which will satisfy just
one or the other of the boundary conditions. If only one boundary condition
is imposed, then apart from normalization, it may be used as an initial con-
dition and a solution is well defined everywhere. A solution exists for each
of the two boundary conditions imposed separately, and for nearly all values
of 82 these two solutions are linearly independent. These play a useful

role on several occasions in the following discussion.

3.2 C(Classification of Modes

An extensive literature exists on the properties of surface waves, and
their classification according to the complex transverse propagation con-
stant in a semi-infinite layer [78-82]. Thus, in addition to the longitu-
dinal propagation characteristic implied by B, the signs of the positive and
imaginary parts of « in the semi-infinite layer determine the direction of
exponential decay or growth and direction of transverse propagation. The
reader is assumed to be somewhat familiar with the resulting concepts of
proper or bound modes, improper or unbound, leaky, and forward or backward
modes. This classification i1s fully applicable to the complex modes of the
present structure, but with two differences.

Firstly, there are two semi-infinite layers in the present problem,
whereas nearly all literature on surface waves concerns a single semi-infinite
layer adjacent to the surface of a guiding structure. Hence the classifica-
tion of a mode here must now include the characteristics of the mode in both

semi-infinite layers. These characteristics can be different in the two



80

layers. But Ky and Ky are not independent beczause they are both functions
of B2:; therefore, the mode characteristics in the two layers are closely tied
together. A minor matter of viewpoint is that modes in the present case are
not surface waves in the usual sense. This is because the two surfaces may
be widely separated, with the guiding structure arbitrarily thick in terms of
wavelength. The guiding region of energy confinement may lie deep within the
structure, and the outer boundary surfaces may have a negligible role in
determining the propagation properties. Nevertheless, though very little of
the energy may propagate in the semi-infinite layer, the mode characteris-
tics in these layers determine whether it is a bound proper or an improper
mode.

Secondly, nearly all literature on surface waves deals only with
passive systems, but here the possibility of gain in any layer is included.
This requires some broadening of the concepts of the types of possible modes;
but to types which cannot be distinguished on the basis of the behavior in
the semi-infinite layer. In a passive system, for example, exponential
growth in the direction of phase propagation (Re B and Im B with opposite
signs) always implies that the group velocity and power flow are then in the
opposite direction [80-81]. In the present case such a mode may be indis-
tinguishable from a forward mode with gain, where phase and group velocity
are in fact in the same direction as power flow, but with exponential
prowth in the same direction being due to galn somewhere in the structure.
At a fixed frequency, knowledge of B and of k in a semi-infinite layer can
only distinguish modes on the basis of the directions of phase propagation
and exponential growth or attenuation.

For this reason we take phase propagation to be the positive z direc-

tion, in common for all modes, Re B 2 0. Modes are then further classified
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by the direction of exponential decay or growth, by the sign of Im 8. Whether
his 1s due to loss or gain, or forward or backward power flow, cannot be
determined on the basis of 8 or k only. (This contrasts with the usual com-
parison of modes, taken to have positive power flow and group velocity in
common (Im B > 0), and further distinguished by forward or backward phase
propagation (sign of Re B).) Here, modes will sometimes be described as
attenuating or having gain, referring to the positive z direction. But this
.

chould be understood to be equivalent, in the passive case, to forward or
backward power flow and group velocity.

A transformation commonly used, from the B- and k-planes to a complex

angle variable w, is [5, p. 462; 79]

B = n sin w, K = N coS W,

where n is the complex refractive index in the semi-infinite layer. When w
is real it corresponds to the angle of propagation (measured from the out-
ward normal) of a plane wave in the layer. This transformation is very use-
ful and important in manipulating integral representations and paths of con-
tour integrals. In much of the literature the properties of discrete modes
is based on their location in the different regions of the w-plane. For
numerical purposes, with emphasis on locating the discreet mode eigenvalues,
the above transformation offers no advantage; and it is definitely detrimen-
tal to the complex root searching. For, the inverse transformation w(B) or
w(k) iz multi-valued, and if the root search is carried out in the w-plane
there i1s an infinite multiplicity of roots for each mode. Further, in the
present case with two semi-infinite layers, it is necessary to single out one
or the other layer as special, in which to make the above transformation.

For these reasons this transformation was not considered for the present
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formulation, but it must be understood if the discussion of mode classifica-
tion here is to be compared with some in the literature.

The question of the conditions under which the modes of different types
exist 1s not considered here. Neither the types of guiding structures re-
quired” to support the different modes, nor the excitations necessary to ex-
cite them are examined. If and when calculated modes are found to lie in
different regions, then the classifications serve to summarize their proper-
ties. Similarly, for any given structure, a root search may be started in
ny desired region to provide information as to whether modes of that type
are supported by the structure.

Som= regions or modes are described below as strictly nonphysical. This
is meant In the sense that no physical interpretation for them has been
proposed, nor any method of exciting them. These have rapid exponential
growth in the x or z directions.

The distinguishable regions of the B2- and B-planes, and of the k-plane
for one semi-infinite layer, are shown in the next two figures. These are
shown without regard yet to any branch specifications for x, since the mode
characteristics associated with each region do not depend on how these may be
assigned to different branches or sheets. The figures differ from many in
that a complex n2 is now allowed for the outer layer. A lossy material is
assumed, and with the positive imaginary part for ¢ = n2 exaggerated for
clarity. Also, the B- and k-planes are further divided into octants, to
distinguish regions in which the real and imaginary parts are large or small
relative to each other.

The B82-plane is shown in Fig. 3.1 with the different regions numbered.
To the left of the imaginary axis, in regions 7 to 9 and indicated by E, the

imaginary part of B is larger than the real part; in the z direction the mode
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Figure 3.1 Regions of the complex planes of B2 and B for «(B?) in one semi-
infinite layer. The imaginary part of n2 for the layer is exaggerated for
clarity. Numbered regions for different types of modes correspond to those

of the k-plane in Fig. 3.2.
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behavior is dominated by the exponential decay (or growth). These modes are
evanescent 1u the z direction of propagation and are not usually important.

The corresponding regions in the B plane are shown also, assuming
Re B8 > ¢ for the principal branch of B. The shaded second branch for B
corresponds to equivalent modes, but having the opposite sense of propaga-
tion. The region for modes which are evanescent in the z direction is again
denoted by E on either side of the imaginary axis. In the corresponding
region on either side of the negative imaginary axis modes have a rapid
exponential growth and may be conslidered as strictly nonphysical.

In Fig. 3.1 a branch cut is shown along the negative imaginary axis of
R2, corresponding to the principal branch specification for 8. Since the
§%2-plane is considered to be the primary domain of the eigenvalue parameter,
and B8 is not specifically needed in what follows, the B-plane and the cut in
the 82—plane is not further considered. However, if any mode of interest is
found to lie near to or cross this branch cut in 82, then the question of
branches in 8 and a possible transition to backward modes should be care-
fully reconsidered. Backward waves are most commonly associated with struc-
tures periodic in the direction of mode propagation. But they may also exist
in uniform structures when some layer is an isotropic plasma or a metal, for
which €2 has a negative real part [83, 8u4].

Modes are also described as fast or slow waves depending on Re B being
iess or greater than Re n. For low losses in the layer these regions corre-
spond to Re g2 being less or greater than Re n2, so slow waves are found in
regions 1, 2, and 5, and fast waves in regions 3, 4, and 6. Slow and fast
refer to the velocity of phase propagation of the mode relative to that in
the one semi-infinite layer. A mode may be slow or fast with respect to each

semi-infinite layer separately, depending on the relative values of n2 in the
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tWo.

Modes which propagate a significant distance in z (relative to the
exponential behavior) lie in the right half of the B2%-plane. In the first
quadriant, regions 1 to 4, modes decay in the direction of propagation (pass-
ive forward modes, or backward modes with gain). In the fourth quadrant,
regions 5 and %, modes grow exponentially (passive backward mecdes, or forward
modes with gain). The first quadrant may be further subdivided according
to whether the real and imaginary parts of B< are greater or less than those
of n2. In the B%-plane alone it is not possible to further distinugish modes.
It is necessary to examine the k-plane, or more specifically for any 82, to
consider the two possible values of «.

The complex plane for k(B2) is shown in Fig. 3.2, with the different
regions labeled corresponding to those in Fig. 3.1. The dashed and dotted
lines are mappings of the real and imaginary axes of 82.' Evanescent modes
lie beyond the two hyperbolas to right and left, which depend only on Re nz.
And modes with gain, or otherwise having exponential growth in z, lie beyond
the two hyperbolas in the first and third quadrants. These hyperbolas de-
pend only on Im n2, and in the lossless case they reduce to the real and
imaginary axes of x. The modes with gain then lie in the first and third
quadrants, and attenuating modes lie in the second and fourth.

The directions of transverse phase propagation and exponential beha-
vior are indicated, according to the signs of the real and imaginary parts of
k. Bound, proper modes (with respect to this layer) lie in the upper half
plane, Im « > 0. Field distributions for these modes are square integrable
in x. Unbound, improper modes lie in the lower half plane, Im « < 0. Out-
ward phase propagation and power flow occurs in the right half plane, and

in the left half plane the phase propagation and power flow is inward from
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Figure 3.2 Regions of the complex plane of k(B2) in one semi-infinite layer
of index 1. Numbered regions for different types of modes correspond to
those of Fig. 3.1. The cashed and dotted lines are mappings of the real and
imaginary axes for B2. Directions of transverse phase propagation and

exponential behavior are indicated.
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rhe semi-infinite layer into the structure.

Tightlv bound, strongly guided modes are located in the octants on
either side of the positive imaginary axis, regions 1, 2, and 5, where out-
ward expenential decay dominates over phase propagation, |Re k/Im k| < 1.
This 1s also the region for slow waves. Modes with strong outward exponen-
+ial growth, in regions 1' and 2' and the negative Imaginary axis are con-
sidered as strictly nonphysical.

Phase propagation dominates over the exponential behavior in the quad-
rants centered on the real axlis, [Im k/Re KI < 1. Such modes have a signi-
ficant component of transverse phase propagation and power flow in the semi-
infinite layer near the structure. This is also the region for fast waves.

The characteristics of modes when located in the different regions are
sunmarized below. Gain refers to modes having exponential growth in z, but
this should also be understood to include the possibility of backward passive
modes.

1. Tightly bound mode, weak inward phase propagation. Zenneck wave
{3, p. 454, 57, p. 233]. Inward phase propagation and power flow. Power
flow nearly parallel to surface with some small component flowing inward, as
to make up for losses elsewhere in structure. For assumed value of n2, no
modes with gain lie in this region.

Imaginary Axis. Purely bound mode, no transverse phase propagation or

nower flow. Pure exponential outward decay, power flow parallel to surface.
Bound modes in lossless dielectric structure.

2. Tightly bound mode, weak outward phase propagation. Power flow is
outward, but 1s absorbed in layer, not radiated. If layer is lossless, re-
gion 2 reduces to the positive imaginary axis.

With increasing gain somewhere in the structure (reducing the attenua-
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tion rate in z), a bound mode with approximately constant Re 8 > Re n will
move from regions 1 to 2 to 5.

In regions 1, 2, and 5 Re g2 > Re n2, and for low losses in n2, then
Re B > Re n; modes are slow waves with respect to the semi-infinite layer.

3. Weakly bound, attenuating in z, strong outward phase propagation.
Includes spectrum of attenuating plane waves, propagating outward at an
angle w measured from outward normal: k = n cos w, W real, along line be-
tween origin and «k = n. For a lossless layer region 3 reduces to a portion
of real line 0 £ k < n.

Real Axis. Part of the continuous spectrum. Pure outward phase propa-
gation with constant amplitude. Not a plane wave if n2 is lossy.

4. Passive leaky modes, unbound and improper, outward phase propaga-
tion. Power radiated.into semi-infinite layer. This i1s the primary region
of interest for beam coupling and radiation problems. For weakly leaky
modes, then Re k >> -Im k, near the real axis. Attenuation in z, which is
necessarily associated with leaky modes, may be due to losses anywhere in
structure. Loss need not be due only to that of leaky mode radiation.

In region 4, Re BZ < Re n2, and for small losses in n, then Re B < Re nj;
mode is a fast wave relative to the semi-infinite layer.

Note that a bound mode on the imaginary axis or in region 1 cannot
become a leaky mode in region 4 unless: a) n2 is lossy, and by passing
through regions 2 and 3, or b) layer is lossless, and by passing through
region 5 and 6 which extend up to the imaginary and real axes, namely a
structure with gain. Therefore a bound mode in a lossless structure be-
comes, with decreasing frequency say, not a leaky mode, but an evanescent

mode passing into region u4'.
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5. Tightly bound, strongly guided, mode with pain. Passive backward

bound mode. Outward phase propagation and power flow. Slow wave with re-
spect to layer.

6. Weakly bound mode with gain, strong outward phase propagation and
rower flow. Backward leaky mode. A fast wave with gain.

A forward leaky mbde, with increasing gain somewhere in structure, and
with other parameters approximately constant (Im B decreasing), will move

from region 4 to 3 to 6.

7. Strong exponential growth in z, nonphysical. Backward evanescent

8. Strong exponential decay in z, an evanescent mode. Bound in trans-
verse direction.

3. As for 8, but unbound in transverse direction. Evanescent mode
with gain.

Regions 1' to 4' correspond to an opposite choice of branch for «, how-
ever the principal branch may be defined. In the B2-plane these regions are
located on another Riemann sheet.

1'-2' Strong outward exponential growth, nonphysical.

3' Slow outward exponential growth unbound, inward phase propagation.
Includes domain of single inward plane wave incident at a real angle. But
with no outward, reflected, wave. Could be supported only by properly
phased combination of plane waves incident on both sides of structure.

4'  Weakly bound, inward pﬁase propagation. Similar to region 1, but
phase propagation dominant.

The regions complementary to 5 through 9, with opposite sign, could
also be described, but these do not appear to have any physical significance

or mathematical usef'ilness.
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Modes may also be judged by the magnitude of k relative to n. If k is
very small, and regardless of which quadrant it may be in, |k| << |n|, then
B ~ n. In the semi-infinite layer the wave propagation is nearly parallel
to the surface and the mode is said to be near cut-off. In the transverse
direction the solutions change slowly. It ié well to keep in mind that the
arigin of each k-plane corresponds to a branch point in the B2-plane for the
chavacteristic equation. For modes with k near the origin there is not much
distinction between the inward and outward solutions, they are both nearly
constant in x. The two possible modes may be nearly degenerate, and the

proper one can be difficult to identify.

3.3 Branch Specifications for 3 and Ky

Several points may be made concerning the role of principal branch
specifications for Ky and Ky Firstly, it is a simple matter of mathemati-
cal necessity-- some branch must be specified. For calculations it is
certainly necessary to let Ky and Ky represent single-valued functions.

The eigenvalue search must be cérried out in a single-valued domain of BZ2.
Any branch specification restricts each k to a half—plane, and if the other
half must be considered it must be done separately.

Secondly, - the branch specifications for k, and the consequent branch
cuts in the B? or B planes, are largely arbitrary from the purely mathema-
tical point of view. There is nothing in the statement of the differential
equations, or the form of the equations for the boundary conditions, that
requires a particular branch specification. Specific choices for principal

branch are based on additional physical arguments or on convenience for

calculations.
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Conventionally the branch specifications have been used as a tool to

restrict whe solutions to those which are physically acceptable. Tor the

[mt}

ields to belbounded, have finite energy, or proper direction of propagation,

the values of k K and £ must lie in certain regions of their complex

1’

planes. These regilons can be equated to the respective principal branches
and proper or principal Riemann sheets. On these, the elgenvalue prcblem is
well defined and all roots which may exist will be physically acceptable
nodes.

However, for calculation of complex modes in general, and for efficilency
in searching for complex roots as described later, a nonconventicnal and
largely arbitrary branch specification has been found very useful. This
allows proper and improper modes to appear on the same Riemann sheet in BZ,
simplifying their search. The classification of modes is then no longer
described by the branch specifications. Whatever the branch specifications,
regardless of how non-physical or unrealistic they may be, the resulting
bouncary conditions lead to a well defined and single valued characteristic
function, with roots which can be found.

In a larger sense the characteristic function can be considered as
defined and single valued on the set of four Riemann sheets of the g2-plane.
No branch specifications are needed. Roots exist on all sheets. Any roots
which are found can afterward be classified, and accepted or rejected, on
the basis of their physical properties.

Because B2 is common to all layers, then all the KQ(BZ) are implicitly

functions of each other. To emphasize this fact for k. and Ky they may be

1

written as

2 = p— 2 = _2_ .
Kl(KN) = VK§ Az KN(Kl) = VK%+A ;
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2
where A2 = n2 - n% = 2 - k2

N 1 E Ry 1 is independent of B2, and expresses the differ-

ence between the material parameters of the two semi-infinite layers. For
functions which depend on both Ky and Ky (say the characteristic equation),
as well as for each k as a function of the other, the k-planes consist of
two Riemann sheets and have branch points at + A. Each k-plane then also
has a branch cut associated with the principal branch specification for the
other «. The boundary between the two half-planes (branches), in either «x-
plane, maps to become the branch cut in the other k-plane, and both of these
map to become the branch cuts in the B2-plane.

Fig. 3.3 shows the complex planes of g2 and B for functions which depend
on both Ky and Ky® The branch cuts correspond to the conventional specifica-
tion of principal branch, Im k > 0. The positive imaginary parts for both
n2 and n2 are exaggerated for clarity. With two branches for each of k., and

1 N 1

Ky there are then four Riemann sheets for the 82 and B planes; the top sheet
is taken as the principal sheet, associated with the principal branch for
both Ky and Ky The locus for two possible modes is shown. The cross, on
the top sheet, is for a proper mode attenuating in z and bounded, with
exponential decay in both outer layers. The plus sign is for a mode which is
bounded in layer 1, but leaky and unbounded in layer N. It is circled to
indicate that it is located on a lower Riemann sheet.

Fig. 3.4 shows the complex planes for x, and Ky using the conventional

1
branch specification for both. The principal branch is the upper half-plane,
Im k > 0, plus the positive real axis. The second branch is the lower half-
plane and the negative real axis. The dashed hyperbolas, different in the
two planes, are maps of the axes of the Bz—plane, just as in Fig. 3.2.

The branch cuts in each k-plane correspond to the real line (the bound-

ary between the two branches) of the other k-plane. That is, the real line
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Figure 3.3 Complex planes of g2 and B, for functions of both k. and k...
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Branch cuts are shown for the principal branches, Im k > 0, conventionally

specified for bound surface waves.

Each plane is composed of four Riemann

sheets; the top principal sheet is the proper or physical sheet for both K,

and KN.
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Figure 3.4 Complex planes of 3 and Ky for conventional branch specifica-
tions. The principal branch for each k is the upper half-plane, lm k > 0,
plus the positive real axis. The real axis of each plane maps to the branch

cuts in the other « plane, and both map to the cuts in Fig. 3.3. The dashed

hyperbolas are maps of the axes of the g2-plane.
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of each k-plane maps to the branch cut appearing in the other k-plane; and
both map to the two cuts 1n the Sz—plane of Fig. 3.3. Each «k-plane consists
of two Riemann sheets, associated with the two half-planes of the other «.
The two sheets, for the two k-planes, together correspond to the four sheets
of the Bz—plane.

The cross in Fig. 3.4, corresponding to that shown in the 82- and g-
planes, shows the location of the possible bound mode. It is on the princi-
ple half of each k-plane, and on the top sheet of each. The circled plus
sign similarly shows the location of a mode which is bound in layer 1, but
which is unbound and leaky into layer N. It is in the principal half-plane
of SE but on its second Riemann sheet; this sheet corresponds to the second

branch of « in which the mode is located, but on the top sheet there.

ND
Note that the bound mode in both 38 and KN—planes is located in region 2 of
Figs. 3.1 and 3.2. The mode which is leaky into layer N is located in region

1 for k., but in region 4 for «

1’ N*

Note that the locus of any mode, if it crosses the real line of either
k-plane then it necessarily crosses the branch cut of the other k-plane,
onto the other Riemann sheet.

The relationship between the two k-planes, as described here for lossy
materials, has been rarely noted in the literature. Nearly all the earlier
literature on dielectric slab guldes treats only a single semi-infinite
layer, as for a dielectric layer on a metal plane, or else a symmetric slab
where the two semi-infinite layers were the same, say air [31, 85]. Tor the
symmetric guide a single x represents the value in both semi-infinite layers.
That is, k is taken always on the same branch for both layers. That « could

be taken separately on different branches in the two layers does not appear

to have been noted, and perhaps not recognized. Nearly all recent treatments
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of asymmetric guides consider only bound modes, or modes which are leaky only
to one side, say into a higher index substrate. Few have included losses in
the outer layers, so a careful discussion of branch specifications has not
been needed.

The behavior of modes, as they move along their loci in the complex
planes of k with changing parameters, has been discussed by Burke [31], Tamir
[83] and Shevchenko [85, 86]. But these descriptions were for symmetrical
slab guides, where the locus moved on a single plane for k representing both
outer layers.

The conventional branch specifications reject leaky modes as nonphysical;
such improper modes, on other than the principal sheet for B2, are sometimes
said to not exist. In order to calculate these, and other complex modes in
general, there are three alternatives. The first two are algebraically
equivalent.

a. The simplest viewpoint is that the other sheets of 82 must be
searched. That is, either Ky or Ky» OF both, are taken on their second
branch. For any value of B2, the k may be evaluated as on the principal
branch; but their sign is explicitly reversed before being used in defining
Yl, YN’ the boundary conditions, and the characteristic equation.

b. Alternatively Ky and Ky can always be taken on the principal branch,
but the boundary conditions of Eq. 3.1 may be changed to specify inward-only
solutions at either or both outer boundaries. Thus, with Im x > 0, the signs
before Yl or YN may be reversed to allow only solutions with outward exponen-
tial growth.

The only difference between a and b is the viewpoint of whether the sign

change is associated internally with the quantity represented by «k, or whether
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the external sign appearing before x and Y is changed. For programming pur-
poses these are not quite equal in convenience. It appears simplest to let
K, and N always represent a fixed quantity on some principal branch (which
may be arbitrarily specified). Then, as noted In Sect. 4.2, it is easy to
calculate, as a matrix, the characteristic equations for all four possible
choices of signs (inward and outward solutions) in Eq. 3.1. It is not easy
to program the capability to allow K, and Ky to pass continuously onto their
second branches.

c. The branch specification can be changed to reposition the branch cuts
in the B82-plane away from the region of interest. Thus, by allowing an arbi-

trary specification of a principal branch for k. and Ky these can be chosen

1

so that the regions of interest in the Ky and Ky planes are in fact on the
principal branches and free of branch cuts. The principal branches no longer
have physical significance.

The principal advantage of using an arbitrary branch specification, as
in ¢, concerns the difficulty in calculating modes which lie near a branch
cut. The complex root search depends on the characteristic equation being
analytic in the neighborhood of a root. At a branch cut in B2 the character-
istic equation has a step discontinuity; it is not analytic, unless 82 is
allowed to pass onto another sheet in crossing the location of the cut. If
82 is restricted to the principal branch then it becomes very difficult to
calculate roots lying close to the cut. Also, a root at a considerable dis-
tance on the other side of the cut, on the continuation sheet, can cause the
root search to repeatedly try to cross the cut. The direct solution to
this problem is to reposition the branch cut out of the way; to place as much

of the region of interest on one Riemann sheet, which can still be designated

as the principal sheet. Simultaneously the branch boundary and half-planes
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for Ky and Ky are repositioned and redesignated.

A variety of nonconventional specifications can be considered, with
curved or straight boundaries and cuts. The simplest choice is to use a
straight line branch boundary in each k-plane, necessarily through the origin,
at some angle to real axis. The resulting cuts in B2 are also straight lines,
but the cuts in the B-plane and in the other k-plane are along hyperbolas.

The locations of the branch points in any of the complex planes are un-
changed by any choice of branches and cuts. Complex root searching will always
be difficult in the neighborhood of these singularities.

Fig. 3.5 shows the branch cuts in the B-planes for a nonconventional
branch specification for K1 and Ky The only difference from Fig. 3.3 is the
location of the branch cuts. In the sectors between the positions of the cuts
in the twe figures there are changes in the assignments to the different
Riemann sheets. What is now the top sheet in these sectors was previously on
a lower sheet of Fig. 3.3. The plus sign for the mode which is unbound in
layer N now appears on the top Riemann sheet. The locus of any eigenmode in
the B2 or B planes is unchanged, and the mappings between these and the k-
planes are unchanged by any repositioning of the branch cuts. Only the
designations of the different Riemann sheets are affected.

The nonconventional branch specification for the k. and Ky planes are

1
shovm in Fig. 3.6. As before, the principal brauch half-plane is shown un-
shaded. The branch boundary is a straight line, but now it is oriented at an
arbitrary angle denoted by ¢. The second branch is shown shaded. The right
half of the branch boundary may also be assigned to the principal branch, and
the left half assigned to the second branch. The only difference from

Fig. 3.6 is the position of the branch boundaries and location of the cuts.

The maps of the B%-axes and the locations of all mode eigenvalues in these
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Figure 3.5 Complex g2 and B planes for nonconventional branch specification
for k., and Ky Roots for bound mode, x, and leaky mode, +, can now appear on

same Riemann sheet.






Figure 3.6 Nonconventional branch specification in «, and Ky planes. Unit

1

vector v points normally into unshaded principal branch half-plane. Leaky

mode root, +, now appears on principal branch of Ky and on top sheet for SE
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planes are unchanged. However, the plus sign for the leaky mode is not now
circled, to indicate that it is located on the top sheet for the Kl—plane and

on the principal branch for k Both bound and leaky modes (at least some of

N
them) may now appear on the same branch. For example, if ¢ = n/4 then all of
regions 1 and 4 described in Sect. 3.2 are on the principal sheet.

The principal branch specification here is simply stated in terms of a
unit vector v, pointing normally into the principal half-plane, or by the
angle ¢ relative to the real axis. For any arbitrary ¢, the specification
may be written as Re « cos ¢ + Im x sin ¢ > 0. Or, if v and « are considered
as geometric vectors in the plane, their dot product is to be positive,
veX > 0. This may be written as Re x*Re v + Im k*Im v = Re (k v¥) > 0. For
the conventional branch specification ¢ = 7/2; and for the positive-real half
plane ¢ = 0. For computation, values of k on the principal branch are easily
generated. Usually a library subroutine for a complex square root returns
values with positive real part. For such a value of k the branch specifica-
tion is tested, and if not true the sign of k is simply reversed.

As shown in Fig. 3.5 the corresponding branch cuts in the Bz—plane are
oriented at an angle 2¢. Any rotation of the branch boundaries in the «-
planes results in the branch cuts in the Bz—plane being rotated by twice as
much., If ¢ is changed by m the cuts in B2 rotate by 2m, returning to the
same position; but the Riemann sheets for each k will have been interchanged,
and the designation of the principal and second branch plane for k will be
exchanged.

In these figures the same branch specifications have been used for both
k, and «,,. This is not at all necessary. It is emphasized that the branches

1 N

for Ky and Ky may be independently specified. For example, modes may be

restricted to those which are leaky into only one semi-infinite layer, for
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which ¢ = nw/4 might be used; but a conventional branch, ¢ = /2, would be

used for the other semi-infinite layer. If different specifications are used
for Ky and KN the corresponding Figs. (3.5) and (3.6) become more complicated.
It is then possible to have the branch cuts in B2 and B cross each other, and
in Fig. (3.4) the branch cuts for one k could cross the branch boundary for the
other k. When branch cuts cross each other it is particularly difficult to
visualize the four Riemann sheets involved.

The use of arbitrarily positioned branches has proved very useful. It
has contributed greatly to the efficiency in finding sets of roots. TFor, it
is much more efficient to find a root in several iterations and later reiject
it as not of interest, than it is to spend five times as many iterations in a
futile attempt at finding that root just beyond the branch cut. From the
point of view of the root searching, on the analytic domain of the four Rie-
mann sheets, the branch cuts are only artificially imposed barriers. For any
choice of branches it is easy to make runs for the four possible choices of
branches and find roots on all four sheets in some region of the B%-plane;
say to the right of the real axis. The resulting modes can be plotted in the
respective planes without regard to branch cuts, just as Figs. (3.1) and
(3.2). That is, in four runs the same results will be obtained regardless of
how the branch cuts were chosen. An example of a very complicated set of loci
in the full Kl-plane, obtained in this manner for a relatively simple 4-layer
structure, is shown later in Fig. 7.2.

Note that the nonconventional branch cuts are not suggested as being
relevant to any integral representations. They are only for convenience in
the calculation of location of the roots for the discrete modes. Deformation
of the integration paths to lie along these cuts would not lead to conver-

gence of the integration in general. However, the cuts shown in Figs. 3.5
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and 3.6 could be used in the near-plane, and the integrals would converge
provided that the cuts in the far plane approached infinity along the nega-
tive real axis for g2, and along the positive imaginary axis for B, just as

in Fig. 3.3.

3.4 Modes of the Continuous Spectrum

Expansion of a general solution for a layered structure, as a sum over a
finite number of bound eigenmodes plus one or two integrals over a continuous
spectrum, is familiar [1, pg. 98-106; 2, pp. 87-40]. This spectral represen-
tation may be described as the result of deformation of the contour of inte-
gration (in the B-plane) of an integral representation for the solution
[5, pp. 464-470]. A particular solution, arising from some specific excita-
tion, is determined by the values of the expansion coefficients in the sum
and in the integral contribution. This report concerns the calculation of
the discrete eigenmodes (including unbounded improper modes), but the field
solutions associated with the continuous spectrum (of f-values) are an impor-
tant part of a complete representation of a general solution. It is appro-
priate to describe these continuous or radiation modes at this point because
they are not eigenmodes of the transverse problem. Rather, they are solutions
to the field equations for a continuous range of B-values, and always include
both an outgoing and incoming wave in one or both of the semi-infinite layers.

The integral contributions arise from separately integrating along the
conventional branch cuts for Ky and KN in the complex B-plane. See Fig. 3.3.
These two parts of the deformed integration contour come from infinity in the
upper half plane, in along one side of a cut, around the branch points at n

1

or my, and out to infinity along the other side of each cut [78, p. 312].



The branch cuts for this purpose are defined by Im Ky = 0 and Im Ky = 0, and

integration is necessarily on the principal Riemann sheet of g8 for both K and

Ko For values of B on each cut « is real; and the opposite sides of the cut
(and the contributions to the integral therefrom) correspond to the negative
and positive halves of the real line of each k. Therefore, k can be used as
a real variable of integration along the cut. The two solutions corresponding
to the two signs of k (the contribution from the Integration along opposite
sides of the cut) can be combined into a single function, a mode of the con-
tinucus spectrum.

There are two spectra involved, one for each semi-infinite layer, and
the two must be considered separately in the general case of complex and un-
equal ny and Ny Each spectrum consists of the points of B along the corre-
sponding branch cut, or equivalently to points on the positive real line of
k. For each point in the spectrum there is a solution or mode function de-
fined. It is composed of solutions for both positive and negative values of
the respective k. That is, in that semi-infinite layer both outgoing and in-
coming waves are present; so some external excitation is always implied. In
considering all points of one spectrum, say Ky and all values of 8 on the

cut, then the other x . is single-valued and always on its principal sheet.

N
That is, the solution in the opposite semi-infinite layer always consists of
the single outward solution, having exponential decay.

Therefore, we adopt the following definition for the modes of the two
continous spectra. Each spectrum consists of the one~dimensional domain of
points in B along the respective branch cut, or equivalently the positive
real line of k, for one semi-infinite layer. For any point in the spectrum

the field solution is defined as having a single outward decaying solution in

the opposite semi-infinite layer. The solution is thus being defined by means
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of a single boundary condition corresponding to one or the other of

Egqs. (3.1), taken separately. One spectrum may be described as the set of

all 8 for which 0 « Ky = +(n§-_—82)l/2 is real; and the solutions for which

F_o+ YNFy = 0 at Ry Eq. (3.1b). The other spectrum consists of the set of
B for which 0 < Ky = +(n§—82)l/2 is real; and the solutions for which
FZ - Yle = 0 at X5 Eq. (3.la). Each boundary condition, with some arbi-

trary normalization, serves as an initial condition at Xy OF X respectively;
and by transformation across the structure each solution is uniquely defined

everywhere.
. . . 2 2
Most treatments of dielectric waveguides assume that ny and nN are real.
Consequently, the branch cuts and the continuous spectra of B lie along a
portion of the real axis below ny or my, and along all the positive imaginary

axis. For real B between n; and oy then only one continuous spectrum is pre-

sent. But for B less than both n, and n

1 N’ and for the imaginary axis, the

two branch cuts and spectra are superimposed. (For values of B on the imagi-
nary axis the modes are strictly evanescent in the z direction.) TFor any
point 8 in this superimposed region, there is a two fold degeneracy in the
mode functions; two modes of the continuous spectrum exist, and these may be
taken in other arbitrary linear combinations. Several workers have construc-
ted the modes for the continuous spectrum of 3-layer guides in such a way
that they reduce to functions of odd and even symmetry when the structure is
reduced to a symmetric structure (if not originally symmetric) [1, p. 25, 29;
2, p. 48]. This seems to be a rather artificial construction, and not useful
for general structures which can be very nonsymmetrical.

There are further questions about normalization of the continuum modes,

and about the orthogonality between modes in the two continuous spectra, and
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orthogonality between them and the discrete modes. These questions are not
considered here. It is possible that the continuous modes, as defined here
(in terms of outward-only solutions separately in the two outer layers) may
in fact satisfy some orthogonality requirements [23, 87, p. 241]. This has
not been checked.

The continuous modes are discussed here only because they can be easily
included by a minor extension of the formulation. In any program to calculate
general solutions (no boundary conditions) or eigenfunctions (two boundary
conditions), it is only necessary to provide the input options to calculate
solutions from each of the two boundary conditions of Eq. (3.1) separately.
This is easily done. It is of course possible to generate two such solutions
for any value of 8 in the complex plane, but most will not have any physical
significance. Only for points corresponding to the real lines of Ky OF Ky
will a solution be a mode function of the continuous spectrum.

In the literature points in the continuum of the spectral Qariable are
frequently referred to as eigenvalues, and the mode functions as eigenfunc-
tions of the continuous spectrum (of the operator -i9/3z). This can be mis-
leading because these are not solutions of the transverse eigenvalue problem
in the sense of two-point boundary value problems. Modes of the continuous
spectrum are required to satisfy only one boundary condition at one end of
the structure; there is no characteristic function in the usual sense, whose
roots define the eigenvalues. It is emphasized that the continuous spectrum
and the discrete spectrum are solutions to two different boundary value pro-
blems. The boundary conditions imposed are different.

The simple case of plane waves, incident on the structure from the semi-

infinite layers, is very closely related to the continuous spectrum. If the
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cuter two layers are lossless, the domain of B (real B < ny, or nN) and the
field solutions are the same for both. If the outer layers are lossy then an
outward plane wave implies that B/k = tan w is real, with w being the angle
of propagation with respect to x. That i1s, k and B have the same ratio be-
tween their real and imaginary parts, and in their own complex planes each
lies on the line between the origin and the point n, or oy These points

then differ from the continuous spectrum when n, or ny are complex.

For a plane wave incident on one side, the sclutions are obtained by
imposing the boundary condition of Eq. (3.1) corresponding to the other outer
boundary (just as for the continuous spectrum, but for possibly different
vlaues of B). That is, since the reflected wave on the incident side is not
known: until the solution is obtained, the solutions are most easily defined
and calculated by specifying only an outward transmitted wave on the opposite
side, As for discrete modes the normalization is arbitrary.

Therefore any computer program using the present formulation can easily
include the options for calculating the fields in multi-layered thin-film
cptical filters, including lossy layers. Likewise the fields for plane radio
waves incident on arbitrarily complicated models of layered earth may be

found.

3.5 Constant Surface-Impedance Boundary Conditions

in some applications it is useful to approximate a boundary by a surface
having a fixed value of surface Impedance or admittance. That is, at some
surfaces in a field problem, the ratio of the tangential fields on one side
of a boundary is taken to be approximately constant. This assumption re-
places the need to consider the fields in the region beyond the boundary

[5, p. 5457.
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For the layered structure, constant admittance/impedance surfaces at the
outer boundaries %y and Xy_q May be used; by simply taking Yl and YN, in the
N~

boundary conditions (3.1), to be fixed values, not dependent on 82. A sense

of direction is still implied, with Y., and YN being admittances "seen" look-

1
ing outward, from the interior of the structure, toward the outer boundaries.
The effect of the semi-infinite layers is replaced by the assumed values for
Yl and YN' These boundary conditions are also equivalent to assuming a fixed
complex reflection coefficient, at the outer boundary, for outward exponential
solutions from within the adjacent finite layer.

The practical use of surface-impedance concepts is somewhat limited, be-
cause in few situations are the values reasonably constant, and because of
difficulty in determining the appropriate values. Two limiting cases, of zero

or infinite impedance, are nevertheless useful. If Yl or Y are zero, then

N
FZ = 0, and the boundary corresponds to a magnetic wall for the TE case and

to an electric wall for a TM case. The converse, of an electric wall for TE

or Y _ being infinite.

and a magnetic wall for TM cases, corresponds to Yl N

For computation it is then better to write the boundary conditions in terms
of the impedance(TE)/admittance(TM); namely, with Z = 1/Y, as ZFZ + Fy = 0.
The limiting cases are useful for metal walls at microwave frequencies. Thus
the formulation here is diréctly applicable for completely arbitrary plane
layered, inhomogeneously filled, planar metal waveguides.

Another useful application is to symmetrical layered structures, where a
factor of two economy in calculating the modes is possible. All eigenmodes
will be odd or even about the midplane of symmetry for the structure. Calcu-
lations can then be made using only half the structure, with the midplane

being replaced by an outer boundary having a zero surface admittance or im-

pedance. The other boundary remains open as for the original symmetrical
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ctedcture.  Hoder ol even oymmetry are caloulated by taking 7 = 0 at the nid-
piane boundary; {or, then Fy # 0 there, and Fy will be an even function of x.
0dd modes are calculated by taking Z = 1/Y = 0 at the midplane. (The odd and
even svimmetry refers to that of Fy; the symmetry of FZ will be the opposite
type.) The value of k in the one open semi-infinite layer of the half struc-
ture must also represent the value for « in the other semi-infinite layer of
the full structure. By symmetry, the two are equal; they are taken on the
same branch. Therefore, if Ky and Ky are to be taken on different branches,
the solutions cannot be obtained by this method. The modes may then not have
either odd or even symmetry.

It should be noted that assumptlion of a fixed surface-impedance at both
outer beundaries greatly simplifies the eligenmode problem. Since the bound-
ary conditions do not depend on 82, then there are no branch points or cuts
in the Bz—plane for any aspect of the problem. In particular, the character-
istiec function for the eigenvalues in B2 (see mext sections) has no branch
cuts; it is a single-valued function on a single Riemann sheet for 2. (The
same is true for the Green's function for the structure, [5, p. 456].) The
numerical search for eigenvalues should be more efficient. The waveguide is
closed and all modes are physically acceptable regardless of how complex or
complicated is the layered interior structure. If only one boundary is
closed, then the problem is simplified by half. Only for the one open

boundary and semi-infinite layer is it necessary to consider the branch

singularity, specification and mode classification.
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4, THE CHARACTERISTIC EQUATION

Given the differential equation and its matrix solutions, the imposition
of the outer boundary conditions gives rise to the transverse eigenvalue
problem. The present section considers the formulation of the characteristic
equation whose roots, in 8%, are the eigenmodes for the structure. Several
approaches to the equation are given to show its mathematical significance,
to provide some physical insight, to show its relation to the transverse

resonance method, and to point out some of the numerical considerations.

4.1 For a General Homogeneous Two-Point Boundary Problem

A general linear eigenvalue problem, in a variable parameter XA, may be

stated in the form of a homogeneous differential equation

LEALE(E)] = £1(8) - A(A,0)f(t) = 0, (4.1)
and the homogeneous boundary conditions

Ba(k)'f(a) + Bb(A)'f(b) =0 (4.2)

for a <t <b [69, p. 1463 88, p. 142; 89, Chapt. 3]. Here the dependent
variable, f(t), is an n-vector, and A(),t), Ba(k), and Bb(X) are n X n ma-
trices. The differential operator L[A,f(t)], as well as the boundary condi-
tion matrices, all may depend on A, the eigenvalue parameter. The dependence
may be non-linear, but is assumed to be analytic. In addition, the coef-
ficent functions may depend analytically on other parameters of the problem.
All quantities except the iIndependent variable, t, may be complex, and the
assumption of a finite interval [a, b] is important.

Equation (4.2) represents the most general possible linear boundary con-

ditions. Depending on the structure of the matrices Ba and By » it allows
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separatad, mixed, and even periodic boundary conditions. To have an eigen-
value problem at all, there must be n linearly independent boundary conditions.

This is stated as requiring in general that for the adjoined n x 2n matrix

r = rank [Ba,Bb] = n.

Othzrwise, 1f the rank r < n regardless of A, then n - r solutions always
exlst for any A [69, p. 155; 89, p. 39]. With these assumptions, Egs. (4.1)
and (4.2) form a well-posed eigenvalue problem; that is, for what values of
the parameter A do solutions f(t) exist?

For Eq. (4.1), by itself, fundamental matrix solutions (sets of n linear-
ly independent column vector solutions) always exist and are also analytic in
A. A fundamental matrix solution, F(A,t), may be defined by specifying at
some polnt to, a < to < b, that F(A,to) = I, the unit matrix. The matrix on
the right could be any other orthogonal matrix, but this greater generality is
not needed. Most frequently to is chosen to be to = a, and sometimes to T b,
but nothing in the problem depends on a specific choice for to within the in-
terval. Tor any choice of A, let F(A,t) be a fundamental matrix solution;

then any vector solution f(t) may be written in the form [68, p. 324; 69,

p. 45]
£f(t) = F(x,t)c,

where c is some constant vector. Obtaining solutions to the eigenvalue pro-
blem depends on finding values of A, and corresponding vectors c(A), such

that £(t) also satisfies the boundary conditions, Eq. (4.2). This will be
true if, and only if, the matrix equation (obtained by substituting f(t) above

into Bq. (4.2)),
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Q(A)+c = [Ba(x)-F(A,a) + Bb(A)-F(A,b)]-c =0, | (4.3)

15 satisfied. The n x n matrix Q(A) is called the characteristic matrix for
the boundary problem, and under the assumptions made, it is analytic in A. If
For a given A, Q(XA) is non-singular, then no solutions for the vector ¢ or for
£(t) exist [89, p. u40].

Therefore, Eq. (4.3) has a non-trivial solution for ¢ only for those

specific values of A for which the determinant equation is satisfied,
D(A) = det Q(1) = 0 (4.u)

This is the characteristic equation for the eigenvalue problem in the para-
meter A. D(X) is a determinant of order n, and it is analytic in A whenever
the other matrices are analytic. Because of the analyticity, then either D
is identically zero and every A is an eigenvalue, or else the eigenvalues A
form at most a denumerably infinite set with no finite limit point. That is,
the eigenvalues are distinct, and there is no continucus part to the spectrum
of the eigenvalue problem [839, p. 39]. It is possible, however, to have de-
generacy and multiplicity of an eigenvalue. This multiplicity can at most be
equal to n.

The characteristic equation (4.4) does not depend on the particular
fundamental matrix F(A,t) used in constructing the characteristic matrix Q(A).
For, although fundamental matrices are not unique, they can differ at most by
multiplication on the right by a constant non-singular matrix (having a non-
zero determinant). Therefore, though Q(X) and the vector ¢ for any solutions
will be changed by any such matrix multiplier, the characteristic equation
(4.4) is only multiplied by a scalar constant, the determinant of the constant

matrix. The choice of fundamental matrix can thus be based on convenience of
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calculation and numerical considerations.

To obtain the value of the characteristic function D(A), evaluation of
any fundamental matrix is needed only at the end points a and b. For example,
if C(x3b,a) is a transformation matrix between solutions f(a) and f(b) at the

end points, then

f(b) = C(x;b,a)-f(a),
£(a) = ¢ H(A3b,a) F(b) = C(Aza,b)£(b);
where C(r3b,a) = F(x,b)-F“l(x,a),

regardless of the choice for F(A,t). That is, the matrix transformation of f
between any two points is unique, and it may be determined from any fundamen-
tal matrix whose value is known at the two points. Then the characteristic

equation may be written as

D(A) = det [B_(A)+C(r3a,b) + By(M)] = 0, (4.5a)
or as D(A) = det [Ba(X) + Bb(k)-c(xgb,a)] = 03 (4.5b)
and in fact C may be factored at any interior point t to write

D(A) = det [Ba(k)-C(K;a,t) + Bb(X)'C(K;b,t)] = 0, (4.5¢)

independent of t. Although similar to the expression for Q(X) in terms of
F(A,t), as defined in Eq. (4.3), this equation emphasizes that D()) is inde-
pendent of the choice for F(A,t); except for multiplication by a constant.

The formulation above is presented to emphasize some general conclusions.
These are, first, that the construction of general solutions between the two
end points, and the specification of the outer boundary condition and the

characteristic equation, are two separate parts of the eigenvalue problem.
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General solutions (depending on the parameter A) can always be constructed to
satisfy the differential equation throughout the interval, without considering
the outer boundary condition; and the characteristic function can be defined
and evaluated for any A regardless of how the solutions were constructed. Fo»
example, in an n-th order system, there are n linearly independent solutions;
in any interior region it does not matter how these or any linear combination
of these are chosen. Further, at any points of discontinuity, the interior
boundary-matching conditions may be considered to be a part of the definition
of the differential operator, or a part of the construction of a general solu-
tion. They are not a part of the specification of the characteristic function.
For these reasons the characteristic function can always be reduced to an n-th
order determinant, regardless of the complexity of the structure leading to
the differential equation. Secondly, the analytic properties of the coef-
ficients of the differential equation and the boundary conditions carry over
to D(A). This permits conclusions about properties of the roots. That D(X)
is analytic in A, whenever the coefficient matrices are analytic, is very
important to the possible methods for numerical root-searching. Further,
there is assurance that D(A) is an analytic function of other parameters of
the problem, and in consequence the eigenvalue roots (and the eigenfunctions)
are continuous functions of the parameters [69, p. 40].

This description has not made use of any self-adjointness properties for
the problem, nor has it been necessary to assume any boundedness or square-
integrability properties for the eigenfunctions. These additional assumptions
may be required for physically acceptable solutions. Often the boundary con-
ditions themselves can be prescribed in such a way that only physically
reasonable solutions are included in the set of eigenfunctions. But it should

be recognized that these additional conditions constitute a restriction on the
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domain (of functions) of the differential operator. Mathematically there is
nothing in the differential equation or the boundary conditions which requires
these added restrictions; they are based on physical grounds.

For the layered structure the transverse elgenvalue problem in x is
easily stated in the above form, with two important exceptions. The order is
n = 2, the eigenvalue parameter is A - B2, and the independent variable is
T > x {(or £). The differential operator is given by Eq. (2.5), with the coef-
ficient matrix K(82) being piecewise constant and analytic within each homo-
geneous layer. The boundary matching conditions of Eq. (2.2) are considered a
part of the differential equation. For any value of B2 then, single vector
golutions, or fundamental matrix solutions, are easily generated for any choice
of initial conditions anywhere in x. In particular, the transformation matrix
between the first and last boundaries (or the inverse) may be easily gener-
ated by the chain multiplication of the individual layer matrices. If the
boundary field values are saved at each interior boundary, X this may be
considered to generate a solution, but need not be done. The differential
equation and the matrix solutions are all analytic functions of B2 and of the
other material and dimensional parameters of the problem.

The two important exceptions to the previous assumptions are that, 1) the
boundary condition equations are not analytic for all values of g2, and 2) the
interval of the independent variable (a,b) is not finite, but is the whole
infinite line. The second aspect must be considered with care before the
boundary conditions can be applied in such a way that most of the previous
conciusions apply. Ordinarily, a differential equation defined on an infinite
domain, with coefficients that do not vanish at infinity, is considered to
have an irregular singular point; and a much more complicated theory is re-

quired [89, p. 53]. In the present case, because the coefficients become
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constant in the semi-infinite layers, and by restricting the domain ol solu-
tions, it is possible to impose the impedance type boundary conditions at
finite values of x and obtain the exact solutions even though the domain is
infinite. Under these circumstances most of the conclusions from problems or
a finite interval remain valid [89, p. 56].

Thus, at some a < x

S %, and b 2 Xy the boundary conditions of Eq. (3.1) may

be written as

Y o1 !F (a)
Ba-f(a) = 1 . y =0, (k.6a)
0 O Fz(a) (3.1a)
- -
[ O oT F (b)
B+ £(b) = Y =0 ; (4.6b)
YN -1 Pz(b) (3.1b)

where Yl and YN depend on B?, and some fixed specification of principal branch
for <y and Ky used.

For the adjoined boundary matrix,

rank [Ba,Bb] = rank =2 3

= 1, since each has only one row. These are

and in fact rank Ba = rank Bb

separated boundary conditions, because each row of the equation involves F

and FZ at only one or the other of the boundaries. Though applied at finite

x, these boundary conditions are equivalent to their being applied at infinity;
because, if they are satisfied anywhere, they are satisfied uniformly through-

out the semi-infinite layer.
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Yl and YN are functions of the eiligenvalue parameter 82 and have branch

points at ni and ng respectively. They are not analytic at the branch point,
or on any fixed branch cut which may be imposed in the g2 plane. This lack of
analyticity cannot be avoided, and it compromises the assumptions made for the
general model. In particular, the characteristic function D(82) is discon-
tinuous at the branch cuts; or else it must be defined on a set of four Rie-
mann sheets for the Bz—plane, and B2 allowed to move onto the other branches
of Yl and YN. Except at the two branch points, the previous conclusions
about the analytic properties of D(X), and the eigenfunctions, remain valid
on the four Riemann sheets for B%2. On these extended planes the eigenvalues
remain distinct, and are analytic functions of all parameters. Near the
branch point, however, for some values of the physical parameters, it is
possible for two eigenvalues to coalesce into one.

An explicit expression is easily written for the characteristic func-

tion in terms of the transition matrix from X4 to Xy Let the elements of the

matrix be
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and the characteristic equation is

2 = = — —_— =
D(B“) = det Q (Yl YN le Yl Cso YN cll + CQl) 0. (4.7)

This is the equation of central interest in this formulation-- the eigen-
value equation (in B%) for complex eigenmodes of the layered structure. All
quantities are transcendental functions of g%, and the practical problem of
calculiating the roots remain. For even the most complicated structure, once
the overall transition matrix is calculated, the characteristic equation has
only these four terms. This equation is for outward-only solutions in each
semi-infinite layer. For the opposite choice in either layer (inward-only
solutions) the characteristic equation is obtained by simply changing the sign

before Yl or YN, respectively, as they appear in Eq. (4.7). If the character-

istic equation were to be written in terms of the elements of the inverse

matrix C , for the transformation from F_ back to FO’ then the position of

N

C_ . and 02 would be interchanged, and signs before C

11 and C2 would be re-

2 1

12

versed.

4.2 As Elements of Reciprocal Transmission and Reflection Coefficients

Some physical interpretation of the characteristic equation is possible
if the reflection and transmission of "waves" incident from the outside of the
structure 1s considered. If a reflection or transmission coefficient for a
structure is found to have a pole in some variable parameter, this implies the

existence of outgoing waves in the absence of any incoming waves; i.e. a
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solution to the source-free, homogeneous, problem-- or the eigenmodes. The
Green's function for a structure can be interpreted as a transmission coef-
ficient between source and observation point, and it is well known that poles
cf the Green's function, as a function of the variable parameters, correspond
to the eigemnmodes of a structure-- solutions in the absence of a source

[5, Sect. 3.3]. 1In the present case the "waves'" in the semi-infinite layers,
for which the reflection and transmission coefficients are defined, are not,
in general, real transversely propagating waves. For bound modes the solu-
tions are nearly pure real exponentials, though for complex modes the solu-
tions will also have some components of transverse phase propagation. For the
most general complex case it is still useful to consider the amplitudes of the
two exponential solutions in the semi-infinite layers, and to define the ratios
of these complex amplitudes as generalized reflection and transmission coef-
ficients.

Rather than use the T-matrix, which contains terms in l/Yl or l/YN, a re-
normalized form for the wave-transmission matrix will be used. This form,
denoted by S, avoids the possible infinities in these terms, provides greater
symmetry between the forward and backward transformations, and leads to
characteristic functions of the same form as Eq. (4.7). In fact, it is found
that the four elements of this matrix are the four possible characteristic
equations for the different choices of inward or outward solutions in layers 1
and N.

Let the forward and reverse matrices S+ and S° be defined by

S = - C - = (QYN)[NTl] (4.8+)



120

S = s 0 . = (2Yl)[lTN] (4.8-)

Y. -1 Y-y
1 N N

Using these (rather than the T-matrices of Sect. 2.5) the amplitude coef-

ficients Al and AN are related by

. [n
Qo =5 |
| Ay Ao
(4.9)
N b
s o+ =@y
AN _Al_
The determinants are
det 8T = det 57 = 4y Y
B SN
+ - . 2_2 2_2 _ _
sv that S and S are both singular at B< = n, and B~ = oy (Kl = 0, or Ky = 0).

. . . . + -
However, there 1s no need to consider their inverses. Thus S and S are not

inverses of each other; rather,

w2
.
63}
Hi
wn
.
V8]
il

(HYlYN)I

. . . . +
At the singular points, Yl = 0 or YN = 0, theilr product is zero, but both S
and $ are finite and nonzero. The S-matrices may also be described as the
PR . . - -
finite parts of the NTl or lTN matrices, with the poles at YN 0 or Yl 0

having been explicitly factored out.
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It would be possible to normalize a wave transmission matrix to be non-
singular and with unit determinant. This would be the same normalization re-
quired if the A-coefficients were to represent the square root of power, with
the transverse Poynting power being SX = }AIZ. To do so requires division or

/2 and (YN)l/Q, which re-

multiplication of the T, S, and A variables by (Yl)l
quires a further branch specification and leaves all quantities being a func-
tion of the fourth-root of (n2—82) in each of the outer layers. That is, now
four branches and sixteen Riemann sheets for all field quantities as a func-
tion of 8%. This normalization appears to offer no advantage over that used
here, is more complicated, and is probably intolerable for numerical purposes.
The normalization chosen leads to four simple expressions for the elements

of both S+ and S in terms of Yl’ YN’ and the elements of the overall C-
matrices.

The elements of the S-matrices may be written explicitly, using the ele-

+
ments of C say, as

+_ _ -—
11 7 (Cqq¥yy * CppYy Yy + Cpp + Cpp¥y) = 45,
sf = (.Y -cCc.Y.Y +C.-C Y)=-5]
12 10N T C12titn T Co1 T Rty 12
(4.10)
+ _ _ em
8y1 = (Cyp¥y ¥ Cp¥qYy = Cpy ~ Cpp¥y) = =5y
st = (c.y. -c.YY -cC..+C.Y.) =45
22 11°N 12°1°N 21 22717 7 "F11

The same four terms appear in each of the four elements of both st and
S5 only the signs of the terms differ. Any two elements differ by the
simultaneous change of the signs of two terms, and all possible permutations
of the sign changes (taken in pairs) are represented. If the signs of S;l and

S;Q were reversed in the above definitions, then the sign changes between the
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four elements correspond precisely to changing the signs before Yl and YN
separately. Thus these four elements of 5" and S correspond to the four
possible choices of inward and outward types of boundary conditions.

Note that the 822 element is precisely the same as D(B?) of Eq. (4.7),

and the characteristic equation may be written as
2y = 2y =
522(8 ) = D(B%) =0 .

That is, the eigenvalues are the zeros of S as a function of B2,

22

From the viewpoint of the transmission coefficients defined before we

have t = 1/ so the zeros of S,, are the poles of + . This fact

= 20 /8505 22

T22
may be described directly in terms of the at amplitudes. For some fixed

N to represent the inward (exciting) solu-

. . +
branch specification, take Al and A
tions, and set these to be zero. And assume the outward solutions (Ai,A;) to

e nonzero. Then from (4.9) we have

+
A 0
(2v,) Nizgt o
0 Al
] 1
or
+ _ o -
2Y Ay = 58]
0 = D22Al .

For nonzero solutions to exist (Ai # 0) then requires that S = 0, the eigen-

22
condition.

+ . . .
Only one other element of S 1is relevant to these solutions; it gives the

ratio of the two amplitudes at the outer boundaries. A;/Ai = Sl2/2YN' (This
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ratio remains finite even as YN = 0, because then also 812 = 822 = 0, as may
be seen from the first two of Eqs. (4.10).)

The remarkable property of the S-matrix is that the other elements con-
stitute the characteristic function for other choices of the boundary condi-
tions. The S-matrix 1s a matrix of four possible characteristic functions,
corresponding to the four Riemann sheets of the g2-plane.

If the conventional branch specification is used, for example, and com-
plex modes leaky into layer 1 are now of interest, then in that layer Ai =0

and AI # 0 for "inward" solutions (outward exponential growth). The relations

(4.9) between the amplitudes become

N AT
(or) I
0

0 1>

2YNAN = SllAl
+
0= SQlAl

. . + . . . .
For nonzero solutions to exist (Al # 0) then the characteristic equation is

now
2y =
5,,(B2) = 0,

and the ratio of the amplitudes is given by A;/AI = Sll/QYN.

The following table summarizes the four possible cases of the eigenvalue
problem, each using one of the four elements of the S-matrix for the charac-
teristic equation. The solutions are described with respect to the conven-
tional branch specifications for k., and k... The array of four blocks corre-

1 N

+ . . . . .
sponds to the four elements of S , which in the first line constitute the
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™~ Layer Inward Outward
N
Improper, Leaky Proper, Bound
Layer
N Waves Waves
. 2y = 2y =
Sll(B ) 0 812(8 ) 0
Inward AL = AL E0 (AN MR
Improper, Leaky + _ _
Al’ AN £ 0 Al’ AN 0
Waves
-+ - _
AN/Al = 821/2YN A_/A 822/2YN
= = - Y
(Cll+ ClQYl) (Cll ClQ l)
2y = 2y =
821(8 ) 0 522(8 ) 0
- _ .= +_—_
Outward Al:AN:O Al:AN:O
Proper, Bound
+ Lt -t
Al’ AN £ 0 Al’ AN £ 0
Waves
+ .+ +
AN/Al = Sll/2YN AN/Al 812/2YN
= Y = - Y
(Cpp * Cpp¥y) (Cyq 7 C0¥y)

Table 4.1 The four possible characteristic equations for inward and outward

solutions in the semi-infinite layers. The first line is the characteristic
. . . +
equation in terms of the elements of matrix S . The two columns correspond
to the two possible choices for solutions in layer 1. The two rows correspond

to the two possible choices in layer N.
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characteristic equation. The next two lines show the conditions on the ampli-
tuden, and the last two lines show the ratio of the nonvero amplitudes. [Lle-
ments of C appear in the last line. (Which implicitly assumes the characeter-
istic =zquation is satisfied, and which could be written in a different form.
Fer example, in the 2-2 case the ratio is A;/Ai :.(Cll—leYl) = (CQl—CQQYl)/
YN; the second equality is simply a restatement of the characteristic equa-
tion.)

Representation of the characteristic equation in terms of the elements of
the S matrix have proved very useful. It is convenient to program. From the
ot matrix, calculated by the chain matrix multiplication, then st is calcula-
ted by two additional matrix products, Eq. (4.8+). This may be done for any
specification of principal branches for Ky and Ky The choice of outward
or inward solutions in each outer layer is easily controlled by two input
parameters. These are used to select which element of S to be used as the
characteristic function. With the added freedom provided by the nonconven-
tional branch specifications (Sect. 3.3) there is complete flexibility in

choosing the types of solutions to be represented by the characteristic

equation.

4.3 As a Wronskian Determinant

Yet another viewpoint on the characteristic equation is possible. It
of fers further physical insight on the nature of the eigenfunction solutions,
and has a direct relationship to the transverse resonance method.

We consider a specially constructed matrix solution of the differential
equation. In contrast to fundamental matrix soltuions, let each of the two
columns now separately satisfy initial conditions at two different values of

k. In particular, the two vector-solutions are taken to separately satisfy
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the boundary condition at opposite ends of the interval. Thus, for any value
of 82, let the vector solution F (x) satisfy the boundary condition at Xy and

let the vector F+(x) satisfy the boundary condition at x For example,

N
assuming outward solutions at each boundary, F_(xo) = col[l,—Yl] and F+(xN) =
col[l,+YN]. (The superscript sign imples the outer boundary at which the
boundary condition is used as an initial condition.) Starting at each respec-
tive boundary, by means of chain multiplication by the layer transition
matrices, each solution may be propagated across the Structﬁre to the opposite
boundary. But there, in general, each solution will not satisfy the other

— . + - . s
boundary condition. The two vector solutions ' and ' may be adjoined to

form a matrix solution
+ —
F(x) = [F (x),F (x)] ,

which is well defined everywhere in x; and we consider its Wronskian determi-
nant.

The Wronskian, W[F(x)], is constant in %, and in general is ncnzero. At
either outer boundary, for most arbitrary 82, one or the other vector solution
will not satisfy the required boundary condition; therefore the two columns
are linearly independent there (and everywhere), neither one is an eigen-
function in x, and the Wronskian is not zero, W[F(x)] # 0. However, W[F(x)]
is a function of 2. For some particular values of 82 each solution may come
to satisfy the unfulfilled boundary condition (which, by definition, is al-
ready satisfied by the other solution), and the two solutions would then be-
come proportional, and W[F(x)] becomes zero. Conversely, at those values of
82 for which W[F(x)] = 0, then the two solutions are necessarily linearly
dependent (proportional); they must both satisfy the two boundary conditions,

and are both the same eigenfunction. Therefore, one representation for the
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characteristic function is simply the Wronskian determinant of this specially

constructed matrix solution. The characteristic equation is

FroET
X N _ y 'y
D(82) = WIF (x), F ()] = det =0,
rtoF”
Z zZ
or
D(B2) =F F -F F =0, (4.11)

at any x.

To evaluate D(82) for any g2, the two solutions F+ and T need not be
generated for all x, only from the outer boundaries X, and XN inward toward
some common position, x, at which the determinant is to be calculated. Most
commenly F is calculated forward to e at which F+ has just its starting

value. Just as easily r may be calculated backwards toward x_, at which the

0
characteristic equation may be defined. More generally F may be calculated
forward from Xy and F+ backward from Xy to whatever common intermediate x
may be chosen, conveniently at a boundary. The same number of matrix multi-
plications is needed in any case. It should also be noted that only a single
vector solution 1s being calculated across the layers, not a matrix solution
as in the previous representations. The complete matrix T(x) here is calcu-
lated only at the common interior boundary. However, if the full matrix were
calculated, the Wronskian may be evaluated at all interior boundaries and
these could serve as a numerical check. Even further, for numerical purpose

it is possible to define the characteristic equation as the average of D(B2) =

W[F+,F‘] over all the interior boundaries at which it may be calculated.
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For the four possible choices of boundary conditions, four different
Wronskian determinants are defined. It is possible to display these four
determinants as a 2x2 matrix, and in fact will be entirely equivalent to the
S-matrix. If the determinants are evaluated at some interior point, then this
will be equivalent to evaluating the S-matrix at the interior point. For
example, in Eq. (4.8+) ¢" can be partitioned at some interior boundary

+

c = _C

2 ITATAS

The product of the first factor in (4.8+) and NC can be

1’ L

evaluated numerically, separately from the product of ch and the last factor.
The rows of the first product (transposed to column vectors) will constitute
the soclutions transformed backward from . to X and the columns of the
second product will constitute the solutions transformed from X, To x,. The
product of these two separate factors will then complete the evaluation of

S+ in (4.8+), and can be shown to constitute just the four Wronskian determi-
nants between the two sets of solutions.

The following somewhat more physical viewpoint is also possible for the
eigenmode problem. As for the modes of the continuous spectrum, and for modes
arising from plane-wave excitation in Sect. 3.5, two linearly indpendent field
solutions defined as above exist for nearly all values of B2. As 82 is varied
though (by changing the form of excitation say), it is found that values of 82
exist at which these two solutions degenerate to the same solution, an eigen-
mode. As an eigenvalue of B2 is approached, less and less excitation is re-
quired to maintain the same normalized amplitude within the structure; and
the two types of excitations, corresponding to the two separate boundary cbn—
ditions, give rise to solutions which are less and less distinguishable. This
is a resonance situation, where a large response is determined more and more

by the properties of the system, rather than by the form of the excitation.

In the 1imit of an eigenvalue, the two vanishing excitations produce the same
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nonzero and finlte field solution. (Of course the cxelitations referred Lo
mav not be physically realizable. Also, for an eigenvalue B2, a second
linearly independent solution must still exist. It is only the two solutions

generated as prescribed that do not remain independent.)

4.4 Relationship to Transverse Resonance Method

The characteristic equation for the transverse resonance method is most
directly related to the form just described. Equation (4.11), at any x, may

be written as
FFF =F F . (4.12)
y

If neither F; nor F; are zero, then the equation may be divided by their pro-

duct to give for the characteristic equation

> F; F «

v=2:--2:73 (4.13)
rroor
y oy

The definitions of Y and ¥ follow from the construction of F¥ in the previous
section. Since F+ consists of only an outward solution at Xy it corresponds,
at any other x, to the fields when "looking" toward positive x. Likewise, F
consists of only an outward solution at XO’ and at any interior x it corre-
sponds to the fields when "looking" toward negative x. The negative sign for
¥ is necessary for the proper directional sense for the wave admittance.

Therefore, the characteristic equation may be written in the familiar form

[2, p. 108; 5, p. 215].
> +
YzY+Y=20,;

where all Y are understood to be a function of B2, and also depend on the
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choice of x.

That F; and F; not be zero for the division leading to Eq. (4.12) is very
important. By accident of choice of x, close to a node of an eigenfunction,
it would be possible for the Fy to be near zero. At worst, this could lead
to fatal numerical overflow, and at best there could be considerable loss of
significant digits, as the characteristic equation may become indeterminate
in the form of (» - «) at the eigenvalue. Also, it is difficult to set up a
reasonable convergence criteria when the two terms in the equation can be
arbitrarily large or small.

But most importantly, and regardless of the choice of x, there will al-
ways exist values of B2 for which F; and F; will in fact become zero. These
zeros of F;(BZ) and F;(Bz) will nearly always be independent of each other
and will depend on x. At a zero for either one, the respective ¥ oor ¥ will
become infinite; as will the characteristic function ??x,B2), which thus‘must
be considered a function of x. In lossless structures, for example, a real g2

greater than n2 and n2

1 N will lead to real oscillatory functions of x within any

layers of large n2. At a fixed x, and with changing B?%, these zeros will move
past the point of x. Also, the conditions for which F; = 0 and F; = 0 may be
interpreted as a new boundary condition imposed at x, with the structure re-
maining unchanged on either side. The structure may then be viewed as having
been partitioned into two separate and isolated structures, each with its own
set of eigenvalues in the Bz—plane. That is, the zeros at F;(Bz) = 0, and of
F;(Bz) = 0, correspond to the roots of the equations l/?(x,sz) = 0 and
l/?(x,Bz) = 03 which are the characteristic eqﬁations for the two partial
structures. Unless the structure is symmetric, and x is the midplane, the two
sets of roots will be unrelated. It is likely that the two sets of roots to-

gether will about equal the number of eigenvalues for the whole structure. In
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the general direction of the negative imaginary axis of g7, for example, thoere
will be an infinite number of poles for Y.
We emphasize then that the traditional characteristic function for the

well known transverse resonance method,
<> « ->
Y(x,8%) = Y(x,82) + Y(x,8%) ,

has polesin the complex plane of the eigenvalue parameter, B2 (or B). Al-
though the roots of the equation+?_= 0 do not depend on the location x at
which the function is defined, the function itself and the location of the
poles do depend directly on x. It is conjectured that the poles and zeros
exist in about equal numbers and are probably interspersed. In the excep-
tional case of x at a node of Fy for some eigenmode, then the root 82 and the
B2 for two poles, with opposite sign, will coalesce. The two poles cancel,
leaving the characteristic equation in the numerically indeterminate form
just mentioned, (v -») = 0.

This lack of analyticity of‘§782) does not appear to have been recognized
in the literature before. It is very important to the problem of complex rcot
searching in 82, whatever method is used. It is sufficilient reason to avoid
the use of the transverse resonance form of the characteristic equation for
numerical applications. The problems of dealing with_?ix,sz) correspond to
the problems of using Y(x) as a field variable as discussed in Sect. 2.7.

Actually, Eq. (4.11) can still be considered as a transverse resonance
condition, but stated in terms of an analytic function of 82 and independent
of x. The transformation of D(B2) to.?YX,BZ), through multiplication by
l/F; F;, is another example of undesirable transformations of characteristic
functions mentioned in Sect. 1.2. The concept of transverse resonance con-

. . . - - + >
dition can be retained if Fy’ FZ and Fy’ F; (rather than ? and Y) are taken to
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be the quantities observed when "looking" in the negative and positive direc-
tions at x. That is, with the structure separated at x, these are the fields
observed when a test "wave" is incident in the two directions at the opened

plane x.

4,5 Explicit Expressions for the Characteristic Equation

For the 2-layer structure there is only a single interface, X = Xy and
¢t is the unit matrix. The characteristic equation (4.7 or 4.11) reduces to

simply

(just as for the transverse resocnance form).
For the TE modes in dielectric layers, with # = 1 in both, the equation

becomes

2 1/2 2 1/2

- 8%) = -(n," - B?) z -
Because of the negative sign, there clearly can be no solution if the prin-

are chosen in the same way. The two sides of

cipal branches for Ky and K,

the equation can have the same sign only if the opposite choice for principal
branch, or assumption of an inward solution, is made for one layer. Then a
2 2

solution exists only for n,” = n,

1 , and is any value of B. That is, the

trivial case of no dielectric discontinuity, and a wave propagating through
at any angle.

For the TM modes the characteristic equation becomes (with p = 1)



133

o

(e, - g2y (o - g2yl/?

-
N

i

o™
==
m
-
m
N
(&)
N

. - 2 . . . . .
since € = n”. Now, if either €. or . are negative, solutions can exist even

1 2

when the same principal branch specification is used for both Ky and K- The

solution for B2 is given by
82 = (1/e. + 1/e,) %
1 2

If €, is taken as negative (a metal) and £, < €5 then g2 is positive for

s . 2 _ _3 .
real propagating waves; El < Bc < 82 and nl < B < in,s and both Kl and Ko

are pure positive imaginary. If € and e, are complex then more careful
consideration of the real and imaginary parts of the characteristic equation
is needed.

For the very familiar 3-layer structure the C-matrix is just that for

the single central layer. With Cll = C,, = cos 6, and C_, = (i/Y2) sin ©

22 12 2°
C21 = (in) sin 92, the characteristic equation becomes
(Y1Y3/Y2 + Y2) sin 6, + 1 (Yl + Y3) cos 6, = 0 ; (4.14)

where all quantities are functions of 82 through the respective « For real

0"

bound modes in lossless materials, Y, and Y

1 5 are pure imaginary and the equa-

tion is pure real. The equation depends on the choice of branch for Ky and
Ky but it is an even function of Ko (through Y2 and 62), so it does not

depend on the choice of branch for k This equation is in a rather un-

o
familiar form, but for use with a general root search algorithm it has signi-
ficant numerical advantages over the form listed in Fig. 1.2.

The familiar form for the characteristic equation is obtained by

dividing through by cos 62 and by the first factor on the left,
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iy, +Y,)
3
tan 9, = 1

2 Y, + YlYS/Y2

= tan (¢l + ¢3);
2

with

4 =‘Tan—l(Y2/in), 4 Tan‘l(Yz/iYs) ,

and the principal branch for complex Tan—l is implied. Taking the Arc-
tangent of both sides and assuming the mth branch for 8,55 yields the final

form (all on the left side)

£(B2) = 6, - ™ - ¢, - ¢, =0 .

Recall that & = K2k0t2; this is just the phase integral over the one thick-
ness t,.

The great advantage of this familiar form is that it allows a physical
interpretation of the terms in the equation: phase shifts at the boundaries,
¢l’ ¢2; total phase propagation across the layer 62; all to add to an
integral multiple of w. Perhaps best of all it permits a specification of
the mode number, m, as part of the eigenvalue equation. The root research
can be carried out for a specific mode. For no other form of the equation,
nor for any structure of more than three layers, can this apparently be done
without rather restrictive assumptions.

For the fully complex case, when a root search procedure may range
freely over the complex B2 plane, the familiar form has several disadvantages
-~ additional singularities have been introduced. TFor a given m, the equa-

tion now depends . on the sign of «,.; f(B2) then has a branch point and cut

23
associated with the definition of Ko Only by also reversing the sign of m

whenever the sign of K5 changes, or when the branch cut is crossed, can this
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problem be fully avoided. The Arctan definitions for ¢l and ¢2 introduce
additional branch points and cuts, though these may not be in a region of
the B2-plane which is important. (The branch points of Arctan z are at
z = ti, and the branch cuts are normally taken outward along the imaginary
axls.) Nevertheless, any singularities in the near Bz—plane can significant-
ly slow down the rate of convergence of any complex root searching procedure
which is based on a low order approximation to the characteristic function.
For these reasons the familiar expression of Fig. 1.2 and the above is not as
desirable in the fully complex case as is the form of Egs. (4.7) and (4.14).
The four-layer structure has two finite interior layers. Using the
transformation matrices for these layers, the characteristic matrix Q is

conveniently defined at the central boundary, xX,, in the form of Egs. (4.3)

2)
and (4.5c).
Q(B2) = B.+C T + B, -C
172 4 -3 2
where Bl and Bu are the boundary condition matrices at X = Xy and at Xy E
xu. Then
. -
Y. 1 c -(i/Y.)s 0 0 c (i/Y.)s
1 2 2772 3 3’73
Q(?) = . +
_O 0 —(1Y2)s2 c, Yu —l‘ (1Y3)83 <,
i [ch2 - (1Y2)82] [—Yl(l/Y2)82 *tc,
_[Y4C3 - (1Y3)s3] [+Y4(1/Y3)s3 al
where for compactness CZ = cos 92, and SR = sin 6£, 2 = 2,3, have been used.

The characteristic equation becomes, with some collecting of terms,
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D(B2) = [V, /Y)Y, + (Y /Y,)7,] s,s,

- (Yl + Yu) CsCy

+ 1[(Yl/Y2)Y4 + Y2] 5,Cq

+ i[(Yl/Y3)Y4 + YSJ CySqy = 0 . (4.13)

Many different forms for this equation can be obtained by collecting the
terms in different ways, and also by using trigonometric identities to con-
vert the various products of sines and cosines into functions of the sums
and differences, 62 + 63. Further, the sin 8 and cos & factors can be con-

verted to complex exponentials in 6, and 63. The resulting expressions will

2
be similar to those obtained by assuming exponsntial solutions in each layer
as done by Harris [83] and Ward [54]. The expression here does not have the
extraneous singularities and zeros which are present in their characteristic
equation. It is not clear which form is most convenient. Only by making
some a priori assumptions about one or the other inner layer being the guide
layer, or being evanescent or cut-off, can Eq. (4.13) be manipulated into a
form resembling the familiar 3-layer equation f(e.g. to permit physical inter-
pretation of some of the terms). Taking all layers on an equal basis, with

no a priori assumption about which indices n, are high or low, then Eq. (4.13)

L
appears more direct, simpler, and more useful than any extensions of the 3-
layer expressions. It has few enough terms that it could be calculated ex-
plicitly (i.e., without 2x2 matrix multiplications, which may still use
fewer arithmetic operations).

The explicit expressions given here show the relationship to other

forms of the characteristic equation, and give some insight to the analytic

properties. For more than four layers there appears to be little purpose in
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writing out explicit forms. With increasing N the number of terms increase
as 2N, and the number of factors in each term increases as N. C(Clearly, say
for N more than five or six, the number of operatiocns necessary to calculate
an explicit expression for D(B2) becomes prohibitive. Also, the programming
logic required to sequence through all the permutations of the factors in the
terms can be rather intricate.

The chain matrix multiplication me*thod (or some equivalent recursive
method) provides the only practicable way to evaluate the characteristic
function for structure of more than a few layers. The number of calculation
operations increase only linearly with N, and the programming required to
implement it is transparently simple. It is well known In numerical mathe-

matics that recursive function definitions and calculations can be very ef-

ficient and compact.

4.6 Discussion

The characteristic functions described from the different viewpoints
are all entirely equivalent, apart from normalization of individual terms
leading to the final value. Analytically they are the same function, defined
in the B2-plane, and have as singularities only the branch points and cuts
indicated in Fig. 3.5. Elsewhere in the plane, D(B?) is analytic, on four
Riemann sheets, with simple isolated roots. (Except for rare particular
combinations of parameters when two roots may coalesce.) There are no poles
in the finite part of the plane, and no zeros which are not eigenvalues for
the system. As evident in Figs. 3.3 and 3.5, if D(B2) is considered to be a
function of B, then there are twice as many branch points, branch cuts, and
zeros in the B-plane as there are in the Bz—plane. It is suggested that this

D(B?) has optimum analytic properties, and could be adopted as a standard



138

representation for the characteristic function for the layered structure.
Any further transformations of D(B?) can only degrade its analytic proper-
ties.

For numerical purposes there can be some differences in convenience and
accuracy when D(B2) is calculated in different ways. The simplest method
appears to be to first calculate ct. by indexing through the layers 2 to N,
calculating the layer parameters, each layer matrix, and accumulating the
product to obtain ¢’ at the end. Then D(B?) is evaluated according to
Eqs. (4.7) for outward solution boundary conditions. Or the s'_matrix for
the four possible boundary conditions may be calculated according to
Egs. (4.8+) or (4.10). Calculation of 5™ involves only a few more multipli-
cations, and provides some additional information about the magnitude of
D(82) away from its roots. This calculation has been programmed, and it
works very well except in the indeterminate situations described below.

D(B%) can effectively be evaluated at any x, as indicated in Egs. (4.3),
(4.5¢) or (4.11). The difference is one of normalization. The use of the
¢t or s* matrix corresponds to a normalization of Fy = 1 at either Xy OF Xy»
and evaluation of D(B2) at the other. At any intermediate x, however, the
fields can be much smaller or greater than the nominal unit magnitudes at
the boundaries. A strongly guided mode may have fields at the center of the
guide which are much greater, say 103, than at the outer boundaries. Then
the terms making up D(Bz), when evaluated at an interior x as in Egq. 4.11 (or
Eq. 4.3), will be 106 larger than if evaluated at the outer boundaries. A
significant difference in round off error can result. As evident in
Eq. (4.11), D(B?) actually has the dimensions of the product of fields.
Hence, with any renormalization of the fields, or as the fields vary with x,

the individual terms in D will vary as the square of the fields.
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An alternative, tc the implied unit normalization of the fields at the
outer boundaries, is to assume nominally unit fields at some interior

boundary, x This could be an extra boundary, introduced for this purpose,

't
at the center of a guiding layer. (That is, with no actual material discon-

tinuity at x,.) A unit matrix at x, may be transformed to the outer bound-

L° L

aries at X1 and Xy by the partial matrices 1C2 and NCZ' These two then are
actually a fundamental matrix solution, F(x), evaluated at the end points.

P(xl) = 1Cyo and F(xN) = , and these may be used as in Egqs. (4.3) and

NCK
(4.5¢) to calculate D(B2). The corresponding calculation for all the ele-
ments of S' at an interior boundary can also be done, as sketched in

Sect. 4.3.

The only difference in these methods for calculating D is in the magni-
tudes of the numbers involved. All matrix multiplications involve sums and
differences of products of terms. And the order in which the sums and
differences of terms are calculated can greatly affect the round off error
and numerical stability in difficult cases. A capability to evaluate D at
any boundary would be very helpful in solving difficult problems. If round
off error was suspected, the accuracy of the result could be checked by
solving the problem with D evaluated at two or more of the boundaries. When
evaluation at only one end of the structure is provided, then a simple test
is to rerun the case with the order of the layers reversed.

The nominal magnitude of D(B?) away from or'between roots is very im-
portant to the numerical solution of the characteristic equation. For, in
practice, the characteristic equation is not D(82) = 0, but rather that
D(B%) < g, where e is a small quantity used as convergence criteria. It is
then important whether, between roots, D is on the order of 104 or lO—u, say.

in the first case the convergence test may be very difficult to satisfy, but
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in the second case it may be too easily satisfied by poor values of g2. It
would be desirable to use a convergence test which is relative to some re-
presentative magnitude for D. The above criteria 1s an absolute test; that

D be small compared to unity.

One attempt was made to define a normalized characteristic function.
The final value of D results from the sums and differences of four terms, as
evident in Eqs. (4.7) and (4.10). It can be shown that the sums of the
squared magnitudes of the four terms is the same as the sum of squared magni-
tudes of the four elements of the S matrix. (A consequence of Det C = 1.)
Tt is natural to normalize (divide) D by this r.m.s. magnitude. The best
solution that can then be expected is that D be zero in comparison to the
average magnitude of the four terms; that the renormalized D be zero compared
to unity. This is equivalent to finding, for the chosen set of boundary con-
ditions (one element of S), that D is zero in comparison to the other ele-
ments of S (for the other possible boundary conditions). The renormalized D
was found to be unusable for root searching, because many more iterations was
needed for convergence. This is attributable to the fact that the normalizing
factor is not anywhere an analytic function of g2. (Since |f(z)|? and |[f(z)|

are nowhere analytic functions of z.)

An alternative to renormalizing D(B2) is to incorporate the normalizing
factor into the convergence criteria as noted in Sect. 5.4. But this has
not been done.

Regardless of the care in calculating D(B2), there easily exist layered
structures and modes for which the eigenvalue problem is indeterminate.
These cases arise when there is one (or more) relatively thick layer, within
which k has a large imaginary part. This occurs for modes with 82 large
compared to n2 in the layer. Such layers may be referred to as evanescent

or exponential layers, because the fields vary as real exponentials. If the
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layer is thick, then the fields can chanpe by many powers of ten f{rom one
part of the structure to the other. The matrix C+ for the structure then
becomes nearly singular and the problem is indeterminate. This may be seen
by letting t = -18 be learge and real, for a thick exponential layer. Then
the diagonal elements of C for the layer (and the structure) take the form
of cosh t, and the off-diagonal terms will be sinh t. For large t these are
nearly equal and very large. The determinant for C becomes det C = cosh2 t
- sinh2 t. Although mathematically this is unity, it is calculated as the
difference between two large numbers. If t = 10, for example, then each term
is about 108; and if using an 8 digit floating point number, all significant
digits are lost in calculating det C.

For numerical purposes the matrix ct for the structure is then nearly
singular, and the problem is indeterminate, regardless of the method for cal-
culating D. All representations for D(g2) suffer the same problem, D will
retain few if any significant digits.

Physically, the indeterminate cases correspond to an overall physical
system composed of noninteracting subsystems. Consider, for example, two
guiding layers separated by a thick exponential layer. In either guide,
modes may then propagate nearly independently, with little effect due to the
presence of the other guide. For the complete structure, the eigenvalue
problem is then poorly defined. Any linear combination of the modes in the
individual guides would, within some numerical criteria, satisfy the eigen-
conditions equally well. Another viewpolnt is that in the thick exponential
layer the fields of the guides can approach zero. There the differential
equation and the (homogeneous) boundary-matching condition could be well

satisfied numerically by the near zero fields.
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A similar indeterminate case arises if a thick exponential layer sepa-
rates a guiding layer from either of the outer boundaries which define the
overall structure. TFor example, in Fig. 2.1, the boundaries Xy or Xy for
the outer boundary conditions may be moved far out from X, and Ryo1® Or the
layers 2 and N-1 may be thick and exponential, on either side of a strongly
guiding region. Then, for large B2, the fields can become essentially zero
at the outer boundaries, and the (homogeneous) outer boundary condition are
well satisfied. When the fields go to zero, there is no distinction between
inward and outward solutions. The present eigenvalue problem can be described
as that for a physical system (the interior structure) interacting with its
environment (the semi-infinite layers). When the physical system is isolated
from its environment the eigenvalue problem becomes indeterminate.

Usually a case will be indeterminate only for lower order modes of a
structure; for B2 much larger than the smallest n2 in the structure. For
sufficiently higher order modes B2 becomes smaller and more comparable to
the smallest n2, and the problem becomes better defined.

Problems of numerical indeterminacy can be recognized by the following
symptoms. These are all relative to the resolution of the floating point
representation used for calculations. The imaginary part of the phase
integral is large, say on the order of 5 to 10. The elements of the C+
matrix for the structure are large compared to unity. For example, using 8
digit numbers, if the product of the diagonal elements of C, and the product
of the off-diagonal elements, are on the order of 108 then complete loss of
significant digits can be expected in calculating D(B2). The same symptoms
are recognized by examining the determinant of C, which should be unity. If
det C = 1 only to a few significant digits, then this is all the accuracy

which can be expected in the calculation of D(B2). And the eigenvalue equa-
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tion D = 0 can be solved only to this accuracy. These quantities should
always be available for examination in troublesome cases. Often the problem
can be attributed to the phase thickness and C matrix of one particular
layer. TFinally, for a pocrly converged root, an indeterminancy of the
second kind is evidenced by two elements of st being small at once.

There appears to be no way to incorporate the mode index into the de-
finition of the characteristic equation. That is, for the general structure,
it is not possible to define the characteristic equation and solve it for a
mode of some given index, m, specified ahead of time. When sets of several
nodes are being solved for, it is very useful to order them on the basis of
the real part of the phase integral and on the magnitude of B2. This is
possible for bound modes when B2 is mostly real. When the complex root
search misses finding one mode, it can often be readily noticed by a gap in
the ordered modes which are found. In the vicinity of cut-off, as roots pass
near the branch point at n 2 or n 2, and move onto other sheets of B2 and

1 N

branches of Ky and Ky (with changing frequency or other parameters), modes
can be uniquely identified only by tracing their locus in the complex planes

[86]1. This is illustrated by the TE, mode in a four layer structure in

2
Fig. (7.2).

An ineffective effort was made to incorporate the mode index, as de-
fined from the phase integral, into a modified characteristic function.
This was done by multiplication of D(B2) by a weighting function, which is
proportional to the squared difference between the phase integral and the
intended mode index. The intention was to bias the root search toward the
zero for the intended mode, by making the modified D much larger in the

vicinity of other modes. This method is again suspect because such a

weighting function is not an analytic function of 2. Limited trials showed



1hh

+hat there was little effect on which roots were found, and two to three
times as many iterations were needed. The slowed convergence rate 1is

attributed to the non-analyticity of the modified D.
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5. COMPLEX ROOT SEARCH; MULLER-TRAUB METHOD

Given a constructive definition of the characteristic function D(B2),
the roots can be found only by direct numerical methods. Even for the three-
layer case the function is transcendental, and for more than three layers or
for complex parameters it is not possible to use graphical methods.

The choice of root searching method is dominated by two properties of
D(B2). Firstly, it is expensive to calculate; the number of steps in evaluat-
ing D, for each value of B?, far exceeds the number of steps in calculating
any iterative formulas. Each calculation of D requires evaluation of complex
Square roots, sines, and cosines for all layers, and N multiplications of
2x2 matrices. Secondly, there is no feasible way to calculate the derivative
of D. Therefore, it is not possible to use the well known Newton's method
with its rapid convergence properties. The dependence of D on B2 is embedded
in all the k(B2) for all layers, and thereby in all the YX, sin 6, and cos 8
for all layers, and the derivative requires an N-fold matrix product for
each of N terms. An analytic expression for the derivative is impossible.
Any derivative information needed must be obtained by numerical approximation.
Of less importance, but of some benefit, is that the roots of D are nearly
always isolated, so there is no problem with multiple roots. Also there is
considerable knowledge of where useful roots are expected to be found; name-
ly, in the range of B2 between zero and the largest value of n2 for the
structure, and of imaginary part somewhat smaller than n2. The presence of
two branch points and cuts in the B2-plane, and an infinite row of roots in
the direction of the negative real axis, is significant but unavoidable.

Under the circumstances the choice of possible methods is very limited,
but one of these works exceptionally well. It is an iterative procedure

originally proposed by Muller for use on the real line [90], but which in
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fact is most naturally applied in the complex plane [91, 92]. It depends on
a quadratic approximation to the function, based on three points near the
root; a root of the quadratic is then used as the next best estimate of the
true root, and the process is repeated iteratively. Traub [91, p. 154]
describes it as an iteration formula with memory, since the previous three
points are saved at each iteration. These points effectively provide deriva-
tive information without additional expensive function evaluation. Traub
also showed that the iteration formulas used by Muller could be simplified by
about half, being more economical and also reducing the possibility of loss
of significant digits. Hence it is also called the Muller-Traub method. The
order of convergence is 1.84, nearly as good as the order 2.0, or quadratic,
convergence rate for Newton's method [91, p. 211].

Only one subroutine for Muller's method appears to have been published;
it is an ALGOL program [93, 94]. Two Fortran subroutines are known which are
parts of proprietary software libraries. One of these was known to be inef-
ficient, requiring twice as many function evaluations as should have been
needed, and the second was not initially available. Hence a Fortran sub-
routine was written to implement a complex root search using Muller's method.
Several novel features were incorporated, two of which greatly improve the
efficiency of the search. Other features permit much greater control of the
root searching process than is available in the published or proprietary sub-
routines.

The next sections summarize the iteration formulas, the generation of

initial guesses and initial iterates, and the convergence criteria used.
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5.1 Iteration Formulas

Let a complex function be f(z) (the characteristic function), whose roots
are scught in a complex z-plane. And let z = a, b, ¢ be three values of z
which are in the neighborhocod of a root. At these points let fa’ fb, and fC
be the values of the function. Assume that the point ¢ is the best approxi-
mation to a root (c is closer to the root than is a or b, and lfcl is small-

est), and let the quadratic approximation to £(z) be taken about c:
F(z) = A(z-c)? + B(z-c) + C .

The coefficients are determined by requiring that F(z) = f(z) at the three
points z = a, b, ¢. The root of F(z) nearest to ¢ is then assumed to be the
next best approximation to the root of f(z).

In terms of a standard notation for divided differences [91], fla,b] =
(fa - fb)/(a—b), which is the slope of f(z) between any two points a and b,
the coefficients of F(z) are given by:

fla,c] - f[b,c] fla,b] - fla,c]

A= (a-b) = (b-c)

fla,b] - f[b,c]
(a-c)

fla,b,c]

The last term is the standard notation for the second divided difference. A
is an estimate of half the second derivative of f(z) at the point c¢. With

the value of A calculated, then B is given by

ws]
I

flb,c] - (b-e)A = fla,c] - (a-c)A

11

flb,c] - fla,b] + fla,c]

B is an estimate of the first derivative of f(z) at z = c. It may be viewed

as the approximate derivatives f[b,c], or f[a,c], but with a correction for
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the effect of the second derivative. The coefficient C is simply

the function itself at z = ¢. C is a measure of the discrepancy by which
f(z) is not zero-- c is not at the root. The correction to z = ¢, to reach
the true root, may be expected to be proportional to C.

With values for A, B, and C, the roots of the polynomial F(z) are

c + 8§, with

N
"

S _2C

24 B + /B2-uac

The correction term, &, especially in the second form, resembles the well
known correction term -f/f' of Newton's method. It is proportional to f(z),
and the denominator is an approximation to 2f'. All quantities are complex.

The root zZ, which lies closest to ¢ is obtained by choosing the sign to
make the magnitude of § smallest. This is preferably done by using the
second form, and choosing the sign which makes the magnitude of the denomina-
tor largest. The alternative is a sign choice to make the numerator of the
fipst form smallest. This is certain to lead to problems of round off error,
especially near convergence when the numerator must go to zero.

With z as a new approximation to the root for f(z), the list of iterates
is updated: a is discarded and replaced by b, b is replaced by ¢, and c is
replaced by z - The associated values of f are updated, f(zo) being newly
calculated to replace fc. That is, a single function evaluation is needed
for each iteration, and the two previous function values are saved. Then,

subject to convergence tests and iteration limits, the iteration process is
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repeated. This description is of the search for a single root, and it pro-
ceeds to rapid convergence if the initial iterates are within the neighbor-
hoocd of a single root.

3y a neighborhood it is meant that the distances between each iterate
and the true root, and the distances between the iterates themselves, are all
small compared to the distance to any other roots. Only if this is true will
the rapid convergence rate of 1.84 be realized. Actually, because of the
quadratic approximation, Muller's method accepts the presence of two true
roots within the neighborhood of the iterates. What usually happens is that
during the early stages the iterations improve slowly and erratically. This
happens when the three iterates are relatively widely spaced, and within
range of three or more roots. Then the quadratic approximation F(z) may have
little resemblance to f(z), and there is no assurance that each iteration
will reduce the magnitude of f(z). Then in a final stage, as a single root
is isclated, the convergence rate becomes very rapid, the number of signifi-
cant digits nearly doubling with each iteration. Therefore the number and
spacing of all roots in a region to be searched, and where the search is
started, can greatly affect the rate at which roots can be calculated.
Fortunately, some of the zeros of the function f(z) may be removed, some
exaccly and others approximately, to give a modified function; for which the

iteration process is much more efficient.

5.2 The Reduced Function

Any known roots of f(z) can effectively be removed through division by a
polynomial having those same roots. A polynomial denominator P(z) is thus

formed as
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P(z) = (z-2z_) ,
m
m
where the product 1s over a set {zm} of some known roots. The reduced func-

tion g(z) is then defined as
g(z) = £(z)/?(z)

The known roots may be said to have been divided out. Or f(z) may be con-
sidered to have been multiplied by a function having poles at the location of
some of its zeros, thereby cancelling them.

The iteration procedure then 1s actually carried out using g(z) rather
than £(z). As each successive zero is found it is included in the set for
E(z). The reduction (or sometimes called deflation) of f(z) to g(z) is
essential to avoid repeatedly calculating the same root; and it also makes
g(z) simpler, and the quadratic approximation more valid, for the remaining
roots. TFor these preasons, roots are most efficiently found in sets, of say
several to 10 at a time. For a large number of roots the procedure often
appears to become slower, and increasingly difficult to obtain accurate con-
vergence for the latter roots. All known implementations of Muller's method
provide for finding roots in sets of several at a time, using a reduced
function.

It can also be very useful, in the reduction of f(z) and g(z), to in-
clude poles which do not correspond exactly to zeros of f(z). First, if the
pole is approximately correct, then approximate pole-zero cancellation can
still be very effective. At distances which are large compared to the pole-
zero separation, the pair will be invisible to the search for other roots.
Thus, even when convergence is not obtained, the last iterate might be

reasonably close to a root, and should be included in the reduced function.
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But it can also be useful to include poles which are only poor approxi-
mations to a root; or even sometimes to include a pole not related to a root,
for the purposes of influencing the course of the iteration process. This
use hat not apparently been suggested in the literature; only the use of pre-
viously found roots. A provision was made in the present subroutine so that,
if desired, any of the input guesses (at which the search for each root
starts) could be included in the reduction of the function. In most cases a
great savings in the number of iterations for most roots is realized.

Even crude pole-zero cancellation is useful when the zeros are reason-
ably well separated in a region of interest. If poles (at the input guesses)
are inserted in the region, with about the right number and spacing, then the
pole-zero cancellation will be effective. If there is a group of zeros, for
example, then a similar number of poles inserted anywhere in the group, even
midway between the zeros, would largely compensate most of the zeros. In the
regicn to one side of the group, and at a moderate distance compared to the
Spacing between zeros and poles, the iteration procedure will be little
aifected by the zeros. 1In such regions the root search will be drawn rapidly
to the nearest uncompensated zero. As each zero is found, the respective
pole-zero cancellation becomes exact.

A pole of g(z), unrelated to a zero of f(z), can also be useful by re-
pelling the root search from a region which it is desired to avoid. This is
an additional justification for including a unconverged last iterate as a
pole for g(z), as described later. But it can also be useful to place a few
arbitrary poles, say along a branch cut, or in the present example along the
imaginary axis for B2, to discourage the root search from approaching such
regions. These poles may be included as part of the array of input guesses,

but with a control parameter which causes no corresponding search to be made.
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5.3 Generation of Initial Iterates; Ordering of Iterates.

The iterative procedure just described requires three values of z for
each step; and to start the search for each root these iterates must initially
be generated in some arbitrary way. After the first three iterations the
initial iterates will have been replaced by three successively calculated
iterates.

All known descriptions of Muller's method take for granted that the
iterates are ordered so that a is the poorest and ¢ is the best approximation
to a root. The iterates are accepted in the order calculated, with the most
recent being used for c because it is presumably the best. This is very
frequently not true. It is certainly unlikely to be true for the initial
arbitrary iterates, and it can easily fail to be true during the course of
iterations. Only if the three iterates are in the neighborhood of an isolated
root will the successive iterates always be smaller and the convergence order
of 1.84 be realized.

During the early stages each iteration does not always lead to a smaller
magnitude for f(z). The root of F(z) nearest to ¢, or even both roots of
F(z), may actually be farther from a true root of f(z). Then |f(z)| for a
new iterate can easily be larger than f(c). This has frequently been ob-
served to happen in the first few iterations, and has often occurred as late
as the fifth iteration.

The implementation of Muller's method here explicitly reorders the
initial iterates on the basis of |f(z)|, so that f£(a) is in fact the largest
and f(c) the smallest. And during iteration this order is preserved by
checking f(z) for each new iteration against f(c). If f(zo) is not smaller,
then ¢ is retained, and the new iterate is instead used to replace a or b,

preserving the order. The largest iterate, a, is always discarded. The
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root of F(z) nearest the smallest iterate is now guaranteed. And the number
of times an iterate is used in subsequent calculations depends on its quali-
ty. Normally each iterate is used three times, progressing up the list be-
fore being discarded. But a poor iterate placed farther up the list now is
used only twice or once, and the better iterates remaining lower on the list
are used more than three times. A few tests on polynomials with five to
twenty roots showed that reordering occurred frequently for the first several
iterations, and savings of one or two iterations always occurred. Usually a
savings of three or four iterations was observed, which represented a factor
of two improvement. For the present problem this is a significant saving.

To generate the initial iterates, some starting point or neighborhood
must be designated. This point will be called the initial guess. The choice
of initial iterates about this guess is wholly arbitrary. It is very impor-
tant to be able to control the distance of the three points about the initial
guess. It is convenient to choose a radius which is a negative power of ten,
say lO—k, where k 1s chosen to reflect the quality of the guess. A poor
guess may use a k of about 0 to 2, while an excellent guess may justify a k
of 3 to 5. The radius should be larger than the convergence criteria being
used, and it should be smaller than the expected spacing between roots.

A novel method for generating these iterates has been used. It is based
on an unfamiliar metric, or measure of distance, in the complex plane. This
metric is more justified and described later for use as a convergence test,
but it also offers some advantages for generation of the initial iterates.

Let z_ now be an initial guess. It may be based on previous knowledge
about the expected location of a root, or it may be located only generally

in a region in which roots are sought. Three values Zj’ i =1,2,3, are to be
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about equally on a circle about ZO; but the circle is not necessarily center-
ed on Z» and the 'distance' from Zg is measured on the Riemann sphere for
the complex z plane. This is called the chordal metric on the sphere [75,
76].

For any twc points z and Z > the metric, d, is given by [75, p. 311]

2 2 2 2
d (z,zo) 4|z—zo| /(1+]z] )(l+lzo| )

M

For points very close to the origin, d reduces to the Euclidean metric
!z«zO[; but for large z, d is much less, and in fact is always finite. The
maximum distance between any two points is d = 2, the diameter of the unit
sphere. This is the distance between the origin and the point at infinity,
between any two points on opposite sides of the unit circle, or between any
two points z and z for which =z zg = Z*zo = -1.

The advantage of this metric is that it remains invariant under a large
class of (conformal) Mobius transformations of the z-plane. These transforma-

tions correspond to rigid rotations of the Riemann sphere, and have the form

L75]

- Z .
z>w(a) =Mz = gt ow

where ¢ and B are two complex parameters of the transformation, and M is a

matrix
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M: is an operatcr notation for the transformation (also mentioned in

Sect. 2.7). M is considered normalized if |a|? + |g|? = 1, but the trans-
formation is not affected by the normalization. The rigid rotations of the
sphere, and the invariance of d, correspond to the normalized M being a
unitary matrix [75]. It is well known that Mobius transformations map circles
and lines (as degenerate circles) into circles and lines. The circle of ini-
tial iterates about zo is obtained here by such a transformation.

The unitary transformationsare important because many properties of
polynomials in particular, and of rational fraction approximations for func-
tions in general, remain invariant. For example, the distances between
roots, or between roots and singularities, and the accuracy of function
approximations, all remain invariant when expressed in the chordal metric
[76]. One transformation, often used in finding (large) roots of a poly-
nomial in z, is the substitution z = 1/w. If the initial iterates and con-
vergence tests are based on the chordal metric, then roots searches conducted
in either the z or w planes should lead to the essentially the same results
in terms of accuracy.

Consider then a complex plane of w, and three points on a circle of
radius r centered on the origin. These three points are transformed to
points on a circle about z (the origin of w maps to the point zo) by a

transformation

w + z Zz - Z

°_ . w(z) =

z(w) = 1 - w z%
o)

1+ z z=
o

So z itself is the single parameter determining the transformation.
The chordal metric, d, between any point w and the origin, or between

the corresponding z and Z.» is of course identical;



156

a%(w,0)

dz(z,zo) = ulw|2/(1+]w|2) = 4ri/(l+r£)

wlz-z |2/(1+]z]2)(1+]z_|?)
o o

The circles about Z s obtained from circles about the origin of w, are
not centered on Z except in the 1limit of very small radius. For some radius
L the circle about z in fact degenerates to a straight line through in-
finity. The straight line and the corresponding radius r can be found by
noting that z = «» maps to become w = l/zg, on the circle of radius L l/rO
about the origin of w, where g = |zo|. The diametrically opposite point,

W o= —l/zg, maps to become the point z' = (zo—l/zg)/Q, through which the 1line
to infinity must also pass (perpendicularly to the line Jjoining all the points
z = 0, izo, il/zg). To avoid this degenerate case it is necessary to limit
the radius r  to be less than some r < 1l/r . For large z_ a factor of a
W max o} o

half is useful, say r = 1/2r . But for z near the origin even this r

max o o max
becomes arbitrarily large; so it is also desirable to limit P tO be no
greater than unity say, when v, =z = 0.

e}

Let » then be defined arbitrarily by
max

3
1l

1/(142r ) < minl1,1/2r 1 .
max o o

The initial iterates are defined on a circle of radius r o starting at any

point W on that circle, by

r = lO“k r R

and
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where k is an input integer, and R is a complex rotation factor with an
angle of about 120°, say R = -0.6 + 10.8. The three points wj are then

trans©ormed to become points about zg by the Mobius transformation

Together with f(zj), evaluated at the three points, these serve as the ini-
tial iterates with which to start Muller's method.

The initial guess z  may sometimes be an excellent guess. If a root is
available from a previous calculation, and only small changes are being made
in parameters, then z_ may in fact be closer to the root than any of the
three initial iterates; that is, if Pw is chosen too large., k too small.

To cover this case it seems worthwhile (though debatable) to incur a fourth
function evaluation to obtain f(zo). Z is then included in the initial re-
ordering with the other iterates, the worst one is discarded, and the best
three kept. The retention of zg in preference to one of the other initial

iterates frequently occurs, but the amount of benefit is not known.

5.4 Convergence Criteria and Iteration Limits

The criteria for deciding that a root has been found with sufficient
accuracy, and the iteration process stopped, is important; but a particular
choice is largely arbitrary. Many strategies are found in the literature.

Since the roots are defined by f(z) = 0, then the most directly rele-

vant convergence criteria would be that

|£(z)] = e Ne s
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where €. is some small positive number chosen to set the level for ac-

ceptance of a root. Nf is a normalization factor representing the nominal
range of magnitude expected for f(z) away from the roots. The need for

Nf is rarely acknowledged in discussion of root searching methods; it is
usually assumed to be unity. But it is important to recognize that in
different problems the range of values for f(z) can be very different.

For example in one case f(z) may have values on the order of lO_3 say, but
the definition of f(z) in another problem may lead to values on the order
of 103. If the same value of €g is used for both problems and Nf = 1, then
the above convergence test represents very different criteria for the two
problems. In the absence of any information abcut expected magnitudes

the Nf = 1 may be used. But if any information is available it should be

used to provide a value for N_, however crude.

f’
It is sometimes argued that since the iteration process is based on

the reduced function g(z), then the convergence criteria should also be

based on g(z), rather than on f(z). This would be that

lez)| < e N,

where a normalization value Ng may or may not be available for g(z). How-
ever, the range of values for g(z) is even more unpredictable than for f(z),
and it varies from root to root, because of the magnitude of the reducing
polynomial. For example, if roots are spaced apart on the order of 10 (or
0.1) units in z, then, in dividing out 5 roots, the magnitude of the poly-
nomial can be on the order of 105 (or 10—5). Thus the significance of the

convergence test using g(z) can vary wildly with the problem, the root spac-

ing, and number of roots being divided out.
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A convergence criteria more directly related to the users interest in

the accuracy of the roots would be that

3

|6| < e, o

<e, perhaps |8/z] < €,

§ is the difference between the last two values of z, namely the incre-
ment in z of the last iteration. The first form is an absolute test com-
paring IS[ to unity, and the second form is a relative test comparing the
fractional increment in z. The latter test 1s reasonable for large z, but it
breaks down for roots very near zero.

To obtain a convergence test having some invariant properties, for =z
large or small, the chordal metric described in the previous section has been
used. The motivation and justification for doing so is valid mostly for
polynomial root searching rather than the transcendental eigenvalue problem
here. But the program was intended to be a high quality general purpose sub-
routine, which is often tested and judged on polynomial root searches. And
the chordal metric has some desirable properties for any problem.

If z is now the most recent iterate, and z = ¢ is the previous one, the

chordal metric is

di = 4[zo—c[2/(l+|zo[2)(l+|zl2)

as before. But z -c = §, and in the last stages of convergence, § is very

small; then zo and z are essentially equal, and the metric for use in the con-

vergence test 1s taken to be
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_ - 12
d, = 2[8]/(1+]z_|?)

The convergence test then becomes

For IzO[2 << 1, then d, = ||, and the convergence is based on |§| relative
to unity. But for large z the test is based on § relative to ]zo|2 (not
relative to izol). For very large |zo| this is appropriate though. For,

consider a root which is effectively at infinity; let f(z) = 1/z. Then, at

some iterate z, the increment will be 8§ = -f(z)/f'(z) = +z, and the conver-

gence test becomes

dZ = 1/]z] < ¢

Hence, for f = 1/z each iteration doubles z (a slow way to reach infinity),
but the convergence test will be satisfied for |z| > l/ez. That is, by the
chordal metric, the point z = l/eZ is within €, of the point at infinity; and
the convergence test stops any further efforts to reach the point at infinity.
The two convergence tests, on |f| or fd|, are related by the derivative
of f; for, § v -f/f'. Which test is more liberal or restrictive depends on
the magnitude of f' near the root, as well as on e. and €," One situation

f

to keep in mind is that f' can be nearly zero, near a double root for

example. Then f can be very small and the convergence criteria for f may be
satisfied; but 8§ will not be small, and a convergence test in z will never be
satisfied. In such a case accurate solutions for a root may not be possible,

even though the equation f(z) = 0 can be satisfied within a very small €pe
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For double roots Muller's method has an advantage over Newton's method in
that the two roots can be found exactly. But still, the above situation
exists then for a triple root. On the other hand, when f' is large near a
root, then § can be very small and the convergence test in z will be satis-
fied, even though f(z) is still significant. In general it is not possible
to provide any one convergence test which can assure that a root is known to
some desired accuracy.

The program written here uses all three convergence tests, and the lasp
iterate is accepted as a root if any one test is satisfied. An output
integer 1s set to indicate which test was satisfied. This choice is arbi-
trary and subject to change. A more stringent criteria would be that the
test on |f| and the test on |§| must both be satisfied. The emphasis on one
or the other can be controlled by appropriate choice of €c and €,

A limit on the maximum number of iterations for each root is éssential,
and is usually determined by an input integer. When an iteration limit is
reached without convergence most routines abandon any further search for
other roots. Here the last iterate is retained as an approximate root, but
the output integer is set to indicate nonconvergence. Only if the iteration
limit is reached for two successive roots is the further search for other
roots abandoned. More importantly, all roots which have been attempted, even
those for which the iteration limit is reached without convergence, are
divided ocut in forming the reduced function. If a root is approximately

correct then the pole-zero cancellation will be good. If the last iterate
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i3 not near a root, for whatever cause of nonconvergence, then the reduced
function will have a pole at that point. This pole will tend to repel any
subsequent root search from that region. Then, whatever the cause of the
search going to the region where convergence was not obtained, subsequent
searches will likely not try it again. If a second iteration limit occurs,
this is taken as a sign that no further progress can be expected. This
strategy has worked extremely well for the layered structure. Though noncon-
vergence does often happen, the subsequent root search has never been abandon-
ed because it happened twice in succession.

For the present problem iteration limits of 10 to 15 have been used.
Lack of convergence within this limit sometimes happens. In every case that
has been checked, the root search was then entangled in a branch cut.
Successive iterations were close to and on opposite sides of the cut. This
emphasizes the importance of positioning the branch cut. In some cases the

iteration limit has been reached when in the vicinity of the branch point.

5.5 Generation of Initial Guesses

The set of guesses, at which the search for each root is started, is the
single most important factor in determining which roots are found, and the
order in which they are calculated. Also, the number of iterations needed
for convergence depends greatly on the ability to provide approximate guesses
in the region of interest. Even though it is not usually possible to esti-
mate the locations of any one specific root, it is important to generate
guesses in about the right number and spacing in the region. The guesses
must be based on knowledge of the structure represented by f(z), and cannot

be provided by the root searching method.
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One crude set of guesses is to make them all the same. A starting value
of 82 equal to the largest n2 in the structure is useful, or some mean value
of n2 may be better. Such guesses will lead to eventual convergence for
roots, but the number of iterations required can be very large.

In the present problem the phase integral provides a basis for generating
quite good guesses for most complex modes of interest. Sect. 2.8 described
the phase integral defined for any g%, and it may be used for labeling and
indexing the modes. The converse purpose here is to generate approximate
values for B?, corresponding to desired mode indices. This may be done as
follows.

For éimplicity let B2 be represented now by q, and consider several
values 1n the neighborhood of the real axis. (A fixed imaginary part for g2
may be chosen arbitrarily and supplied as an input parameter.) For every

value of q the phase integral ¢, is defined as in Sect. 2.8. Let p(q) =

R
@R/ﬂ be the real phase integral, in units of w, on a scale to be used for
mode indexing. For three representative values of q, the three values of
p(q) may be calculated, and then used to obtain a quadratic approximation
for the inverse relationship of q vs p. This quadratic is then used to
calculate estimated values of q = Re B2 for any number of intended mode in-
dices on the scale of p. The quantities here are all real.

The specific formulas are as follows. Let the three values of q = Re B?

be defined as:

max(Re n2) over the inner layers,

Nal
w
1t

= input value, say q¢ = 0, or q = min(Re n2) over the inner layers,

fia]
[
|

q, = average of 45 and q; -

H

For each a5 i=1,2,3, let P = p(qi) @R(qi)/ﬂ, be calculated. The quad-
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ratic fit to these three points is then written as
Q(p) = q, - A,p - A p’;
) 3 1 2v 2

where the coefficients are given by

D

4
L

I

(q3 - ql)/pl, D, = (q3 - q2)/p2,

Ay = (pyDy - pyD )/ (py = Py

A, (Dl - D2)/(Pl - pz).

The particular form for the quadratic reflects the fact that, for loss-

less dielectrics with positive n2, the values of ¢_ increase monotonically

R

with decreasing B%; q decreases with increasing p; and A., A Dl’ and D, are

1’2 2

all positive coefficients. Also it is assumed that q(0) = 453 reflecting the
fact that @R goes to zero for B? equal to the maximum value of n2 for the
inner layers. It may be noted that p, the phase integral, is a function of g
as an independent variable; however, the quadratic represents an inverse re-
lation of q vs p (an inverse interpolation function). For any intended value
of phase integral, p (a continuous mode index), the quadratic returns a value
for q(p) = B%, for use as a starting guess.

A relationship between p and any intended integer mode index, m, is still
needed. For simple guiding structures, as noted in Sect. 2.8, the modes are
expected at unit intervals in p, but offset at some constant value corre-
sponding to the phase shifts at the boundaries. For flexibility in generat-
ing the initial guesses, input parameters may be provided to specify the
average spacing of the modes in p, and also the constant offset. Thus, for
every intended mode index, m, in some range of interest, the expected phase

integral Py is prescribed as

= ms +
Pm Po >
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where s is the mode spacing, often unity, and Py is the offset or bias. For
simple guiding structures P, = 1/4 to 1/2; but for a structure of three guides
P, = 3/2 may be more reasonable, and for the three lowest order modes s may
easily be much less than unity. The values of p are then used in the quad-
ratic interpolation expression above to generate the guesses.

An additional refinement step in calculating the quadratic has been in-
corporated in the process of generating the guesses. Usually a range of modes
is to be calculated. Let m be the center value of this range, and P, be the
corresponding p. This may be used to generate a corresponding guess q, using
the quadratic. This g is now used to replace the 4, value initially used to
generate the quadratic; and the quadratic formula for q(p) is recalculated.
That is, the new value of q2 (now based on the actual range of modes desired)
is used to calculate a new Pys and the ccoefficients of the quadratic are re-
calculated. This refinement process has proved very worthwhile.

It must be emphasized that the guesses are only estimates with respect
to particular mode indices. It is not possible, a priori, to ensure that the
guess 1s close to the root for a particular value of m; nor is it possible to
assure that a particular mode is actually found. When some structure is be-
ing studied, the first several runs will quickly provide information about
average mode spacing, s, and the offset, P> in the region of interest.

These may be used to provide much better guesses for subsequent calculation.
Recall that 4 is also available as an input parameter for controlling the
guesses generated.

This procedure for generating guesses has worked very well. The pri-

mary virtue is that a set of values for q = B2

is generated with about proper
spacing and number, in order of increasing m and decreasing 82, in the region

of interest. For simple structures and low order modes, the guesses have



166

been excellent, permitting convergence in only a few iterations. In nearly
all cases it 1s very advantageous to divide out all guesses. The number of
iteraticns for convergence Is much greater if the guesses are not included

as poles in the reduced function.

Guesses generated by this method become poorer for modes having a signi-
ficant imaginary part for B82. The assumptions leading to this method are not
valid when n2 in some layers has a large imaginary part or is negative (a
metal). And when B2 has a large imaginary part the real phase integral is
less satisfactory for ordering and indexing the modes. . Also, the method does
not provide a variable imaginary part for the guesses. Nevertheless, in all
but the most difficult cases the present method provides a useful set of
guesses at which to start.

Provision is easily made for the set of guesses to be supplied as input
values by the user. This may be used in the more difficult cases. When a
familiar structure is being studied, approximate values for the roots are
often known. It is then very worthwhile to supply these as input values,
rather than to generate guesses.

It Is also easy to provide that the set of roots from a previous case is
retained as starting guesses for a subsequent case. This is extremely valu-
able when small changes are being made in the parameters from case to case.
This is desirable, for example, in developing dispersion curves for B2 vs.
frequency, or vs. a thickness or permittivity of a layer. Only one or a few
iterations may then be needed for each root with each increment of the para-

meter.
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5.6 Discussion

Without extensive comparisons it is difficult to make quantitative
statements about the quality of an algorithm. But it is believed that the
subroutine writcen here is the most efficient one available. This is attri-
buted to the ordering of iterates, and provision for dividing out initial
guesses and even unconverged roots. With relatively well distributed
guesses, and searching for sets of 3 to 7 roots at a time, convergence in the
present problem is often obtained in 2 to 3 iterations. Most roots are found
in 4 to 7 iterations each, and otherwise an iteration limit of 10 to 15 is
reached without convergence. If the initial guesses are not divided out the
number of iterations is considerably greater, sometimes by more than a factor
of two. If all guesses are started at the same point a very large number of
iterations is usually needed.

The number of iterations needed depends, of course, on the convergence

9 to 10—15 has usually been used, with the

criteria used. A value of e of 10
latter value requiring only one or two iteration more than the first. These
values are possible because a floating point number of 14 digits was being
used. To force a more accurate determination of BZ, the ¢ for the conver-
gence test on D(B?) was often made ZLO_3 smaller than the €, > for the test on
the increment in B2.

The economics of root searching becomes more and more important as the
numbers of layers increases. TFor only three layers, and a few modes, a
factor of two in the number of iterations may not be significant. But for
many layers, say 10, and more than a few modes, the efficiency of the root
search can be a very significant factor. It can make the difference in how

extensively a range of parameter values for some particular structure can be

explored.
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The fact that the mode index, m, cannot be made a parameter of the
characteristic equation is unfortunate. As a consequénce it is not always
possible to guarantee that all the desired modes have been found. When
there are several modes of interest, and some of them are near cut-off or are
improper, the situation can become confusing. Some strategic exploration and
tricks may be necessary to understand the situation. If it is suspected that
a root has been missed, then the case can be rerun with the known roots as
input guesses, plus one or two new guesses inserted in the region of interest.
That is, a search is made for additional roots in the same region. If no
other roots exist there, the search will wander off and likely find new roots
beyond the region of the previously found roots.

If a search is started with several different sets of starting guesses
in a region of B2, and exactly the same roots are found each time, that is
strong evidence that there are no other roots present. When the same roots
are found several times, from several different sets of starting guesses,
these may be compared to show directly the accuracy with which the roots are
being determined. It is sometimes very illuminating to rerun cases with some
small changes in the parameters of the problem, particularly the frequency.
Since roots are always continuous functions of the parameters, the resulting
changes in the location of the roots can be very helpful in making proper
identification. Modes in the vicinity of cut-off are particularly sensitive
to parameter changes.

The specification of boundary conditions and orientations of the branch

cuts in B2, and branch boundaries in k. and « is very important. If more

1 N’
than a few roots reach an iteration limit without convergence, then it likely

that the search is reaching for roots on the other side of the branch bound-

aries. It is emphasized that any search can be carried out only in one half
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of each of the K1 and Ky planes at a time. Any non-converged roots may be
plotted in the k-planes, and will likely be found to lie near the boundary
for either Ky OT Ky This is a sign that roots lie nearby, but in the other
half plane. If these roots are of interest, then the branch boundary must be
rotated or opposite boundary conditions must be specified.

It is worth keeping in mind the relationship between the branch cuts and
becundaries and the location of the initial guesses. There is little point in
starting the root search in the immediate neighborhood of the branch cuts in
the 82 plane. The initial iterates may fall on opposite sides of the cut,
leading to little progress in earlier iterations.

The number of roots is a conserved quantity for most familiar guiding
structures. Roots do not cease to exist, or mysteriously appear and disappear
with changing parameters. If, with a variation in some parameter, some par-
ticular root can no longer be found by the search, then it has moved across
the branch boundary. A mode may move onto a nonphysical branch or into a
branch which is not of interest. But mathematically the root always moves
continuously in the « and B2 planes. By changing the branch specifications
or boundary conditions as necessary most roots can be uniquely identified,
and tracked throughout the complex planes.

It is more distinctive and illuminating to plot the locations of roots
for a

in the ., and KN planes than in the B2 plane. The values of «, and k

1 1

N’
converged root or the final iteration, should always be available. These
values, when plotted in the k-planes, reveal immediately in which half-plane
they are located, whatever the branch specification may be. But the value
for a root located in the B2 plane cannot by itself show which Riemann sheet

is intended. The values of k uniquely determine B?; but not conversely, with-

out consulting the branch specification and boundary condition.



170

One feature not described vet has also been incorporated in the root
searching algorithm. This concerns a strategy to be used when multiple
roots are present, and is probably not important in the present problem.
When there is a multiple root, and one of these, 2 has been found, then a
subsenuent root search will approach the same root again. In doing so, the
reducing polynomial P(z) = (z—zo) can approach zero; but not exactly as f(z)
approaches zero, since z  may not be exact. Then the reduced function g(z)
can become infinite or indeterminate. In Ref. [94] it is suggested that if
any iterate, z, approaches a previously found root, Z> within the conver-
gence criteria, €, > then z should be accepted as a new root without further
convergence tests. This is easily done during the formation of the reducing
polynomial, P(z); but it adds some overhead to the calculation, and the bene-

fits are uncertain.
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6. FPIELD SOLUTIONS AND POWER FLOW

A great advantage of the 2x2 representation for the fields is that the
same algorithm, a sequence of matrix multiplications, serves to calculate
both the characteristic function and the actual field distributions. No
separate procedure need be formulated for calculating the fields once the

discrete mode propagation constants are found.

6.1 Tangential Fields at the Boundaries

The tangential fields Fy and FZ at all the boundaries are sufficient to
completely characterize the field solution throughout the structure. They
are a set of 2N-2 values (which may be thought to correspond to the same
number of amplitude coefficients required if exponential solutions were used
in each layer). For any value of 82, for a discrete or continuous mode, the
boundary fields are easily calculated by the sequence of multiplications by
layer matrices. The process may be started at either or both of the outer
boundaries, as described in Sect. 4.3. That is, at xy the tangential fields
may be taken to be Fy = 1, and FZ = —Yl. Or at Xy_1 they may be taken to be
Fy = 1, and FZ = +YN. These are transformed forward or backward, respective-
ly, across the structure, saving the values of Fy and FZ at each boundary.
This is a trivial operation compared to the use of Cramer's rule.

For true discrete modes these two sets are equivalent, and either one
may be used as the eigenfunction (Sect. 4.3). If both sets of field values
are calculated, then the Wronskian determinant can be calculated at all the
boundaries as a numerical check on the accuracy to which the characteristic

equation is satisfied. The Wronskian should be very small, corresponding to

the convergence criteria used, and it should be the same value at all
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boundaries. If the determinant is not the same at all boundaries, it indi-
cates that the numerical problem is, to some degree, indeterminate relative
to the floating point resolution of the computation. If the determinant is
the same at all boundaries, and not small, then the problem is well defined,
but greater accuracy for 82 could easily be obtained in the root search. The
average of the two separately calculated field solutions can be used as the
eigenfunction with some improvement in accuracy.

Tor modes other than the discrete modes the Wronskian determinant will
usually not be small, but it should be constant as required by reciprocity.
The two different field solutions are then linearly independent and must be
considered separately and used as needed.

The normal field component, FX, is not necessarily continuous at the
boundaries. It is calculated as FX = YZFy, using the possibly different
values of YZ in the two adjacent layers. See Table 2.2.

Normalization of the field solutions is arbitrary. For bound modes the
solutions are often normalized to have unit total propagating power (per
unit width in y). There is no particular need for doing this, and for
improper modes it is not possible. For numerical purposes, and for any type
of mode, it is more convenient to normalize for nominally unit mean squared
field magnitudes when averaged over all the boundaries. When the total
power is finite, it may be calculated, and listed separately for use when
needed (Sect. 6.3). This renormalization of the initially calculated fields

is easily provided. A real normalizing constant G is calculated as

2 2 2
G =7 (leI + |F_[9)/72(8-1)

The summation is over all the N-1 boundaries, and an extra factor of 2

appears because both Fy and FZ are included. The field values as calculated
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above are then divided by G. The mean squared value over all tangential
fields will be unity. In regions where the power is concentrated the values
can be considerably larger, but in other regions the fields will be much
less.

Because all fields can be complex-valued it is useful to also standard-
ize the fields so that Fy is pure real at some selected boundary. This is
easily done at an interior boundary, where fields are expected to be large,
by multiplying all field values by an appropriate phase factor. Tor cases
of no real transverse power flow (bound modes in lossless structures) F is
pure imaginary, and the quadrature between Fy and FZ holds across the struc-
ture. Small departures from this condition become more obvious if the com-

plex phase standardization is used.

6.2 TField Distributions

A set of field values at equally spaced points in x may be needed for
graphical purposes or for numerical integration. The fields may be calcu-

lated at a set of points in each layer, &, given by x(n) = + nh, where

Xp-1

h is a small increment in x. By defining a layer matrix corresponding to the
increment, the successive field values can be generated by repeated matrix

multiplication. As for any layer, the incremental matrix can be defined as

cos6 +(i/YX)sin6

é 8

+(1Yx)Sln9§ cose6

1

where § kOh is now the thickness of the incremental layer on the scale of

&, and 65 = k6 = Kkoh. An index % for the different layer parameters is

always implied. Then the vector fields F(n) may be calculated iteratively
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within layer &, at the points x(n), as

3 = C * = n .
F(o) = FSL—l’ F(n+l) = (,6 Fn, F(n) CG FO,
x(o) = X»Q/—l, x(n+l) = x(n) + h, x(n) = X,Q‘—l + nh,

for n = 0 until nh exceeds the thickness of the layer. The starting values
F%—l’ at the lower boundary of each layer, have presumably been calculated
previously.

The advantage of this method is that only four complex multiplications
are needed for each increment, and both Fy and FZ are calculated. The
alternative is to evaluate and apply the matrix for the transformation from
X 1 to each X in turn. The same number of matrix multiplications is
required, but evaluation of the complex cos® and siné for each point can
require ten to a hundred times as many additional multiplications. The in-
cremental method corresponds, of course, to the use of the trigonometric

identities for sums of angles; cos k(E&+8) = cos «§ cos k8§ - sin k& sin k6,

and sin «(&+8) = sin k& cos k6 + cos k& sin «§.
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6.3 Power and Energy Relations

Values for the transverse, SX, and longitudinal, Sz’ Poynting power
densities are easily calculated whenever field values are calculated. At

any point in x, at the boundaries or at incremental points, then (Table 2.1)

_1 A N | 2
s-szPZ, and S = 5 FET 5 |

Y% |F
X Xy

2y

SX is continuous at all boundaries, but SZ can be discontinuous because FX

changes magnitude by any step change in 1/u or 1/e at the boundary. The
calculation of Sx and SZ may actually be considered a part of the field
calculations.

Similarly, the energy densities WX, Wy, and WZ, may be easily calculated
at any plane in x where field values are available. These are defined in
Table 2.1. For reasons given below, it is worthwhile to keep these three
terms separate. For complex material parameters the energy density can be
complex, the imaginary part representing the rate of energy absorption or
gain.

Total propagating power in each layer and, when finite, the total
propagating power in the structure are important quantities. These permit
the renormalization of the fields to unit total power, and identification
of the fraction of power propagating in each layer. Similarly, the energy
density may be integrated to obtain the fraction of energy stored in each
layer, including absorption loss or gain in each layer. These quantities,
together with the transverse Poynting power, are all related as pointed out
below.

The given expressions for SZ and the different W's are easily inte-

grated across any layer, but their calculation has not yet been incorporated
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into the program. A particular difficulty encountered concerns a layer very
near cut off, KT, << 1. Just as for evaluation of a layer matrix, the ex-
pressicus for the power and energy become numerically indeterminate (though
finite) in this 1limit. These expressions have four terms (since the fields
anywhere depend linearly on two parameters, say the tangential fields at the
nearest boundary). One of the terms is finite; two terms are numerically in-
determinate in the form of (1-1), with the first remaining term proportional

to «t?; and one term is indeterminate even to first order in «T, with remain-

2:3. For k1 small but not negligible, these terms

ing term proportional to k
are not necessarily small because the thickness, T, can be arbitrarily large.
For accurate calculations of the integrated power in this situation it is
necessary to obtain several power series expansions, but these have turned
out to be quite complicated. This is an area for future extension of the

formulation, and which is yet needed in the program. Here we limit ourself

to indicating the direction and format it might take.

We first point out that there have been some recent extensions, to open
multi-region dielectric guides, of some generally known relations between
group velocity and power flow and energy density in a waveguilde {95, 96, 971.
One set of relations is summarized by Kawakami [87]. In these, the frac-
tional part of the propagating power in each dielectric region plays an
important role. The relation between phase and group velocity, as well as an
orthogonality relation, can be written as an average of k2 = w?ue over all
the regions, each weighted by the fraction of the power propagating in that
region. These relations were presented for lossless dielectrics and real B.
However, for proper modes with finite total energy, all the quantities re-
main defined for complex modes also. Extension of these relations to com-
plex modes should be explored. The needed quantities should be easy to

calculate in the present model. The group velocity, when defined, may
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probably be more accurately calculated in this manner than by approximating
the derivative dw/df = v,

The group velocity, Vg’ when it is defined, relates the total power

flow, P, and stored energy, W (per unit length) as [2, p. 42, 99, Eq. 39];

The relation holds for a wide variety of lossless guides. We point out that
P and W are still defined, though complex, for modes of lossy guides, pro-
vided only that the mode is bounded. Hence the above relation could be used
as a definition for vg, although it would be complex. Group velocity is
only a first order concept (dw/dB constant over the bandwidth of a signal),
and care should be taken in interpreting it too literally. In particular,
no physical interpretation appears to have been suggested for a complex vg,
but perhaps some significance could be given to the imaginary part.

Another, exact, relationship exists between the phase velocity and the

stored energy terms.
P = w/B (Ut—UZ)

where w/R = vp is the phase velocity for a mode, and P is the total propaga-
ting power. Ut is the total energy stored in the transverse fields, and UZ
is the energy stored in the longitudinal field components [2, Eq. 2.2, 89;
98; 99, Sect. IV]. This is one of two independent relations valid for closed
and open lossless dielectric waveguides even with material dispersion. In
£100] it is shown that the (Ut—UZ)can be interpreted as a electromagnetic
momentum flow.

Of more interest to the present problem is the fact that these two

relations (theorems) can be generalized to waveguides of fully complex
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material parameters, and for complex w and g [101, 102]. These were derived
simply from Maxwell's equations, but were limited to closed waveguides having
arbitrary but lossless impedance boundary conditions.

Here we present the two independent relations in terms of the normalized
variables of Table 2.1, and valid for either polarization. Also, the results
of references [101] and [102] are extended so that the theorems are useful

also for open structures and unbound modes. At any plane x

B SZ = 2wr WX (6.1)

g Sz + 1de/d£ = 2(w; W; - W, WZ) (6.2)

These may be obtained directly from Maxwell's equations. Substitution of
the definitions for S and W reduce (6.1) to a simple identity, and (6.2) can
be proved by using the two differential equations of Table 2.2. This sim-
plicity belies the importance of these two relations. Their difference is,
in fact, Poynting's theorem in differential form, V:S = i2m(wm—we); where Wm
and we are the magnetic and electric energy density (TE modes). And their
sum, apart from the terms in Sx’ leads to the relation given above for the
phase velocity.

When Eqs. (6.1) and (6.2) are integrated between any two planes ) and
x2, then

B PZ = 2wr UX (6.3)

BNPZ + 1(SX2—S

Xl) = 2(m'; Uy - erZ) . (6.4)

PZ is the total propagating power between the two planes, and UX, Uy, and
U, are the total energy (per unit length) associated with each of the three
field components. These two equations hold for any two planes of the struc-

ture; in particular for each finite layer, and for the whole structure.
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Ixcept for the term in SX, Egs. (6.3) and (6.4) correspond to Eqs. (10) and
(11) of [101], and Eqs. (8) and (10) of [102]. (Sx2_sxl) is the net Poynting
power which flows transversely out of the region between %] and X553 it is
easily available from the boundary field values without integration. In-
clusion of this term makes the equations valid for arbitrary complex modes.
For closed waveguides, or for bound modes in open waveguides with Xy and X
at infinity, the net transverse power outflow is zero; and Egs. (6.3) and
(6.4) reduce to those in [101, 1021. And for lossless materials these are
also equivalent to Eqs. (48) and (49) of [99].

These equations have the dimensions of power per unit length of the
guide, and may be considered as power balance equations. By taking sums and
differences between the two equations, it is possible to write four relations,
involving the real and imaginary parts of B and P separately [101, 102].

With the calculation of PZ, and UX, Uy’ UZ for each layer, it is then
possible, using Eqs. (6.2) and (6.4), to make rather complete statements
concerning the power flow in each layer, the power flow across layers, and
the power dissipated or gained in each layer. And for the whole structure
it is possible to identify the attenuation of the propagating power as being
due to material absorption or due to transverse power leakage out of the
structure. The imaginary part of 8, of course, gives the total attenuation
rate, but cannot be used to identify what fraction is due to radiation or to

absorption. Also, although (SX —le) is easily calculated to give the net

2
transverse power flow into or out of a layer, it is not very meaningful until
the total propagating power flow within the layer is also known.

As a final note, it is important to realize that the familiar concept of

orthogonality of the modes, over the cross section of the guides, does not
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usually hold for complex modes. In the first place, orthogonality is defined
only for bound modes; or, with the help of the delta-function, also for the
plane wave spectrum of continuous modes [1, p. 24]}. For improper modes,
because they are unbounded, the integrals used in defining orthogonality do
not in general exist. But even for bound modes, which are complex as a re-
sult of complex material parameters, the modes are not orthogonal to each
other. In particular, the modes are not orthogonal in the power sense,
where the cross product between two different modes is taken in the same
form as a time average Poynting vector, with one of the field values con-
jugated [1, p. 303 3, p. 231]. Rather, a mathematically more correct de-
finition of orthogonality might be used, with no conjugation [3, pp. 229-
231].

But more generally it should be recognized that the transverse eigen-
value problem here is not a self-adjoint problem [5, p. 241; 69, Chapt. 8].
The eigenvalues, B, are not real; the eigenfunctions (the discrete modes)
are not orthogonal to each other. Instead it is necessary to consider the
adjoint problem, involving both the adjoint differential operator and adjoint
boundary conditions [5, p. 53; 69, p. 139, Chapt. 10; 87, p. 148]. Eigen-
functions of this adjoint problem then exist. The eigenfunctions of the
original problem are then orthogonal to the adjoint eigenfunctions rather
than to each other; that is, biorthogonality. The present problem is further
complicated by the open boundary conditions, which depend on the eigenvalue
parameter. The adjoint boundary conditions can then be quite different. For
these reasons the orthogonality of the discrete modes is not further dis-

cussed.
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7. LDXAMPLE RESULTS AND DISCUSSION

The present formulation, using the program described in Part II, has
been tested on a variety of problems. Few published results, for 3 and u-
layer cases, include numerical results to more than a few significant digits.
This makes it difficult to verify the accuracy of the program. For several
published results there is agreement to the available significant digits.
Comparison with other locally available programs for calculating 3 and 4
layer cases also show agreement to the 6 to 8 significant digits available.

There may be a need for some standard test cases by which calculations
by different workers can be compared for accuracy. An artificial four-
layer case has been used to preset all input variables for the program;
this default case can be run with a null set of input cards. Propagation
constants accurate to 8 decimal places are listed in Part II, and may be
used for accuracy comparisons.

Here we present two examples to demonstrate the ability to provide
complete complex solutions to general problems. These are complicated,
either because of the way the roots vary with changing parameters, or be-
cause there are many layers, including two guides and two exponentially

thick layers.

7.1 Gain and Loss in Simple GaAs Double Heterostructure Laser

A four-layer model for a GaAs DH laser is shown in Fig. 7.1. It was
used by Streifer, Burnham, and Sciefers [28] in studying the effect of sub-
strate radiation losses on the laser threshold for different modes. It is
a simple structure, with gain assumed throughout the higher index guiding

layer, 2. But losses into the substrate layer 4 are deliberately introduced
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by using a thin Isolation or tunneling layer 3. The radiation loss to the
substrate is greater for the higher order modes, and the intention is to
suppress the lasing of these modes in favor of the lowest order mode. Their
objective was to calculate, for each mode, the threshold gain required in
layer 2. Several approximate methods of calculation were compared; the best
one could be applied iteratively, and if repeated to convergence it could
give exact results. These are perhaps the only published results which in-
clude effects of loss and gain in different layers as well as radiation.

This case was calculated using program MODEIG to check that results
consistent with theirs could be obtained. In [28] results were given for
the threshold gain to five significant digits for three modes, but no values
for B were listed. Using their parameters, and threshold gain values, the
propagation constant, 8, was calculated for the three modes. The resulting
imaginary part of B was negative, indicating mode gain, and it corresponded
precisely to that needed to make up the mirror reflection loss which had
been assumed. That is, agreement was obtained, and was consistent within
the available significant digits.

Subsequently, W. Streifer kindly provided some further results for
complex B, to many significant digits, for several values of gain and thick-
nesses of layer 3. These same cases were also calculated using MODEIG. Tor
many different combinations of parameters there was always agreement to 7
significant digits, and in most cases to 8 decimal places for both real and
imaginary parts for B. This is considered as a direct and reciprocal con-
firmation of the exactness of both calculations, made by very different
methods.

An unanticipated result was the rather complicated situation that

emerged concerning the TE2 mode, which is near cut off into the top layer 1.
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It was first observed that the solution for the TE2 mode which was found by
Streifer et al. was in fact derived from a root which, for lower gain, was
strictly nonphysical. A different proper root for a TE2 mode also existed
which had a lower threshold gain. Subsequently, calculations of 8 were made
for three or four modes, for a wide range of values of relative frequency
and gain for the structure as shown in Fig. 7.1.

The results are shown in Fig. 7.2, displayed in the Kl—plane for the
top layer. Thus, the modes are being described by their properties in the
top semi-infinite layer. It is emphasized that all these modes are, in
addition, leaky and improper in the substrate layer. The parameter values
are shown in Fig. 7.1. Bulk attenuation is present in the three non-guide
layers. Imaginary parts of n in layers 1 and 3 correspond to a bulk
attenuation constant of a = 1.0 mm—l. In layer 4 the value is a = 5.0 mm—l
These are not very significant on the scale shown in Fig. 7.2; mode attenu-
ation is primarily due to the substrate radiation. In the guide layer y
derotes the imaginary part of n, which is zero or negative representing bulk
recombination gain. Results were calculated for three values of gain, de-
noted as 81> 8y> and g4 in Fig. 7.2. The g's are intended to represent a
negative value of a in units of mm_l. The relationship to the imaginary
part of n, say Dy is that y = -n; = —a/QkO = g/Qko. The values represented

by 81> 85> &g of Fig. 7.2 are

g = -a Y = -n;
293.22 mm T 21.000-107°
gl . mm .
-1 -3
g, 363.03 mm 26.000+10
-1 -3
g4 568.34 mm 40.704-10

These are listed for Ao = 0.90 um, ko = 6.98132 um—l.
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The principal features of Fig. 7.2 are the loci for the values of 3
with changing parameters. These are shown for three modes, for the differ-

ent values of gain, including g = 0, and for a range of relative frequency

0.75 < w, 2 1.25. With changing frequency, the value of k

| = kx/kO is de-
fined using the fixed value of ko corresponding to XO = 0.90.

Fig. 7.2 should be studied while keeping in mind the different regions
of the plane shown in Fig. 3.2 and the mode classifications of Sect. 3.3.
Fig. 3.6 is also relevant. The losses in layer 1 are not significant on the
scale shown, so regions 2 and 3 of Fig. 3.2 reduce to the axes. Recall that
in quadrants 1 and 3 modes will have gain in the direction of propagation,
Im B < 0, and that leaky modes lie below the real axis on the right. The
upper half plane is the proper branch of Kis for modes which are bound in
layer 1. Any formulations or calculations which are limited to this conven-
tional branch specification would be blind to the behavior of the root loci
shown in the lower half plane. The maps of the axes of the g2-plane, and
the branch cuts corresponding to Kys as shown in Fig. 3.6, all lie outside
the region shown in Fig. 7.2. So these are not of concern here.

No branch boundary is indicated in the figure, because it is not rele-
vant. Many of the points were calculated using the orientation shown by the
line at 45 degrees. See Fig. 3.6. Separate calculations of the roots were
made in the two half planes on each side of this line. But several other
orientations were also used, particularly when there were roots near the
origin. It is emphasized that the locations of the roots shown in no way
depends on the choice of branch specification.

The loci for the bound TEO and TEl modes are well behaved; they lie
near the positive imaginary axis for all parameter values. The TE3 mode is

a leaky mode for all values. But note that improper roots corresponding to
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these modes also exist In ome mathematical sense. These are labeled TEi
and TEé. A TEé root presumably oxists also, but no special steps were taken
to locate it. It may lie on the other sheet of this plane, associated with
the other branch for Ky, The branch points for the branch cut in this plane
(see Fig. 3.6) lie at A = + i 1.196, just about where the TEé root might be
expected on the negative imaginary axis. Tamir [41] has shown that for a
general layered structure roots always occur in pairs. One may be chosen,
on the basis of branch specifications or physical arguments, to represent
the mode. In the present case, because of the complex material parameters
and substrate radiation, the pairs of roots do not have the symmetries noted
by Tamir. But the number of existing roots is not affected though.

The remarkable feature of Fig. 7.Z is the central hyperbolic pattern.
It is all associated with the TE2 mode, showing how the two roots vary in
the neighborhood of cut off. The case for no gain and a relative frequency
of 1.0 may be considered a reference case, and is shown (for all modes) by

open circles. The point labeled A is a proper root for TE,, but has a

29

significant inward phase propagation. The point A' is an improper TE, root,

2
with outward exponential growth dominating over the outward phase propaga-
tion.

With increasing thickness of the tunneling layer, tss reducing the
radiation loss to the substrate, the roots move along the loci from A and A'
to the points C and C', marked by triangles on the imaginary axis. The
point C is a truly bound TE2 mode, along with the TEo and TEl modes. The
point C' is strictly non-physical.

From the point A, now with increasiﬁg gain, the root crosses the real

axls, becoming a mode with gain and moving to the point B' for the value of

£5- The point A' moves upward with increasing gain, to become the point B
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on the real axis. The point B is at threshold for the gain gy The roots
for all modes with w = 1, for gain gy, are shown by open squares. The TEO
and TEl modes move into the first quadrant, becoming modes with consider-
able gain. The imaginary part for the leaky TE3 mode is reduced, but not by
much.

The value of gain for 83s in fact, is the threshold gain found by
Streifer et al. for the TB2 mode. The point B is their solution for the TE2
mode at threshold and we agree to 8 digits in the value of 8. But note that
this solution derives, by a continuous variation of parameters, from the im-
proper nonphysical root C'»A'+B., TFor this gain the other candidate root for
the TE, mode is at B', improper and with considerable excess gain. But it,
in fact, derives from the proper bound TE, mode at C and A. With gain in-
creasing from zero, the root at A peaches the real axis, and theshold, at a
gain of g = 207.87 mm—l, much lower than g3 Thus, the TE2 mode root at
A has a much lower threshold gain than was found by Streifer. For this
reason it is proposed that the root at A is the more correct choice for the
TE2 mode.

With changing frequency, but now fixed gain, the roots move along the
lines terminated by the solid triangles, which point in the direction of in-
creasing frequency. All marks along these lines represent actual calculated
points at intervals of 0.05; except along the line for 5o and the central
part for &> where the intervals are 0.01. The TEO and TEl roots are not
very sensitive to frequency, but the TE3 and especially the TE2 modes are
sensitive to frequency.

With increasing frequency, and no gain, the root at A moves up and

toward the imaginary axis. The proper TE, mode thus becomes more bound, and

fapther from cutoff. The root at A' moves toward the negative imaginary
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axis, becoming more "nonphysical". But, with frequency decreasing instead,
it is the root of A' which moves to the right becoming more acceptable as
the leaky TE2 mode. And the root at A moves to the left; and in fact,
crosses the real axis at about w = 0.70. Note that at w = 0.75 this root is
in quadrant 3, implying a mode with gain; in spite of the fact that there is
no gain in the system. So this root is not then acceptable to represent a
TE2 mode.

The behavior of the roots with changing gain also depends on frequency.
For a frequency greater than about 1.02 the root from the locus of A
crosses, not into quadrant 3, but into gquadrant 1 as the gain is increased.
Similarly, at the higher frequencies, the root from A' crosses into quadrant
3 with increasing gain, rather than into quadrant 1. So, a root may reach
threshold either on the real or on the imaginary axis. The root from A
attains threshold on the negative real axis for the lower frequencies, imply-
ing constant field amplitude in the transverse direction in the semi-infinite
layer. But for the higher frequencies the same root reaches theshold on the
imaginary axis, as do the TEO and TEl modes. This gives the very different,
decaying exponential, behavior for the mode at threshold. Also note that a
threshold condition on the negative real axis implies inward phase propaga-
tion; toward, rather than away from, the region of gain.

Clearly there is some problem in making a choice for which root is to
be given a physical interpretation under different conditions of frequency
and gain. This situation likely exists for any mcde near cutoff. For some
values of frequency and gain it may not be possible to make a choice. For
example, at a frequency of about 1.02, and a gain slightly less than 55
both roots for TE, are located at about k, = -i 0.16. (This is an example

2 1

of the occurrence of a double root.) Both roots are strictly nonphysical
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with pure outward exponential growth. Shevchenko [84, 85] has previously
shown this situation to occur for the simpler symmetric slab guide. His
results for the lossy slab guide [85] are the only other published work
which resembles Fig. 7.2 here, and which demonstrates how complicated the
situation for a mode near cutoff can be.

Fven when there exists a choice, between the two different TE2 roots,
it may be difficult to make. For example, with zero gain and frequency de-
creasing from 1.25 to 0.75, the two roots trace out the loci through A and
A'. The question then arises -- at what frequency does the TE2 mode cease
to be a proper mode, go past cutoff and become a leaky improper mode. If it
is insisted that a TE2 mode always "exists'" then it is necessary, at some
frequency, to switch attention from one locus to the other. The question
cannot be answered by any fixed choice of principal branch specification.
It may be seen that, whatever the orientation of branch boundary, there
always exists a range of frequencies for which both TE2 roots lie in the
same, secondary, branch half-plane. The question does not necessarily have
an answer because it oversimplifies the physical problem.

The mode concept is a mathematical construction, and individual modes
offer only a partial description of any physical situation. Any actual
problem must include sources or exciting fields, and observers; and the
fields, which physically exist and are unique, can be given several mathe-
matical representations. These may differ by having different choices of
paths of integration for integral representations and different summations

over discrete modes. One, both, or neither of the two TE, roots above might

2
contribute to some representation. Only the complete summation and integral

contribution has a unique physical interpretation. And great care must be

taken in ascribing physical reality or existence to any single term in an
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arbitrary representation.
The present example is somewhat unrealistic because the ty = 0.10 um is

very thin and the radiation loss 1s excessive. The leaky modes, even the

TE and TE

o 1 do not propagate sufficiently far to justify their usefulness

as a discrete mode. This is certainly true for the TB2 and TE3 modes when
they are leaky into both outer layers. The leaky mode concept is only use-
ful when the imaginary part of B is a very small fraction (less than 0.001,
say) of the real part. This can be realized to any degree by making t3
thicker, such as 0.2 or 0.3 um. But all the above descriptions of the root
behavior would remain valid. The locus for the TE2 would follow more close-
1y the real and imaginary axes, and do so for smaller values of gain. The
small value of ty has exaggerated the features in Fig. 7.2, and made them
easier to calculate.

Note again, that in the absence of gain, the root for a proper bound
mode is not necessarily the same root which becomes the leaky mode. It is
proved here by example: the TE2 mode with decreasing frequency. A similar
behavior has been noted when the substrate is a lossy metal. This behavior
was alluded to in Sect. 3.2, in the discussion of regions 1 to 4 of
Fig. 3.2. It is likely that the bound and leaky mode roots remain on
separate loci whenever the loss in the semi-infinite layer is less (in some
sense) than the loss elsewhere in the guide or other semi-infinite layer.

This situation is emphasized here because it is not generally known.
Often in the literature it is stated that proper bound modes pass beyond
cutoff to become leaky modes. Or it is sometimes stated that leaky modes
are obtained by analytic continuation of the proper root onto the improper

plane (of B). This is certainly not generally true, as shown by the above

examples. A simple case where the bound and leaky modes are part of the
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same root locus is when the semi-infinite layer is lossy, with no other
losses in the adjacent guiding structure. The locus would then likely lie
in regions 2, 3, and 4 of Fig. 3.2.

The results for this example are presented to demonstrate the capability
of the present method for readily calculating complex modes in very compli-
cated situations. These results cannot be obtained by analytical means, and
approximate methods are not likely to be successful. It would be very diffi-
cult to obtain these results for the TE2 roots without the capability of the
movable branch boundary. Also, roots very close to the branch point were
found, with « < 0.1. In the B2 plane, where the root search is actually
carried out, roots within 0.001 of the branch point were found (for example,
with 5 and w = 1.08). Further, there are two roots, very close to each
other, and both close to the branch point. Once it is recognized that there
are two roots in the vicinity, these are no more difficult to find than

other rcots. We believe that these capabilities of the present formulation

and method are unique.

7.2 Modes of Seven-Layer Twin-Guide Semiconductor Laser

For an example of a more complicated structure, calculations were made
of the modes in a seven-layer GaAlAs laser proposed and demonstrated by
H. Suematsu et al. [29] and by Y. Kawanishi et al. [30]. All gain is pro-
vided by one guide which is parallel and distributively coupled to a second
vassive guide. Two designs are described. 1In [29] the active guide has
reflecting end mirrors to form the laser cavity, and the passive guide
serves only for output. In [30] the resonant cavity is formed instead by
distributed Bragg reflectors at either end of the passive guide. Gain is

provided by the strongly coupled active guide which as no end reflectors.
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Their analysis was based on coupled mode theory, and on a first order per-
turbation analy=is for the threshold gain. Here we present only some re-
sults for the true modes of the system of two coupled guides, and do not
consider the effects of the end reflectors of either guide nor the effect of
gain on the modes.

The structure is shown in the upper part of Fig. 7.3, where the dimen-
sions and indices were taken from the model of Kawanishi, et al. [30,

Fig. 1]. Two changes were made, however. Firstly, the thicknesses of the
two tunneling layers, 2 and 6, were mace smaller, 1.0 um. The original
dimensions, 3.5 and 2.6 um, were sufficiently thick that no significant
radiation occurred into the semi-infinite layers. That is, the problem was
indeterminate in the sense described ir Sect. 4.6, so it could be accurately
solved instead as a 5 layer problem (layers 2 and 6 taken to be infinite).
Reducing the thicknesses of layers 2 and 6 provides a more difficult test
problem, of 7 layers with leaky complex modes. Secondly, some absorption
loss was assumed for all layers; this had been ignored previously. Values
for a were taken from the literature, corresponding to the Al concentration
given in [30] for each layer. Values of o = 5.0 P were used in layers 1,
5, and 7. In layers 2 and 4, o = 1.0 mm_l; and in layer 3, the passive
guide, a = 0.2 mm—l. For the following results no gain was assumed in

iayer 5, the active guide.

The values of B for the different TE modes are shown by lines super-
imposed in the different regions of Fig. 7.3. These values are on the same
scale as n.

Mode lines in the two guide layers show B for the modes of the two
guides when isolated from each other, by assuming that layer 4 is infinite.

This is very easy to do with the program by specifying, for example, that
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the right hand outer boundary condition is imposed at the boundary between
layers 3 and 4. The rest of the structure to the right is then ignored.
Similarly, the left hand outer boundary condition can instead be imposed at
the boundary between layers 4 and 5, to calculate the modes in the active
guide, ignoring the layers 1 to 3. Interestingly, these modes are all truly
bound modes, in spite of the radiation leakage through the tunneling layer 2
or 6, respectively for the two separated guides. This is because of the
bulk absorption loss in the semi-infinite layers; it is sufficient to absorb
the tunneling energy, it does not radiate to infinity, and there is outward
exponential decay for the fields. These occur in region 3 of Fig. 3.2, and
might be called bound leaky modes. For thinner tunneling layers, and great-
er leakage of energy from the guide, this wouid probably not remain true.
The numerical values of 82 for these modes were calculated to a con-

vergence criteria of lO_lO

, in 4 to 7 iterations per root, from the auto-
matically generated starting guesses based on the phase integral. Only 8
decimal places are provided as output. The imaginary part of 8, for the
attenuation rate of these modes, was comparable to, but somewhat greater
than, the imaginary part of the index in each guide layer. In the passive
guide, for example, Im ng = 10_5; and Im B was on the order of 1.5 to
3.5-10-5, and hence was known to 4 significant digits.

The dashed lines show modes which are beyond cutoff, and strongly
leaky because there is no tunneling barrier. These leaky modes and the
bound modes were calculated together as a set, with the branch boundary
positioned to allow both types of modes on the same principal branch for «
of each of the semi-infinite layers 1, &, or 7.

The mode lines for the complete structure, as shown, are indicated in

layer 6. If the values of 82 for the two separated guides, to two decimal
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Figure 7.3 Seven-layer twin-guide GaAs laser of Suematsu and Kawyaniski,
et al. [30]. Index distribution and fields. Mode lines in layers 3 and 5
show values of B for the modes of the two separated guides, Ty > Values

of B for modes of complete structure are shown in region 6.
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places, are used as starting guesses, convergence to lO—lO in 82 is obtained
in 3 iterations per root. This is considered to be a remarkably efficient,
and exact, calculation for a rather complicated structure.

The TEl mode in the passive guide and the TEO mode of the active guide
are nearly phase matched. And, in the concept of coupled mode theory, these
are coupled by field overlap in layer 4 to become the two closely spaced TEl
and TE2 modes of the complete structure. From the original two values of B
(especially their difference), and the amount of change in becoming the
values of B for the two normal modes, the coupling coefficient can be calcu-
lated. There may be a mistake in the published values of n for this struc-
ture. The analysis in [29, 30] intended that the two lowest order TEO modes
in the two guides were to be phase matched. A small change in ny from 3.57
to 3.55 would lower the B of the TEo mode in the passive guide to match
that of the active guide. This lower value of n agrees better with publish-
ed results for n corresponding to the listed Al fraction of the GaAlAs of
layer 3.

The phase integral values for the modes of the complete structure are
listed for purposes of illustration. These are given in normalized form,

in units of 7 for the real part, and in units of decades (@I/logelo) for

the imaginary part.

Mode @R @I

() (Decades)
TE 1.34 7.95

o

2.19 7.38
TEl
TE2 2.36 7.21
TE3 3.36 5.91
TE4 4.31 3.55
TE 5.22 0.18
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The first three modes are not spaced at integer numbers of w in @R, and
modes 1 and 2 are closely spaced. For the last three modes the integer
part of @R/w does correspond to the mode index. An imaginary part of about
7 for the first three modes shows that these may be somewhat indeterminate
(due to the thick layers 2 and 6). With an 8 digit computer there may be
difficulties with calculating these modes. Interestingly, the elements of

<
he C' matrix for these modes were not large, probably because of approxi-

ct

mate symmetry of the two thick layers.

The field distributions for the first four TE modes of the complete
structure are shown in the lower part of Fig. 7.3. These are exact; rather
than being based on coupled mode theory and linear combinations of the
fields in the two separated guides, as usually encountered in the litera-
ture. Of course, the resemblance to the mode shapes in the individual

guides is evident. The TEO and TE, modes are close to the TEO and TE2 modes

3
»f the passive guide, with little field amplitude in the other guide. The
TEl and TE2 modes may be described approximately as the two possible linear
combinations of the TEl mode of layer 3 and the TEo mode of layer 5. Each
of these modes is normalized arbitrarily, and they do not represent the

same amount of propagating power.

A more novel result, rarely mentioned in published examples, is the
transverse power flow across the structure, shown in Fig. 7.4 for the first
three modes. This transverse Poynting power density is routinely calculated
whenever calculation of the field distributions is made. These results are
for no gain in the active layer. The source of this transverse power flow
is the propagating energy of each mode. Some fraction of the propagating

energy diverges and flows transversely to supply the radiation and abosrp-

tion losses outside the guiding layer. This implies a curvature of the
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~hase fronte across the guide; the fileld quantities, I', do not have a con-
stant phase lactor. The shapes of these curves are very dependent on where
the propagating energy is largest, on which layers have the greatest absorp-
tlon, and on how much loss is due to radiation into the semi-infinite layers.
In particular, the shape of these curves is very sensitive to the amount of
gain in the active guide. Tor bound modes in lossless structures the real
part of SX is everywhere zero. Hence the type of information shown in

Jig. 7.4 for a practical structure is available only from a fully complex
treatment of the problem.

The features of the curves in Fig. 7.4 can be correlated somewhat with
the field distribution of Fig. 7.3. For the TEO mode most energy is in
layer 8. SX changes sign within the layer, at x = 1.5, with power flow
outward into upper layers, positive Sx’ and into the lower layers, negative
Sx. There is more power flow (0.5-10_6) into the nearer semi-infinite lay-
ar, than flows (10—8) into the top layer 7. For the TEl mode the transverse
power flow changes sign in layer 5, at about x = 2.9, where the propagating
pow:r 1s maximum. But, perhaps surprisingly, power flow is now toward this
point. This occurs because this layer has a high absorption loss compared
to layers 2, 3, 4, and 6. Because layer 3 is the lowest loss material, and
a large fraction of the TEl power propagates in layer 3, the transverse
rower flow throughout this layer is positive, toward layer 5 where most
2k sorption occurs. For this mode, SX also changes sign within the tunnel-
ing layers 2 and 6; so that there is, nevertheless, some power flow outward
into the outer, relatively lossy, layers. There is now more power flowing

into layer 7 (2-10~6) than into layer 1, (1-10_7

).

For the TE2 mode more power propagates in layer 3, and SX throughout

the layer in toward the absorbing layer 5. SX is nearly constant in layer Y.
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This layer nelther absorbs nor contributes to the transverse power flow
across it. Its absorption is not large, and there is a node for the TE2
mode within this layer (as seen in Fig. 7.3). Note that at other nodes in
layer 3, for the TEl and the TE2 modes (x = 1.75), SX is also constant. TFor
the TEQ mode there is also a sign change in SX at x = 1.0, but is not visi-
ble on the scale of the figure.

This type of information is uniquely available from a fully complex
calculation of modes in a structure. It woulc be helpful, for example, in

designing, or modifying the designs, of semiconductor laser structures by

identifying regions contributing greatest power loss.

7.3 Conclusions

These examples show that the objectives of this work have been fully
realized. Using the formulation, as programmed, it is possible to calculate
any ~omplex modes, propagation coefficients and field distributions, proper
or improper, physical or nonphysical, for any arbitrary layered structure.
Moreover, these may be calculated efficiently and to high accuracy.

This capability is made possible by: a) use of the 2x2 matrix method
for calculating both the field distributions and the characteristic func-
tion, b) a characteristic function having maximum analytical properties,
and c) an efficient complex root searching algorithm. The capability for
accuracy is preserved by careful attention to detail, in avoiding variables
and expressions which may inadvertently become indeterminate, and using a
power series if necessary.

We believe that the results obtained, particularly program MODEIG,

represent a powerful capability which has not previously existed. It
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should prove valuable for the analysis of a large number of different
planar structures, which are the prototypes of many practical integrated

ocptics devices, or for other guiding or nonguiding layered structures.
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Part II. FORTRAN PROGRAM MODEIG

The formulation described in Part I has been programmed in FORTRAN for
rather complete case by case calculations of any arbitrary structure. The
program follows very closely the analytic formulation. A large number of
comment cards is included, so that the program is largely self-documenting.

It should not be difficult to locate and follow the calculation steps if

necessary.

1. Program Structure

The program copsists of a group of subroutines which, for each case,
are called in turn to perform various parts of the calculation. Each sub-
routine provides appropriate output associated with its function. Communi-
cation of variables between subroutines is almost entirely by means of
labeled COMMON blocks. Following is a brief description of the various

program units in the order of appearance in the listing in Sect. 3.

MODEIG 1Is the main program, and consists only of a sequence of calling
statements to the other subroutines. It reads no input and prints no
output. New cases are repeatedly called for and solved until a stop command

ie encountered or there is no more input.

BLOCK DATA BLOKOM Is a FORTRAN program unit in which all common-block

data variables are declared, and preset to prescribed default values. A
large block of comment cards is also included in which all input variables

are described. These are listed within each of three NAMELIST groups.
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Two example sets of actual input cards are also jincluded as comment cards.

PUTSIN Is a main subroutine which reads input for each case, and calculates
all needed variables and starting parameter values for use by other sub-
routines. NAMELIST groups are declared, input cards are read, and needed
variables are preset or calculated according to TE or TM polarization. No
other subroutines depend on type of polarization. A principal function is
printing an output summary of the layered structure, with all important

variables and calculated parameters for each case.

SEARCH Is the principal subroutine for calculation of discrete modes by
calls *o other subroutines. For non-eigen boundary conditions no search

is made. It calculates initial guesses for complex root search, initializes
necessary parameters, and calls CZEROM for the root search. For all dis-
crete modes which are found it calculates all other mode parameters,
matrices, propagation constants, admittances, and phase integral and writes

summary for each mode.

COMPLEX FUNCTION EIGEQF 1Is a short subroutine to evaluate the character-

istic function for any value of QZ = 82, cCalled only by CZEROM, it is
used once for each iteration during the root search. It calls subroutine
SYSMAT to obtain values of the SM = S+ matrix, and then selects proper
element for use as characteristic function, dependong on inward/outward
type of boundary conditions. Several modified or renormalized character-

istic functions remain as options, but are not now recommended for use.

SYSMAT Is a core subroutine for the whole program. For any value of QZ =

62 (Wz = Bz) it calculates phase thicknesses for all layers and accumulates
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the phase integral. Calculates transform matrices for all layers, and by
forward chain matrix multiplication calculates the CM = ¢® matrix for whole
structures. Calculates transverse propagation constants, WX = k, and wave
admittances, YX = Yx’ of outer layers. Using the four combinations of
outer boundary conditions it calculates the SM = 5™ matrix of four possible
characteristic functions. Most calls come from EIGQF; but SYSMAT is also
called by SEARCH and by FIELDS to obtain the same set of parameters for an&

given values of QZ for discrete or continuous modes.

FIELDS Calculates the set of tangential fields FY and FZ, and transverse
Poynting power PX, at all boundaries, for each value of QZ = 82 in an

array QZM. These values may be discrete modes as found by subroutine
SEARCH; or they may be arbitrary input values, as for the continuous
spectrum or plane-wave spectrum for which no search is made. Two normalized
sets of boundary field values are calculated (FY, FZ and GY, GZ), starting
with the two opposite outer boundary conditions separately. Cross products
(Wronskians) between these two sets are calculated as numerical checks on
reciprocity and the characteristic equation. A summary output for these
fields and checks is written. For discrete modes the average of the two
fields is used. Calculates all fields, including PX, FX and the longitudinal

propagating power, PZ, incrementally at a closely spaced set of points in x.

LAYMAT Is a short subroutine to calculate the layer transform matrix for
any layer. Called only by FIELDS, for a full layer or for an incremental
layer. Within SYSMAT a similar calculation is done in-line by a duplicate

block of statements (more efficiently than by calling LAYMAT).



POWERS Is provided for future implementation of calculation of total

propagating power in each layer, and if finite, the total propagating
power in the structure. All common blocks and needed variables are pro-
vided, but no calculations are yet implemented. Called by TIELDS for each

value of Q7 = 82 after Fields are calculated.

CZEROM(CFCN) Is a general purpose subroutine for calculations of complex

roots of an arbitrary complex function CFCN(Z,N). Called by SEARCH, with
CFCN = EIGEQF, and Z = QZ. Muller-Traub method is used with additional
improvements as described in Part I, Chapter 5. Each call to CZEROM calcu-
lates a set of roots, not just a single root. For each roof, four calls
are made to EIEQF in setting up the initial iterates, and then one call

to EIGEQF if made for each iteration. Unlike most library subroutines,

and for better efficiency, variables are communicated to and from the

calling program by a COMMON block /CZECOM/.

MODEIG, altogether, is a rather large program. It was intended pri-
marily for complete solutions on a case by case basis. Any change of
parameter is considered a new case, and a complete solution is presented
for each. Input cards for any number of cases can be submitted together,
and it 1is only necessary to include those input values which are changed
from each previous case. Some of the output for each case can be suppressed,
at input option; or much more output can be requested, as for diagnostic
purposes.

The program is not as efficient as it could be for calculation of

dispersion curves, such as B vs. frequency, or for a large number of values
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fer any changing parameter such as a layer thickness or permittivity. No
prevision is made for incrementing any parameter; and for each new input
value, the complete solution process, and output, is repeated. For very
general siructures it is not possible to anticipate which parameter it
might be decided to increment.

A total of about 2100 cards appear in the listing in Sect. 3. About
e third of these are comment cards. Nearly 200 of them appear in the
BLOCK DATA unit to describe the input variables, and the rest are distri-
bured throughcut the program for self documentation and spacing. Together
with a large number of type declarations for variables, common block
deciarations, and format statements, there may remain less than half the
total cards as actual executable statements.

The program has only been compiled and executed on a CDC 6400 or
CYELR 73 computer, using the CDC RUN FORTRAN compiler. A maximum of
BLON0 (Octal) words was required to compile (Subroutine FIELDS), and
22000 (Octal) is required for loading. The final length, loaded for
execution with all library functions and input/output subroutines, is
about 26000 (Cctal) words. The RUN compiler does not provide a very high
level optimization, and it is not known how much faster execution could be
obtained using, for example, the CDC FTN compiler.

The CDC computers are ideal for this type of calculation, with the
iong word length providing 14.7 significant digits. On other computers,
of say 8 significant digits, it will not be possible to solve as wide a

range of problems. There appear to be no FORTRAN compilers which provide
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double precision capability for complex variables. With 8 digits a problem
can more easily become indeterminate.

The program is not considered to be complete nor in final form. It is
believed that most cptions and alternatives have been tested and work as
intended, but this cannot be guaranteed. Least tested are the various options
for greater or abbreviated amounts of output from each subroutine. Hope-
fully, MODEIG will be used on a variety of problems; and with more exper-
ience some features may be found to be of little use, and it may be
necessary to add other needed features. If the program is widely used,

it would be worthwhile to eventually write a users manual.
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are associated with indexing over layers or boundaries. Those starting with
M are associated with modes, and those starting with I represent root search-
ing iterations or parameters for incrementing X.

An attempt has been made to make the input foolproof so that some case
is calculated with no fatal execution-time errors due to undefined variables
or singular values. The first line of defense 1s all the preset default
values. But in addition, there is considerable checking of input values.
For example, all boundary locations XL(L) are checked and reordered if
necessary for increasing XL with increasing index L; and all thicknesses
TL(L), if used for input, are made positive. Similarly many control para-
meters are checked tc be positive; and, for example, the Ll and L2 for the
outer boundary conditions are ordered so that 1 < L1 < L2 < LN. The values
are changed if necessary.

Modes are indexed internally, and in the output, by an index M = 1 to
MI (and also for input values QZM and KM, if used). M is not the ordinarily
understood mode index. An input bias parameter MO is available to define an
intended mode index MM = MO + M, which is also used to label the output. MM
is used explicitly only in the interpclation for starting guesses, and there
ie no assurance that MM will correspond to the index (if defined) of the
modzs actually found. Starting guesses (if KGSS = 3) are based on MM and
input values for PMFR and PMDM. Values of QZ are interpolated to give an
intended real phase integral PHM = MM#*PMDM + PMFR in units of wm. QZNR and
QZNT are also important input parameters used in calculating the starting
guesses. QZNR should be on the order of the smallest value of PER in the
structure.

The dimensions of the layered structure can be read in either by the

locations of the boundaries XL(L), or by the thicknesses of all the layers
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TL(L), depending on KXTL. The total number of layers is LN. With the de-
favlt KXTL = 1, then values of XL(L) are expected, and the thicknesses are
calculated from their differences. But 1f KXTL = 2 is included in the input
list of SLAYERS then values of TL(L) from TL(Z) to TL(LN-1) are expected in
the list. Values of XL are then calculated from the thicknesses, starting
with XL(1) = 0.0. Any units may be used for the dimensions, it is only
necessary that WVL and XL or TL be expressed in the same units.

One useful provision allows the reference value for the free-space ko
to be specified by means of a wavelength or by a frequency. Two input
parameters are provided-- a nominal wavelength, WVL, and a frequency fac-
tor, KC, which is allowed to be complex, and is actually read in (if used)
by its real and imaginary parts, KCR and KCI, separately. WVL and KCR are
preset to 1.0, and KCI to 0.0. To calculate cases for a set of different
wavelengths, the different values of WVL would appear on input cards. Then,
as usual, ko = KO = 2m/WVL, provided that KC = 1.0 is unchanged. It may be
desired instead to calculate cases for a sequence of frequency values rather
than wavelength. Then a nominal value of WVL is first entered, and differ-
ent values of KCR are entered as input for successive cases. The effective
ko is then given by ko = KC*KO = 2m KC/WVL. That is, ke depends on both WVL
and KC. All propagation coefficients for modes and materials are normalized
to this value of effective ko. It should be kept in mind that if KC (that
is, KCR) is not unity then the effective reference wavelength is not WVL, as
input, but is multiplied by 1/KC.

KF is the relative frequency, w, of Sect. 2.2, and is also allowed to
be complex. For input, it is read in by the real and imaginary parts sepa-
rately, KFR and KFI, and these are preset to 1.0 and 0.0. That there are

two complex frequency factors, KC and KF, can lead to confusion. Recall
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that for different values of WVL (or KC) the propagation coefficients are
always normalized to the different resulting values of ko' But for fixed
WVL, KC, and ko, and changing values of w, = KF, the resulting propagation
coefficients are normalized to the fixed reference value of ko. Either KC
or KF may be used as the frequency parameters, depending on whether B = WZ
and « = WX are to be normalized to a variable or to a fixed value of ko.
Only if w, = KF = 1.0 can WZ and WX be directly compared to the indices of
refraction of the materials. If KF is not unity, then the relative wave-
length is also different from the nominal input value, WVL.

Input for the material parameters of each layer is by means of the real
and imaginary parts of the (relative) permittivity PER, PEI. A single value
for the permeability, common to all layers, is also allowed to be complex,
PMR, PMI. It is important to keep in mind the variation of the permittivity
with frequency when using the frequency factors KC and KR. For careful
quantitative calculations.the desired values of PER and PEI must be obtained
for each different frequency. These will depend, for example, on the model
chosen to reprsent the material losses (or gain). A useful addition to the
program would be a subroutine which, by input option, would calculate PER
and PEI on the assumption of several possible models. These could include
models assuming a constant conductivity, or a constant bulk attenuation
coefficient, or a plasma model with parameters for resonant frequency and
colliision rate.

The outer boundary conditions may be imposed at any boundary specified
by L1 and L2. At the start of any case these are set to L1 = 1, the first
boundary, and L2 = LN-1, the last boundary. These may be changed by input

values to any interior boundaries, L1 < L2, for calculations of any partial



ctructure. When either boundary condition is imposed at an interior
boundary, then the adijacent outer layer is taken to be semi-infinite,
ignoring its finite thickness and any other layers beyond. The type of
boundary condition is specified by parameters KBC1l and KBC2. These deter-
mire whether the wave admittance YX in the semi-infinite layer is used

(KBC s 1), or whether a fixed surface admittance YBl, YB2 is used (KBC = 2)
2 a surface impedance ZBl, ZB2 is used (KBC = 3). The directional sense
for the solutions in the semi-infinite layers is specified by parameters
«BD1 and KBD2: = 1 for inward, or = 2 for outward solutions. The princi-
pal branch specification for WX(L) and YX(L), in the outer layers L = L2,
znd L = L2+1, is determined by APBl and APB2, the angles of the unit normal
direction, ¢, in units of n. See Sect. 3.3, Part I. The directional sense
for the fixed surface admittance/impedances is also determined by KBD1 and
KBD2. Either or both KBC1l and KBC2 may be zero to imply non-eigen condi-
Cicis; no root search is then made, and both inward and outward solutions
are allowed in the respective semi-infinite layers.

The use of input variables is best described by examples, which are
given here for four different structures. Each set of input cards may in-
clude any number of cases, each starting with $CASE, and also having cards
for SLAYERS and S$MODCON. After the last case in a set, a normal stop is
made bv a single $CASE card containing KASE = 0, or KDOO = 0.

ALl examples below are direct card images, and start in column 2.
fhere is a blank in column 1. All remaining 79 columns of a card may be

used.



214

The default case, with all default parameters, may be calculated with

the null set of input cards:

$CASE $END
$LAYERS $END
$80DCON $END

$CASE KASE=0 $END

The same default case, but for TM modes, (KPOL = 2) is calculated by:

$CASE $END
$LAYERS SEND
$HODCON KFOL=2 $END
$CASE KASE=0 $END

More TM modes, more stringent convergence criteria, and calculations

of field distributions for the default case will be obtained by the set:

$CASE  KASE= 5, NN=7,
KGCZ=4,EPS1=1.0E-10, EPS2=1.QE~10,IL=13,
KDOF=2, KOUF=4,

$END

$LAYERS $END

$MODCON KPOL=2 S$END

$CASE KASE=0 4$END

These input cards were used to obtain the example of output shown in
Sect. 2.3, next.

The following set of input cards includes six cases for the 4-layer DH
laser of Sect. 7.1, Part I, for the relative frequency, KFR, decreasing from
1.0 to 0.75 in steps of 0.05. Layer 2 has gain, PEI(2) negative; and others
are lossy, PEI positive. Note that PER(2) and PEI(2) overwrite the values
just read in the previous two cards. The principal-branch boundary in the

top layer is reoriented to 0.75m (APBl), and applies to all cases.
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$CASE  KASE= 703045,

HN=4, GINR=10.0,

KGCZ=4, EPSi=1.0E-8, EF52=1.0E-8, IL= 15,

$END

$LAYERS WVL=0.9,

XL(1)= 0.0,0.8,0.9,

PER(1)= 11.4582, 12.8880, 11.4582, 12.3881,

FEI(1)= 0.48484E-3, 0.51423E-3, 0.4B486E-3, 2.5711E-3,
FER(2)= 12.88764, FEI(2)= -150.78E-3,

SEND

$H0DCON  APBI=+0.75 $SEND
$CASE $END

$LAYERS KCR= 0.95 $END
$HODCON $END

$CASE $END

$LAYERS KCR= 0.90 $END
$MODCON SEND

$CASE $END

$LAYERS KCR= 0.85 $END
$¥ODCON $END

$CASE $END

$LAYERS KCR= 0.80 $END
$HODCON $END

$CASE $END

$LAYERS KLCR= 0.75 $END

$MODCON $END
$CASE KASE=0 $END

The 7-layer twin gulde laser, of Sect. 7.2, Part I, is calculated for
four cases by the following set of input. MN = 5, 3, or 7 modes are sought;
no fields are calculated, KDOF = 0; thicknesses TL are read in since KXTL =
2; and all layers are lossy, PEI positive. The first case calculates only
the partial structure for the first guide, layer L = 3; the second boundary
condition is imposed at L2 = 3, and layer 4 is taken to be semi-infinite
(ignoring the value for TL(4)). The second case calculates the partial
structure for the second guide, layer L = 5; the first boundary condition
is imposed at L1 = 4, again taking layer 4 to be semi-infinite. The next
case calculates the full structure, L1 = 1 and L2 = 7 being reset internally.
Input starting guesses are used, KGSS = 1, and these are provided by the

MN = 7 complex values for QZM. All guesses are divided out, and initial
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terales are al a radius of 100 1, KM = 4, for all seven values. The last
case repeats the calculation with some gain in the active guide, PEI(5)
negative. Roots from the previous case, remaining is array QZM(M) are used

as guesses, all KM(M) being reset by input to 4, as previously.

$CASE  KASE= 703114,

MhN=5, QINR=10.0,

KGCZ=4, EPS1=1.0E-10, EFS2=1.0E-12, IL= 135,

KDOF= 0, KOUF= 0,

$END

$LAYERS WVL=0.84, LN=7,
4,0,

KXTL=2, TL(2)= 1.0,1 3,0.4,1.0,

PER(1)= 12.9600,11.492',12.7449,11.4921,12.9600,11.49210,12.9600,
FEI(1)= 2.46E-3,0.46E-3,0.10E-3,0.46E-3,2.46E-3,0.44E-3,2.46E-3,
$END

$MODCON L1=1, L2=3 $END

$CASE

MN=3, QINR=10.0,

$END

$LAYERS $END

$KODCON L1=4, LIZ=6 $END

$CASE

HN=7, QINR=10.0,

KGSS=1, BZN(1)= (12.68,0.0),(12.51,0.0),(12.47,0.0),(12.15,0.0),(11.73,0.0),
(11.49,0.0),(11.30,0.0),

KM(1)= 4,4,4,4,4,4,4,4,

$END

$LAYERS $END

$HODCON $END

$CASE KGSS=1, KM(1)= 4,4,4,4,4,4,4,4 $ENDI
$LAYERS

PER(5)= 12.9600, FEI(5)= -1.23E-3,

$END

$HODCON $END =

$CASE KASE=0 $END
The last example is for a stepped approximation to a quadratic permit-
tivity profile, n2 = 9.0 - x2/u, and it illustrates the use of a fixed sur-
face admittance/impedance. Nine layers are used to describe half the sym-
metric structure. A closed boundary condition, KBC1l > 2, is used at XL(1) =
0.0 to represent the midplane, and layer 1 is ignored. An open boundary
condition is used (KBCl = 1, as in all previous examples) at the last

boundary XL(9); so that layer 10 is taken to be semi-infinite, and truncates
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the guadratic profile at n2 = 1.5,

[n the first case the even modes are calculated (FY symmetric about
x = 0.0) by using a zero surface admittance(TE) at the midplane; that is,
KBC1 = 2, YBl = 0.0. In the second case the odd modes (FY an odd function
about 0.0) are calculated by using a zero surface impedance(TE) at the mid-
plane, KBC1 = 3 and ZBl = 0.0. The fractional part of the phase integral,
PMFR, as used in generating the initial guesses, is different in the two
cases. The solutions correspond to a symmetric approximating structure of
16 finite layers plus the two outer semi-infinite layers. The values of
PER = n2 are taken at the levels of the mode values Bé = 9.0 - {(m + 1/2),
which are expected for the continuous profile. The values for XL are about
midway between the turning points for these modes, but are calculated so
that the average of n2 between any two boundaries is in fact the same as
that of the continuous profile.

$CAGE  KASE=704102,

HN=5,

PMFR= 0.25,

K6CZ=4, EPS1=1.0E-8, EPS2=1.0E-12, IL= 15,
KDOF=1, KOUF=4,

$ENTD

$LAYERS

LN=10, WUL= 6.28318530,

XL{1)= 0.0, 0.942809, 1.978085, 2.820973, 3.460071,
3.997388, 4.470249, 4.897540, 5.290377,

FER(1)= 1.0, 9.0, 8.5, 7.5, 6.5, 5.5, 4.5, 3.5, 2.9, 1.5,
$END

$MODCON

KBC1=2, YB1=(0.0,0.0),

$END

$CASE

PHFR= 0.75,

$END

$LAYERS $END

$HODCON

KBC1=3, ZB1=(0.0,0.0),

$END

$CASE KASE=0 $END
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2.2 Default Case

The default case is a four-layer structure (LN = 4) with simple values
for permittivity (PER,PEI) comparable to glass. A guide layer is separated
from a higher index semi-infinite layer by a low index air layer, as for a
prism coupler. All material parameters are real. The dimensions are chosen
so that there are two bound lossless modes, one complex mode which is weakly
leaky into the high index semi-infinite layer, and additional modes which
are leaky into both outer layers. About 8 modes exist for which Re g2 is

positive. The parameters for the structure are:

Layer Thickness Re e = n2 N
(L) (TL) (PER = QN) (RN)
1 inf. 2.25 1.5 Top
2 1.0 1.00 1.0 Air
3 2.0 2.56 1.6 Guide
4 inf. 1.96 1.4 Substrate

The structure is lossless, Im € (PEI) is zero. The reference wavelength
(WVL) is set to 1.0 which becomes the units in which x, = XL(L), and tl =
TL{L) are expressed. The units of dimensions are imméferial; it is only
necessary that AO and'ﬁ or t are expressed in the same units.

For the two.bound modes, the imaginary part of B should be zero, as
well as a large number of real or imaginary parts of other quantities. TFor
example, all « values should be pure real or imaginary, the imaginary part
of Fy and real part of F_ should be zero, etc. Numerically, this will not

be true due to inexact convergence to the real roots in g2, and due to round-

off accumulation in the calculation of all variables. The magnitude of the
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quantities which should be zero will then give direct and immediate evidence
of the residual error in the calculations. It is not necessary to compare
the results to known accurate values in order to estimate the fractional or

absolute accuracy.

The default control parameters call for calculation of four (MN = 4)
TE modes (KPOL = 1), at XO = 1.0 (WVL = 1.0, XC = (1.0,0.0), KF = (1.0,0.0)).

The boundary conditions, applied at the outer boundaries (L1 = 1, L2 = 3),

H

call for open boundary eigenconditions (KBC1l, KBC2 = 1), and outward-only
solutions (KBD1l, KBD2 = 2). The principal-branch boundaries for WX = k in
the outer layers are oriented at ¢ = APB1 = APB2 = 0.257 (Sect 3.3; Figs.
3.5 and 3.6).

Root search parameters are rather conservative. Iteration limit is
IL = 10, and the convergence criteria are e, = EPS1 = 10_6, €r = EPS2 =
10'6. Initial guesses are calculated by phase-integral interpolation
(KGSS = 3), initial guesses are not divided out (KGCZ < 4), and initial
iterates are calculated at a radius of lO_3 (KGCZ = 3).

Field values are calculated only at the boundaries (KDOF = 1, KOUF =
3), and the Wronskian characteristic function is calculated for checking.

Propagation constants WZ = B, for the first 7 seven modes of each

pelarization, to 8 decimal places, are:

Mode Re B Im B
TEo 1.58562152 0.0

TEl 1.54225504 0.0

TE2 1.46994487 0.00000002
TE 1.37930840 0.013869309
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Mode Re B Im B

TEu 1.21783538 0.04953175
TES 0.99336621 0.08195785
TE6 0.87761217 0.06198036
TMO 1.58395407 0.0

TMl 1.53585442 0.0

TM2 1.45759329 0.00000001
TM3 1.36673381 0.02525L07
TMl+ 1.21188610 0.08262072
TM5 1.02304091 0.12493319
TM6 0.83011683 0.15123624

(The values of B for the TM modes appear as WZ in parts 10. to 13. of the

output samples in the next section.)

6

These same values are obtained using a convergence criteria of 10

-8 - . .
10 7, or 10 lO; so there is confidence that the values are accurate to the
8 decimal places listed. These are offered for use as possible numerical

checks of calculations made using other methods.
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2.3 Output

The last six pages of this section show an example of the printed out-

put from MODEIG. It is provided to show the format of the output and to

explain some of the output variable names not explained elsewhere. The

output is for the default case, with some changed parameters, obtained by

the third example of input cards in Sect. 2.1.

Various parts of the output are identified by circled numbers, which

correspond to descriptions below. Many of the variables are input quanti-

ties, these are identified by (I).

1.

Summary of wavelength and relative frequency. WVL (I) is the wave-
length AO used to partially define the normalizing kO; the definition
is completed by the frequency factor KC = (KCR, KCI) (I). All propa-
gation constants WZ and WX below are normalized by the reference,
free-space propagation constant kO = 21 KC/WVL. KF = (KFR, KFI) (I)

is the separately specified relative frequency, w,
Summary of polarization conditions, determined by KPOL (I).

Description of layered structure and material parameters. L is used
as an index for both the layers and the boundaries. The XL(L) are
locations of boundaries; TL(L) are layer thicknesses, and are also
shown in unit of WVL. L1 and L2 (I) identify outer boundaries; these
are movable to other XL positions, to calculate modes in partial

Structures.

Material parameters. PE(L) = (PER, PEI) (I) is the complex permit-

tivity; PM = (PMR, PMI) (I) is the permeability, the same for all

layers. QN = KF*KF*PE*PM is the normalized propagation constant K2
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of the material at relative frequency KF. For unit KF then QN = n2,

and RN = YQN = n. YN = 1/KF#PM (TE) or 1/KF*PE (TM) is a wave
admittance/impedance factor, for later multiplication by WX and WZ to
obtzin YX = WX%YN = YX and YZ = WZ%YN = YZ. PHO = KO®RN®*TL is the com-

plex phase thickness of each layer for g2 = Qz = 0.

Summary of outer boundary conditions. Depends on KBCl,2 and KBD1,2
(see input). APB = ¢ = APB1l, APB2 (I) is angle of unit normal into
principal-branch half-plane for WX in respective semi-infinite layers

L1 and L2+1.

Representative values of real 82 = QZR, and real part of normalized
phase integral @R = PHM. These values form the basis for calculating
initial guesses for the root search. Integer part of PHM for QZR = 0.0
provides an estimate for maximum possible number of (non-evanescent)

modes of structure. Second value of QZR is from input variable QZNR,

and the fourth QZR is the maximum value of QN from 4. above.

Summary of starting values of QZ for root search. Here, with KGSS =
3(I), the real parts are calculated by interpolation from the QZR, PHM
values above. MM is the intended mode index. The imaginary part of QZ
is determined by the default or input value of QZNI. PHM is the renor-
malized phase integral, in units of m and decades. KM is a control
integer used by CZEROM and is preset to the value of KGCZ(I) in line
above. Value of KM = KGCZ = 4 indicates that initial iterates are cal-
culated at a radius of about lO_u. And since KM > U4 the initial guesses
will be divided out. Last line shows parameters for CZEROM: NN =

MN(I), EPSZ = EPS1 (I), EPSF = EPS2 (I), II = IL (I), DOUT = KOUZ (I).
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Output from CZEROM during root search. This portion will not appear
if KOUZ (I) = 0. KR = 7 indicates convergence of DZ to EPS1 = EPSZ.
KR = 6 indicates convergence of F(Z) to EPS2 = EPSF. KR = 5 indi-
cates similar convergence of F(Z)-reduced. If no convergence, KR =
4. I = number of iterations used for each root. DZ(I) is last in-
crement of Z(I) = QZ = B2. TF(Z) = characteristic function, to be
zero. F(Z)-reduced is F(Z) divided by polynomial of other roots

and initial guesses. Initial guesses divided out only if KGCZ =

KM > 4.

Summary output for each root found (or each input QZM for non-eigen
conditions). MM is intended mode index; compare to integer part of
Re(PHM). QZ = 82 and WZ = B (Re B 2 0). Normalized phase integral
PHM = (Real (PHR)/w, Imag (PHI/1n 10)). KM is value of KR from
CZEROM in 9. above. PHR and PHI are complex phase integrals,
separately accumulated with positive real parts or with positive
imaginary parts. ATQZ is polar (phase) angle of QZ in its complex
plane. In units of m/2, the integer part of ATQZ is intended as a

quadrant indicator in the QZ plane.

SM = ST matrix of Sect. 4.2, Part I, one element of which is the
characteristic function; here it is SM(2,2) = SM(KBD2, KBDl), and
corresponds to F(Z) in 9. above. CM = ¢t matrix of Sects. 2.4 and
4.i-2, Part T. DET(SM) = det S'; and DET(CM) = det C' should equal
unity, residual part is shown. DETNORM is the sum of the two terms
whose difference is DET(CM). As a numerical check, DET(CM) - 1.0
should be small (comparable to floating point resolution) relative

to DETNORM.
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Transverse wave parameters in the two semi-infinite layers: WX = «,
YX = WXWYN = Yx’ and QX = (WX)2 = QN - QZ. WX is obtained from 0X,
and depends on principal branch specification parameters in 6. above.
ATQX is polar angle in QX complex plane. It would be more conven-
ient to instead exhibit the angle in the WX plane, and label it as
ATWX (this change is planned). It is intended as a quadrant indi-

cator, to help identify the types of modes.

Start of output for field calculations for all modes; beginning with
first mode (M = 1), the TMO mode (MM = 0), but check integer part of
Real (PHM). Compare this part with 10. above. Here WX, YX, and PH
for inner layers L = 2,3 also appear. Only the start of field

distributions vs. x is shown for this mode.

Output from calculation of field distributions. Only the portion of

output for the TM2 mode (MM = 2) is shown complete.

Summary of propagation constants and phase integral for all layers.
Repeats much of information shown in 12. above. If KOUF < 2, then

only QZ, WZ information appears.

Calculation of two sets of boundary fields, and cross products for
numerical checks. First two values of DIFF are the characteristic
equation at the two outer boundaries and should be zero for dis-
crete modes. Third DIFF is the difference between the first two,

and is a reciprocity check. It should be zero for any value of QZ.

Display of both sets of tangential fields at all boundaries. For

discrete modes, the F and G fields should differ only by a constant



phase factor. FY is real at L1 = 1, and GY is real at L? = 3. Both
seTs are normalized in magnitude, but are not standardized in phase

rdctor,

.y

Jarious versions of numerical check of characteristic equation.

Summary of the tangential boundary fields, FY and FZ, and transverse
Poynting power, PX, at all boundaries, as used for field distribution
‘2. X. Appears in this form only for true discrete modes. These are

‘he average of the F and G fields (standardized in phase) of 16. above.

Field distributions vs. x. X iIs value of x; FY, FZ are field values,
and PX the transverse Poynting power. FX, the normal field component,
and the propagating power PZ, appear only if KOUF = 4. The X-increment
is determined internally, and is proportional to l/|K| in each layer.
An input parameter IDEN sets the nominal number of points per unit of
l/iK|; but the density of points is also limited to no more than IMAX
(1) per layer. BDY identifies a boundary value for X at which fields
values are from 18. above. #*¥% identifies a value of X and fields
vhich are calculated incrementally, but may be an extrapolation beyond
the boundary and be outside the proper layer. Into the semi-infinite

layers the fields are calculated for a distance of about INFX (I) units

of l/|K|.
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PPOGRAM MODLIG LISTING

PROGRAN HDDEIG(INPUT,OUTPUT,TAPES!INPUT,TAPE6=0UTPUT)

--CALCULATES SETS OF MODAL PROPAGAION EIGENVALUES FOR MULTILAYVER
--STRUCTURE. AND FIELDS AND POMER DISTRIBUTIONS FOR EIGEN OR
-—NON-EIGEN PROPAGATION CONSTANTS ALONG THE LAYERED STRUCTURE.

URITTEN BY ROBERT B. SMITH, UNIVERSITY OF WASHINGTON, ELECT ENG DEPT.
SEATTLE, WASHINGTON. FEDRUARY, 1977.

200
200

400
400

400
600

800
800

--MAIN PROGRAN 1S PRINARILY A CALLING PROGRAN

--READ INPUT DATA, CASE PARAMETERS, AND VARIABLES.
--AND PRINT SUMMARY OF STRUCTURE AND MODAL CONDITIONS.
CALL PUTSIN

--SEARCH FOR PRESCRIBED ROOTS, AND OUTPUT SUMMARY FOR THOSE FOUND
CALL SEARCH

--CALCULATE FIELDS AND POMER DISTRIBUTION
CALL FIELDS

RETURN FOR NEXT CASE
60 70 200
--NORMAL STOP OCCURS FROM PUTSIN WHEN INPUT KASE=0 OR KD0O=0.

END
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BLOCK DATA BLOKOM

PROGRAN UNIT TO DEFINE LABLED COMNON BLOCKS, TO DESCRIBE THE VARIABLES
AND BY DATA STATEMENTS TO PRESET VARIABLES TO A DEFAULT CASE

NOTE. 1IN SUBROUTINES THE VARIABLES IN THE COMNON BOOCKS BELOW MAY
APPEAR DIFFERENTLY. TO PERMIT THE SANE VARIABLE NAMES HERE TO BE USED
AS LOCAL VARIABLES WITHOUT NAME CONFLICT AND BETTER EFFICIENY
EXANPLES. KDOO FOR KDO1,2,3,ETC., KOUT FOR KOU1,2,3,ETC.,

KCC FOR KC, KFC FOR KF,

~-COMMON /KASETS/ CASE SPECIFICATION AND CONTROL VARIABLES
COMMON /KASETS/ KASE,KSUB,NN,NO,HK,NL, IDEN, INAX, INFX,
$QZNR,QZNI, KB5S, PNFR,PHDM,KGCZ,UFHP,EPST,EPS2,EPS3, IL,KNDO,
$KDOO,KDOI,KDOS ,KDON,KEIF ,KDOZ, KDOF ,KDOP,

$KOUT,KOUT , KOUS , KOUM, KOUE ,KOUZ , KOUF , KOUP
HAIN,PUTS,SRCH,SYSH,EIGQ,CZRM,FLDS,PURS

--COKNON /LAYCOM/ DINENSIONS AND MATERIAL PROPERTIES OF LAYERED

--STRUCTURE. UNIT OF LENGTH AND WAVELENGTH AND FREQ FACTORS

CONMON /LAYCOM/ XU,WVL,KO,KCR,KCI,KFR,KFI,LN,KXTL,XL(10),TL(10),
$PER(10) ,PEI(10) ,PHR( 1),PHI( 1)

REAL KO,KCR,KCI,KFR,KFI

--COMKON /BDYCON/. POLARIZATION AND BOUNDARY CONDITIONS
COMMON /BDYCON/ KPOL,L1,KBC1,KBD1,APB1,VPBY,YB1,ZB1,
$L2,KBC2,KBD2,APB2,VPB2,YB2,7B2,KBCO

COMPLEX VPB1,YB1,ZB1,VPB2,YB2,7B2

--CONMON /STRUCT/. FOR GIVEN POLARIZATION THE CHARACTERISTIC WAVE
--PROPERTIES OF STRUCTURE. NUMBERS OF LAYERS, RADIAN THICKNESS,
--FREQ, SQD INDEX, AND PLANE-WAVE ADMIT(TE)/IMPED(TM) OF MATERIALS
COMMON /STRUCT/ LK,LL,LM,KS,KC,KF,TR(10),@N(10),KPLS,YN(10)

REAL KS

COMPLEX KC,KF,QN,YN

--COMMON /MODSET/ ARRAYS FOR SETS OF MODE PARAMETERS. PRIMARY
-~RESULTS FROM MAIN PROGRAM MODEIGS

COMMON /MODSET/ NM,NO,NK,NL,QZN(10),PHN(10),KN(10)

COMPLEX QZIN,PHN

--CONMON /MATSYS/. FOR PARTICULAR VALUE OF QZ=0ZS, AND KC=KCS,
--THE TRANSVERSE WAVE PROPAGATION PROPERTIES, PHASE INTEGRAL,
-~AND CHARACTERISTIC MATRICES FOR LAYERS AND OVERALL STRUCTURE
CONMON /MATSYS/ KDID,0ZS,KCS,AQZ,WX(10),PH(10),PHR,PHI,YX(10),
$CL1(10),CL2(10),CL3(10),CH1,CH2,CH3,CHA,DETC(2),
$QX1,AQX1,FY1,FZ1,0X2,A0X2,FY2,FZ2,5K1,542,543,5N4,DETS,WZ,YZ(10)
CONPLEX 0ZS,KCS,uX,PH,PHR,PHI,YX,CL1,CL2,CL3,CH1,CH2,CH3,CH4,DETC,
$0X1,FY1,FZ1,0X2,FY2,F22,541,5H2,5H3,5H4,DETS,¥Z,YZ

--COMMON /FIELDS/ COMPLEX TANGENTIAL FIELD AMPLIT AT BOUNDARIES
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--AND TRANSVERSE TIME-AVERAGED POYNTING POUERS,
-~AND LONGITUD PROPAGATING POWER IN EACH LAYER.
COMMON /FIELDS/ FY(10),FZ(10),PX(10),PZ(10)
COMPLEX FY,FZ,PX,PZ

--COMMON /CZECON/ FOR CONPLEX ROOT SEARCHING SUBROUTINE CZEROH
--SEE SUBROUTINE CZEROM(Z,NR) FOR DESCRIPTION OF VARIABLES
CONNON /CZECOM/ NN,NT,Z0(10),FN(10),IT(10),KR(10),
$EPSZ,EPSF,1I,KTUO

COMPLEX 20

--DATA PRESET VALUES FOR DEFAULT CASE OF A FOUR LAYER STRUCTURE
DATA KASE,MN,M0,IDEN, IMAX,INFX /1,6,-1,2,15,6/

DATA OZNR,O0ZNI,KGSS,PNFR,PHDM,KGEZ /0.9,-1.0E-4,3,0.3,1.0,3/
DATA WFNP,EPSY,EPS2,EPS3,IL /100.0,1.0E-6,1.0E-6,1.0E-9,10/
DATA KMDO /5/

DATA KDOO,KOUT /1,1/

DATA KDOI,KOUI /1,1/

DATA KDO®,KOUS 71,3/

DATA KDON,KOUN /0,0/

DATA KEIF,KOUE /1,0/

DATA KDOZ,KOUZ /1,3/

DATA KDOF,KOUF 71,3/

DATA KDOP,KOUP /1,1/

DATA XU,WVL /1.0E-4,1.0/

DATA LN,KXTL,XL,TL /4,0,-1.0,0.0,2.0,740.0,0.0,1.0,2.0,70.0/
DATA KCR,KCI,KFR,KFI /1.0,0.0,1.0,0.0/

DATA PER,PEI,PNR,PHI /2.25,1.00,2.56,1.96,641.0,1040.0,1.0,0.0/
DATA KPOL,L1,APB1,YB1,ZB1 /1,1,0.25,(1.,0.),(1.,0.)/

DATA L2,APB2,YB2,ZB2 /3,0.25,(1.,0.),(1.,0.)/

DATA KBC!,KBD1,KBC2,KBD2 /1,2,1,2/

VARIABLES FOR /STRUCT/ ALL CALCULATED OR PASSED INTERNALLY
VARIABLES FOR /MODSET/ MOST CALCULATED OR PASSED INTERNALLY.
DATA QZM /(2.205,0.0),(2.160738,0.0),(2.030,0.0),(1,9460,0.0),
$ (1.90230,0.),(1.690,0.),(1.481,0.),(1.0,0.),¢0.980,0.),(0.,0.)/
DATA KN /10#5/

VARIABLES FOR /MATSYS/ ALL CALCULATED OR PASSED INTERNALLY
VARIABLES FOR /FIELDS/ ALL CALCULATED OR PASSED INTERNALLY
VARIABLES FOR /CZEROM/ ALL CALCULATED OR PASSED INTERNALLY

KODEIG NAMELISTS VARIABLES DESCRIPTION. FOR INPUT. EVERY CASE NUST
HAVE THREE NAMELIST INPUT LIST IN ORDER /CASE/, /LAYERS/, AND /MODCON/
ONLY VARIABLES CHANGED IN VALUE FROM DEFAULT CASE OR PREVIOUS CASE
NEED BE INCLUDED. NORMAL STOP BY SINGLE CARD WITH $CASE KDOO=0 $END,
DR $CASE KASE=0 $END. THAT 1S, A LAST CARD IN A SEQUENCE OF CASES.
NOTES, BELOW. WZ IS BETA, AND Q@7 IS BETA-S@D, MODE PROPAGATION COEFF
IN Z DIRECTION. WX IS KAPPA TRANSV PROPAGAION COEFF IN X DIRECTION
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BOTH NORMALIZED TO EFFECTIVE KO.

NAMELIST /KASETS/ VARIABLES DESCRIPTION. READ BY PUTSIN.

KASE

KN

KO0
IDEN
1KAX
INFX
GZNR
aINI
KGSS
=1
=2
=3

PHFR

PHDH

KGCZ

=0

INTEGER CASE NUMBER, SIX DIGIT MAX. E.G. YR/NO/DY. (1)

IF KASE= PREV.KASE, THEN KASE INCREMENT BY .01 INTERNALLY

KASE= 0 MAY BE USED FOR PROGRAM STOP. SEE ALSO KDOO.

NUMBER OF HMODES TO BE SEARCHED FOR OR CALCULATIONS MADE(6)

MAXINUM NUMBER OF MODES PRESENTLY DIMENSIONED FOR 10

BIAS FOR MODE INDEXING OF INTENDED MODES. MMN=MO+M (-1)

DENSITY OF POINTS IN X FOR FIELD CALC. PER RAD OR 1/E (2)

HAX NO. OF POINTS IN EA. LAYER FOR FIELD CALCULATIONS (15)

NO. OF RAD OR 1/E DIST INTO SEMI-INF LAYERS FOR FIELD CALC (&)

A REAL PART OF QZ FOR GENERATIDN OF INITIAL GUESSES (0.9

A IMAG PART OF O FOR GENERATION OF INITIAL GUESSES  (-1.0E-4)

CONTROL TYPE OF INITIAL GUESSES FOR QZ ROOT SEARCH (3

QZM(M) AND KM(M) FROM INPUT OR PREVIOUS CASE USED FOR GUESSES.

ALL GUESSES THE SAME. QR MAX OF INNER LAYERS

INDIVIDUAL GUESSES FROM SINPLE QUADRATIC APPROX FOR REAL(Q2)

VS PHASE INTEGRAL= INTENDED MODE INDICES Mi= NO+H.

FRACTIONAL PART FOR PHASE INTEGRAL (PHASE SHIFT AT OUTER BDY)

ASSUMED IN GENERATING GUESSES. UNITS OF PI. (0.3)

AVG SPACING OF MODES IN PHASE INTEGRAL V5 MODE INDEX. ASSUMED

FOR GENERATING GUESSES. UNITS OF PI PER INTEGER WM. (1.0}

FOR GUESSES, INTENDED PHASE INTEGRAL PHM= PMDM+MM + PNFR

COMTROL USE OF GUESSES IN CNPLX ROOT SEARCH FOR ALL 02 (3)

USED TO SET KM= KGCZ FOR ALL GUESSES. (KGSS.GE.2)

GUESSES NOT USED, INITIAL ITERATES ABOUT POINT (1.0,0.0)
INITIAL ITERATES AT RADIUS OF 0.1**KGCZ ABOUT EACH GUESS.

ONLY CONVERGED AND ITERATION LINITED ROOTS DIVIDED OUT.

=4,5,4,7 RADIUS OF 0.1+#KGCZ, ALL OTHER GUESSES AND ROOTS DIVIDED OUT

UFnp
EPSH
EPS2
EPS3
IL

KMDO
174, 18,0

KN (H)
=0 T0
=8

KDOO
KDOO
KDOI

UARNI®S. USE KGCZ.GE.4 IFF GUESSES ARE GOOD APPROX AND DISTINCT
DO NOT USE IF ALL GUESSES THE SAME (KGSS=2) OR POOR INPUT GUESS
IF GOOD GUESSES, KGCZ.GE.4 GREATLY SPEEDS ROOT SEARCH CONVERG.
WT FUNCT MULTIPLIER USED FOR WODIFIED EIGEN E@ FUNCT  (100.0)
EPSILON FOR CONVERGENCE TEST ON DELTA 8Z ROOT SEARCH  (E-4)
EPS FOR CONVERG TEST ON MAGNITUDE OF EIGEN E@ FUNCTION (E-6)
NOT USED.

ITERATION LIMIT, MAX NUMNBER FOR EACH ROOT SEARCH

TWO0 SUCCESSVE ITERATION LIMITS STOPS ALL SEARCHES

ONLY FOR KM.GE.KMDO MODES OUTPUT AND FIELDS CALCULATED (3)
INPUT SET OF COMPLEX @Z VALUES, M= 1,MN.LE.10. SEE KGSS=t.
USED FOR GUESSES FOR ROOT SEARCH, OR FOR FIELD CALC, NO SEARCH.
PRESET TO SPECIAL REAL VALUES FROM DEFAULT CASE SOLUTIONS.
INDEX SHOUING @ZM QUALITY OR TYPE. INPUT USED ONLY IF KGSS=1

7, SEE K&CZ

QZIM USED AS FIXED KNOWUN ROOT, NO SEARCH, DIVIDED OUT FOR OTHERS
(FOR OUTPUT AND PREV CASE KM= 3,6,7, SHOWS TYPE OF CONVERGENCE)
A SET CONTROLLING EXTENT/TYPE OF CALC IN EACH SUBROUTINE

HAIN PROGRAM, USED ONLY PROG STOP IF KDOO=0. {1
SUBROUTINE PUTSIN (NOT USED) (1
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KDOS  SUBROUTINE SEARCH (NOT USED) (N
KDOM  SUBROUTINE SYSMAT  (INTERNAL USE ONLY, INPUT IGNORED)
KDOE=KEIF FUNCTION SUBROUTINE EIGEQF (N

KEIF  CONTROL TYPE OF EIGEN EQUATION FUNCTION USED FOR ROOT SEARCHING
=1 UNMODIFIED EIGEN EQUATION FUNCTION FROM SM NATRIX ELENENT
=2  EIGEQF RENORMALIZED TO R.M.SQD.MAG. OF THE FOUR POSSIBLE EIGEQF
=3  EIGE@F NULT BY WT FUNCT TO BIAS SEARCH TOWARD INTENDED MM
WEIGHT FUNCTION IS UFHP TIMES SQUARED DIFFERENCE BETUEEN
PHASE INTEGRAL INDEX AND INTENDED MODE INDEX.
22,3 WARNING. NON-ANALYTIC FUNCTIONS, CAN GREATLY SLOM ROOT SEARCH.
KDDZ  SUBROUTINE CZEROM (NOT USED) (1
KDOF  SUBROUTINE FIELDS (1
=0 NO FIELD CALCULATIONS MADE
=1 TANGENTIAL FIELDS AT BOUNDARIES ONLY CALCULATED. (DEFAULT)
=2  FIELDS AS A FUNCION OF X CALCULATED. IFF KOUF=4 ALSO.
KDOP  SUBROUTINE POUERS (H
KOUT A SET CONTROLLING EXTENT OF OUTPUT FROM EACH SUBROUTINE.
=1,2,3,4 MHIN TO WAX OUTPUT FROM EACH

KOUT  SUBROUTINE MAIN. (NOT USED) (n
KOUI ~ SUBROUTINE PUTSIN. (LITTLE USE) (1)
KOUS  SUBROUTINE SEARCH. (3
KOUM  SUBROUTINE SYSHAT. (NO OUTPUT) (0)
KOUE FUNCTION SUBROUTINE EIGEQF. 0)
KOUZ  SUBROUTINE CZEROM. (3)
KOUF  SUBROUTINE FIELDS. (3)
KOUP  SUBROUTINE POWERS. (1)

VARNING. USE OF OF KOUE=4 OR KOUZ=4 FOR MORE THAN A FEW MODES
AND LARGE IL CAN GENERATE GREAT ANMOUNTS OF OUTPUT. ALSO
ASKING FOR FIELD SOLN KDOF=2 FOR MORE THAN A FEW MODES AND

FEW LAYERS CAN GENERATE LARGE AMMOUNTS OF OUTPUT.

NAKELIST /LAYERS/ VARIABLES DISCRIPTION. READ BY PUTSIN.

Xu UNIT OF LENGTH INPLIED FOR ALL DIMS. WVL,XL,TL. METERS (1.0E-6)
VALUE OF XU IS NOT USED EXPLICITLY YET.

WuL FREE SPACE WAVELENGTH FOR NORMALIZATION PURPOSES {1.0)

KO FREE-SPACE PROPG CONST FOR NORNALIZATION PURPOSES. CALCULATED.
K0= 2PI/WVL USED TO NORN ALL PROPG CONSTS. SEE KC BELOW.
EFFECTIVE VALUES OF WYL AND KO ALTERED BY USE OF NON-UNITY KC.

KCR, COMPLEX FREQ FACTOR FOR NORM KO. SEPARATE REAL AND IMAG PARTS.

KCI  KC= (KCR,KCI). EFFECTIVE KO= KO#KC. (1.0,0.0)

KFR, EXPLICIT COMPLEX FREQ FACTOR, SEPARATE REAL AND INAG PARTS

KF1  KF= (KFR,KFI) IS NORMALIZED FREQUENCY FOR CASE. (1.0,0.0)
KF= FREQ/(FREQ IMPLIED BY EFFECTIVE KO, =KC#K0#C)

LN TOTAL NUMBER OF HATERIAL LAYERS INCL OUTER SEMI-INF LAYERS. (4)
2.LE.LN.LE10. LN-1 TOTAL BDYS, LN-2 FINITE LAYERS

KXTL CONTROL TO SPECIFY THAT XL OR TL ARE EXPECTED AS INPUT (O)

LLE.0 XL EXPECTED AS INPUT, TL CALCULATED. DEFAULT

LGE.1 TL EXPECTED AS INPUT, XL CALCULATED. XL(1)= 0.0
XL(L) LOCATION IN X FOR EACH BOUNDARY. L=1,LN-1 (-1.0,0.0,+2.0)
TL(L) THICKNESS OF EACH FINITE LAYER. L=2,LN-1. (0.0,1.0,2.0)



OO0 OO0O000 00000000000 Go0o GO0 00000OCO0O00OnN0Cco00O000000

237

EACH LAYER AND ITS UPPER BDY HAVE CORRESPOND. INDEX VALUES, L.
TL(1) AND TL(LN) ARE NOT DEFINED (SEMI-INF LAYER) INPUT IGNORED
FOR INPUT TL, START WITH TL(2)= ----- .

ALL XL(L) VALUES REORDERED FOR INCREASING X, AND TL(L) VALUES
ARE TAKEN AS POSITIVE. XL AND TL DIM. FOR A MAX OF 10 VALUES

PER(L), RELATIVE PERMITTIVITY OF EACH MATERIAL. L=1,LN.LE.10.
PEI(L) SEPARATE REAL AND IMAG PARTS. (2.25,1.00,2.56,1.96),(4%0.0)

PHR(1),

FOR LOSSY MATERIAL PEI POS., FOR ACTIVE-GAIN MATERIAL PEI NEG.
RELATIVE PERMEABILITY, THE SAME FOR ALL LAYERS.

PRI(1) SEPARATE REAL AND INAG PARTS. (1.0,0.0)

NAMELIST /MODCON/ VARIABLES DESCRIPTION. READ BY PUTSIN.

KPOL
.LE.1
.GE.2

L,

L2

KBC1,
KBC2

.LE.O

=2
=3
=2,3
KBD1,
KBD2
KBD1=1
KBD1=2
KBD2=1
KBD2=2

POLARIZATION. TRANSV TO Z-PROPG, AND TO X-NORM DIRECT. (1)

TE, TRANSVERSE ELECTRIC CASE. FY= EY. DEFAULT

TH, TRANSVERSE MAGNETIC CASE. FY= HY

FIRST AND LAST BOUNDARY FOR OUTER BGUNDARY CONDITIONS.

PRESET TO L1=1,L2=LN-1 FOR EACH CASE, FOR OTHER VALUES (PARTIAL
STRUCTURES), L1,L2 NUST BE INPUT FOR EACH SUCCESSIVE CASE.
NOTE. ADJACENT LAYERS, L= L1 AND L2+1 ARE TAKEN TO BE SEMI-INF
FOR CLOSED BDY COND., KBC=2,3, ALL OUTER LAYERS IGNORED.
CONTROL TYPE OF BOUNDARY CONDITIONS AT FIRST AND LAST BDY L1,L2
OPEN-BDY SEMI-INF WAVE ADMIT/IMPED, OR FIXED SURF ADMIT/INPED,
ALSO EIGEN, NON-EIGEN, CONDITIONS, AND ACCEPTABLE SOLUTIONS.
OPEN BOUNDARY CONDITION, NON-EIGEN CONDITION, NO SEARCH MADE
INUARD AND OUTWARD SOLN BOTH ACCEPTABLE. SEE KBD1,2.

FIELD SOLN EXITS FOR EACH OF KBC1=0, OR KBC2=0, OR BOTH.

IF BOTH, TWO INDEPED FIELD SOLN EXIST. CALC INDEPEND FROM TWO
BDY COND SAME AS FOR KBC=1, AND DIRECTION IMPLIED BY KBD1,2.
OPEN BOUNDARY, EIGEN CONDITION. ONLY A SINGLE EXPONENTIAL WAVE
SOLUTION ACCEPTABLE IN OUTER SEMI-INF LAYER.

WAVE ADNIT/IMPED FOR SEMI-INF LAYER IS FUNCT OF WX(QZ), ALUWAYS
DEFINED FROM WX ON PRINCIPAL BRANCH. SEE KBD1,2 AND APB1,2
CLOSED BDY, A FIXED SURF ADKIT/IMPED YB1,YB2. ZB1,ZB2 IGNORED
CLOSED BDY, A FIXED SURF IMPED/ADMIT ZB1,ZB2. YB1,YB2 IGNORED
A CLOSED BDY EIGEN COND. OUTER SEMI-INF LAYERS IGNORED. -
CONTROLS IMPLIED DIRECTION OF SINGLE SOLN IN SEMI-INF LAYERS
INVARD/OUTWARD DIRECTION INTERPRETATION DEPENDS ON BRANCH DEF.
POS. EXPONENT (INUARD) COMPLEX WAVE SOLUTION IN LAYER L1

NEG. EXPONENT (OUTWARD) COMPLEX WAVE SOLUTION IN LAYER Lt

NEG. EXPONENT (INWARD) COMPLEX WAVE SOLUTION IN LAYER L2+1
POS. EXPONENT (QUTUARD) COMPLEX WAVE SOLUTION IN LAYER L2+
DEFAULT VALUES KBD1=2,KBD2=2. OUTWARD SOLN IN SEMI-INF LAYERS.
IFF APB= 0.5, THEN INAG(WX) IS POS, AND DIRECTION SENSE IN/OUT
IS THAT OF EXP DECAY REGARDLESS OF PHASE PROPAG. INWARD= LEAKY,
INPROPER OR INCOMMING LOSSY WAVE. OUTWARD= BOUND, PROPER OR OUT
GOING LOSSY UAVE. IFF APB= 0.0, REAL(WX) IS POS. AND DIRECTION
IS THAT OF PHASE PROPAGATION REGARDLESS OF EXP DECAY OR GROWTH.
DIRECTION SENSE ALSO USED FOR NON-EIGEN CASE (KBC1,KBC2=0Q)

IN GENERATING SOLUTIONS BASED ON EACH BDY COND INDEPENDENTLY.
KBD. ALSO USED FOR DIRECTION SENSE FOR YB,ZB SURF ADMIT/IMPED.
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APB1, PRINCIPAL BRANCH SPECIFICATION FOR WX-PLANES. ANGLE INTO WX

APB2 HALF PLANE FOR OUTER LAYERS L1 AND L2+1, UNITS OF PI. (0.23)
(DIRECTION ANGLE OF BRANCH CUTS IN QZ PLANE IS TWICE AFB.)
+0.0.LE.APB.LE.+1.0 BRANCH INCLUDES POS INAG AXIS OF WX-PLANE.
-0.5.LE.APB.LE.+0.5 BRANCH INCLUDES POS REAL AXIS OF WX-PLANE.
DEFAULT APB1=0.25, APB2=0.25, NOT CONVENTIONAL SPECIFICATION.
RATHER, IMAG{WX).GE.REAL(HX). BOUND AND LEAKY MODE ROOTS FOR
1.0SSLESS DIELECTIC STRUCTURES ARE ALL ON SAME PRINCIPAL BRANCH.
BRANCH CUTS IN @Z PLANE ARE IN POS IMAG DIRECTION.
(CONVENTIONAL CHOICE OF BRANCHES, APB= 0.5, KBD=2. BOUND PROPER
HODE ROOTS ON PRINCIPAL BRANCH AND RIEMANN SHEET OF @Z. LEAKY
IXPROPER MODE ROOTS ON SECOND BRANCH AND RIEWANN SHEET.
BRANCH CUTS IN @Z PLANE IN NEGATIVE REAL DIRECTION.)

YB1, FIXED BDY SURFACE ADKIT(TE)/IMPED(TH) LOOKING GUTWARD AT L1,L2

YB2  USED ONLY IF RESPECTIVE KBC1,KBC2 ARE EQUAL T0 2 (1.0,0.0)
ZB1,  FIXED BDY SURFACE IMPED(TE)/ADMIT(TH) LOOKING OUTUARD AT L1,L2
7B2  USED ONLY RESPECTIVE IF KBC1,KBC2 ARE EQUAL TO 3. (1.0,0.0)

LOOKING QUTWARD IFF KBD1,2 EQUAL 2 (DEFAULT)

EXAMPLES OF NAMELIST INPUT. IMPORTANT. COL 1 BLANK(IGNORED), LEADING
$-SIGNS AND DATA IN COL 2, ALL DATA SEPARATED BY CONMAS, SPECIFIC
ARRAY ELEMENTS USED, AT LEAST FOR STARTING POINT. VARIABLE NAMES MAY
APPEAR ONLY IN APPROPRIATE DEFINED NAMELISTS BETUEEN $NANE $END.
NAMELIST GROUPS MUST BE IN THE ORDER $CASE, SLAYERS, $HODCON.

EACH $CASE CARD BELOW MARKS THE BEGINING OF A NEW CASE.

EXAMPLE!. MINIMUN INPUT NEEDED FOR DEFAULT CASE. FIRST THREE CARDS.
FOLLOWED BY SECOND CASE. FEWER MODES, MORE ITERATIONS, SMALLER EPS,
TM POLARIZATION, AND FULL FIELD SOLUTIONS.

CSCASE $END

CSLAYERS $END

C$MODCON SEND

C$CASE KASE=2, MN=4,

CKGCZ=4, EPS1=1.0E-8, EP§2=1.0E-8, IL= 15,
CKDOF=2, KOUF=4,

CHEND

CSLAYERS $END

CSHODCON KPOL=2 $END

CHCASE KASE=0 $END

CcoOoOOoOO0O0nn

EXANPLE 2. COMPLICATED. 7 LAYERS OPEN STRUCTURE. TUO LEAKY COUPLED
GUIDES (L=3,5). ALL LAYERS LOSSY EXCEPT GAIN IN ONE GUIDE (L=5),
FIRST CASE RUN FOR PARTIAL STRUCTURE AND NO FIELD SOLUTIONS.

SECOND CASE FULL STRUCTURE, USING @Z MODE VALUES FRON FIRST CASE AS
GUESSES. FEVWER MODES AND FULL FIELD SOLUTIONS.

CSCASE KASE=703033,
CHN=5, GINR=10.0,
CKGCZ=4, EPS1=1.0E-8, EPS2=1.0E-8, IL= 15,
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C$END
CSLAYERS WUL=0.86, LN=7,
CKXTL=2, TL(2)= 1.0,1.4,0.3,0.4,1.0,
CPER(1)= 12.960,11.492,12.745,11.492,12.960,11.492,12.940,
CPEI(1)=2.578E-3,4.854E-4,1.021E-4,4.854E-4,-1.031E-2,4.854E-4,2,578E-3,
CSEND
C$MODCON L1=2, L2:=5 $END
CSCASE  KGSS=1, MN=4,
CKDOF=2, KOUF=4,
CSEND
CSLAYERS $END
C$NODCON $END
C$CASE KASE=0 $END
c
END



SUBROUTINE PUTSIN

--DEFINES INPUT NAMELISTS, READS INPUT FOR LAYERED STRUCTURE,
~~AND CALCULATES NECESSARY NEW PARAMETERS

fon ey B B o]

COMMON /KASETS/ KASE,KSUB,MN,NO,HK,HL,IDEN, INAX, INFX,
$QZNR,QZNI,KGSS,PNFR,PHDH,KGCZ, UFHP,EPST, EPS2,EPS3, IL ,KADO,
$KD00,KDOI,KDOS,KDON,KEIF,KDOZ, KDOF ,KDOP,
$KOUT,KOUI,KOUS,KOUN, KOUE, KOUZ, KOUF , KOUP

MAIN,PUTS,SRCH,SYSH,EIGO,CZRM,FLDS, PURS

--NOTE EQUIVALENCE OF VARIOUS KOUT AND KDOOD WITH LAST INITIAL

[op R v I o]

COMMON /LAYCOM/ XU,WVL,KO,KCR,KCI,KFR,KFI,LN,KXTL,XL(¢10),TL(10),
$PERC10),PEI(10),PHRC 1),PHIC 1)
REAL KO,KCR,KCI,KFR,KFI

COMMON /BDYCON/ KPOL,L1,KBC1,KBD1,APB1,VPB1,YB1,ZB1,
$L2,KBC2,KBD2,APB2,VPB2,YB2,2B2,KBLO
COMPLEX VPB1,YB1,ZB1,VPB2,YB2,ZB2

COMMON /STRUCT/ LK,LL,LM,KS,KC,KF,TR(10),AN(10),KPLS,YN(10)
REAL KS
COMPLEX KC,KF,QN,YN

COMMON /MODSET/ NM,NO,NK,NL,QZM(10),PHN(10) ,KM(10)
COMPLEX QZM,PHN

[

€ --SCRATCH VARIABLES AND CONSTANTS
COMPLEX AC,BC,CC,DC
CONPLEX CO,C1,CI
DATA C0,C1,CI/ (0.0,0.0),¢1.0,0.0),(0.0,1.0)/
DATA PI1,PI2,PIH/ 3.1415926535898,4.2831853071796,1.5707943267949/

FOR NAMELIST INPUT VARIABLES DESCRIPTION SEE BLOKOM

[ I o I o]

NAMELIST /CASE/ KASE,MN,M0,IDEN,INAX,INFX,QZNR,QZNI,
$QZNR,QZNT,KGSS,PNFR,KGCZ, WFHP,EPST ,EPS2,EPS3, IL,QZN,
$KG55,PMFR,KGCZ ,WFMP,EPST,EPS2,EPS3, IL,QZM,KH,KNDO,
$KDOO,KDOI,KDOS,KDOM,KEIF,KDOZ,KDOF,KDOP,
$KOUT,KOUI,KOUS,KOUM,KOUE,KOUZ, KOUF ,KOUP

c MAIN,PUTS,SRCH,SYSH,EIGQ,CZRN,FLDS,PURS

C
NAMELIST /LAYERS/ XU,WVL,KO,KCR,KCI,KFR,KFI,
$LN,KXTL,XL,TL,PER,PEI,PHR,PHI

c
NAMELIST /NODCON/ KPOL,L1,APB!,KBC1,KBD1,YB1,ZB1,
$L2,APB2,KBC2,KBD2,YB2,7B2

c

READ(5,CASE)
10 IF(KDOO.GE.t.AND.KASE.GE.1) GO TO 20
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1000

20
20
1020

40

1040

100

241

ELSE-10. NO MORE CASES, STOP.
WRITE(4,1000)

FORKAT(54HO***++ N0 HORE CASES.#»x:#% . END PROGRAM MODEIGS.#+s+% )

sTop

THEN-10./ A NEW HODEIG CASE.
WRITE(4,1020)

FORMAT(THY , PH**sxshkxks A (1OH*skexksxkx) 20H PROGRAM
1 SC10H*##ksx2%x%),/ 2(10H * * % + *) 5X,70H
2AL COMPLEX EIGEN-WAVES IN LAYERED STRUCTURES

3 20(10H* % % % ¢ ) )

READ(S,LAYERS)
L1= 1
L2= LN-1

READ(5,HODCON)

IF(KASE.EQ.LAST)
KSuB= 0

LAST= KASE
KSUB= KSUB+1
WRITE(4,1040)

G0 TO 40

KASE,KSUB

FORMAT(3AHO*#«+SUBROUTINE PUTSIN.

KO=
KS=
KC=
KF=
Ho=
MK=
KL=
HN=
NH=
NL=
NK=
LN=
LK=
LL=
LK=

PI2/WVL
KO

CHPLX (KCR,KCI)
CHPLX (KFR,KFI)
NAXO(-1,H0)

NO+1

HO+MN
HAXO(1,HINO(MN,10))
N

HL

MK
MAX0(2,HINO(LN,10))
LN

LN-1

LN-2

MODEIG
CALCULATION OF GENER
39X,
KASE NO.=,16,1H.,12, )

-~IF SINGLE BOUNDARY, NO FINITE THICKNESS LAYERS

IF(LL.LE.T) 60 TO 150

--CALCULATE FREE-SPACE RADIAN THICKNESSES TR

IF(KXTL.GE.1) GO T0 120

--THICKNESS TL CALCULATED FROM BOUNDARY XL
--CHECK AND REORDER THE XL VALUES IF NECESSARY

DD 105 K=1,LK
L= K+t
DO 105 M=L,LL
IF(XL(K).LE.XL(H))

GO 1O 105
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SO0

103
110

1135

120

123

150

200

250

260

275
280
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Xa= XL(K)
XL(K)= XL(M)
XL{KH)= XA
CONTINUE
po 1135 L= 2,LL
TL(L)= XL(L)-XL(L-1)
TR(L)= KO*TL(L)
CONTINUE
60 T0 150

--BOUNDARY XL CALCULATED FROM THICKNESS TL
XLit)y= 0.0
Do 125 L=2,LL
TL{L)= ABS(TL(L))
XL{LY= XLAL-1)+TL(L)
TR(L)= KO#TL(L)
CONTINUE
CONTINUE
--RECORD TOTAL THICKNESS AND TOTAL RADIAN THICKNESS IN LOCATION LM
XL{LK)= XL{LL)
TLILM)= XLILLY-XL(1)
TR(LM)= KO+TL(LM)

~-CALCULATE SQUARED REFRACTIVE INDEX FOR EACH LAYER MATERIAL
-~AND NORMALIZED ADMIT/IMPED FOR GIVEN POLARIZATION AND UNIT WX
--(POSSIBLE ENTRY POINT FOR NEW CASE WITH UNCHANGED STRUCTURE BUT
-~NEW MODAL CONDITIONS, POLARIZATION, OR BOUNDARY CONDITIIONS)
KPLS= KPOL
CC= KF*KF
IF(KPOL.GE.2) GO TO 270
--ELSE-250. TE, TRANSVERSE ELECTRIC CASE
DO 265 L=1,LH
DC= CNPLX(PER(L),PEI(L))
BC= CMPLX(PMR(1),PNIC1))
ON(L)= CC+BC*DC
YN(L)= C1/(RF#BC)
CONTINUE
G0 TO 280
--THEN-250. TM, TRANSVERSE MAGNETIC CASE
Do 275 L=1,LN
BC= CHPLX(PER(L),FEI(L))
BC= CHPLX(PHR(1),PHI(1))
GN(L)= CCsBC*DC
YN(L}= Ct/(KF+DC)
CONTINUE
CONTINUE
--ENDIF-2350

--INDEX PARAMETERS FOR BOUNDARIES OF FULL OR FARTIAL STRUCTURE
LO0= MINO(LI,L2,LL)
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L2= MINO(MAXO(1,L1,L2),L0)

Li= NAXG(1,L0)

L0= L1#1

-~CONTROL PARAMETER FOR EIG, NON-E1G, COND, ONE OR BOTH BOUNDARIES
KBCO= 0

IF(KBC1.GE.1) KBCO= 1

IF(KBC2.GE.1) KBCO= KBCO+2

=-UNIT VECTORS INTO PRINCIPAL BRANCH HALF-PLANES OF WX

UPB1= CMPLX(COS(APB1*PI),SIN(APBI*PI))

UPB2= CMPLX(COS(APB2#PI),SIN(APB2#PI))

--CALL TO CLEAR AND INITIALIZE SYSMAT
CALL SYSHAT(C1,C1,0,0)

300 --SUMNARY DUTPUT FOR CASE
CC= KC*KO
WRITE(4,1300) XU,WVL,K0,KC,CC
WRITE(6,1301) KF
WRITE(6,1302) KPOL
IF(KPOL.LE.1) UWRITE(4,1304)
IF(KPOL.GE.2) WRITE(4,1306)
WRITE(4,1308) LM,LL,LK
--FIRST SEMI-INFINITE LAYER.
AC= CSART(GN(1))
L= 1
WRITE(4,1310) PER(L),PEI(L),PHR(1),PNI(1),L,GN(L),YN(L),AC
310 DO 320 L=t,LL
--FOR EACH FINITE LAYER.
IF(L.LE.1) GO TO 330
Th= TL(L)/UWVL
BC= CSART(QN(L))
CC= KC#*BC#TR(L)
WRITE(4,1315) PER(L),PEI(L),PHR(1),PHI(1),L,TL(L),
$ ON(L),YN(L),TM,BC,CC
--IDENTIFY OUTER BOUNDARIES, FULL OR PARTIAL STRUCTURE.
330 IF(L.EG.L1) WRITE(4,1330) L1
--EACH BOUNDARY LOCATION
335  WRITE(4,1335) L,XL(L)
340 IF(L.EB.L2) WRITE(6,1340) L2
320 CONTINUE
~-SECOND SEMI-INFINITE LAYER.
AC= CSORT(AN(LN))
L= LN
350 URITE(4,1310) PER(L),PEI(L),PMR(1),PHI(1),L,AN(L),YN(L),AC

--DESCRIBE FIRST BOUNDARY CONDITIONS.
370 URITE(4,1370) L1,KBC1,KBDY

IF(KBC1.GE.2) GO TO 377

WRITE(4,1372)

WRITE(6,1373) APB1,VPBI
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377

380

IF(KBC1.EQ.1)
WRITE(6,1374)
50 T0 380

IF (KBD1.LE.1)
IF(KBD1.GE.2)
50 T0 380

WRITE(6,1377)
IF (KBC1.EQ.2)
IF(KBC1.GE.3)

2L

60 10 375

WRITE(6,1379)
WRITE(6,1376)

WRITE(6,1378)
WRITE(6,1379)

YB1

ZB1

-~-DESCRIBE SECOND BOUNDARY CONDITION.

WRITE(6,1371)
IF(KBC2.GE.2)
WRITE(6,1372)
WRITE(6,1373)
IF(KBC2.EQ.1)

L2,KBC2,KBD2
Go 10 387

APB2,VPB2
G0 TO 385

WRITE(4,1374)
G0 TO 390

IF(KBB2.LE. 1)
IF(KBD2.GE.2)
60 10 390

BRITE(6,1377)
IF(KBC2.EQ.2)
IF (KBC2.GE.3)
URITE(6,1390)

383 WRITE(4,1373)

WRITE(6,1376)

387
WRITE(6,1378)
WRITE(6,1379)

YB2
782
390
C
c FORKATS
C1300 --SUMMARY HEADING
1300 FORKAT(1HO, 9X,68HSUMMARY OF LAYERED STRUCTURE, POLARIZATION,
1BOUNDARY CONDITIONS.//
227H INPLIED UNIT OF LENGTH XU=,E12.5,62H METERS (BUT NOT USED
JICITLY). ALL QUANTITIES NORNALIZED./
424H NONINAL WAVELENGTR WVL=,F10.5,33H XU, AND FREE-SPACE KO= 2PI/
SWVL=,F10.5,8H RAD/XU./31H COMPLEX FREQUENCY FACTOR KC= (,F10.5,1H,
6,F10.5,26H). EFFECTIVE-KO= KC#KO= (,F10.5,1H,,F10.5,2H).)
1301 FORMAT(115H ALL PROPAGATION COEFFICIENTS ARE NORMALIZED TO EFFECTI
1VE-KO. (WAVE AND MATERIAL REFRACTIVE INDICES, IF KF= UNITY)/
2 90H (WAVE ADMITTANCE(TE) AND IMPEDANCE(TH), YX AND YZ, ARE NORMAL
31ZED TO THAT OF FREE SPACE. /27H NORNALIZED FREQUENCY KF= (,F10.5,
A1H,,F10.5,17H)= FREQ/C*EFF.KO. )
£1302 --POLARIZATION
1302 FORMAT(20HOPOLARIZATION, KPOL=,I2,27H
1304 --TE CASE
1304 FORKAT(115H TRANSVERSE ELECTRIC CASE. EX=HY=EZ=0. TANGENTIAL FY=
14EY, FZ=+HZ. TRANSVERSE FX=-HX, FY=+EY. LONGITUDINAL FZ=+HZ./
2 99H YX=FI/FY=+HZ/EY, AND YZ=FX/FY=-HX/EY, ARE WAVE ADMITTANCES.
3(IN THE POS X, Z, OR WAVE DIRECTIDN). )
C1306 --TH CASE
1304 FORMAT(115H TRANSVERSE MAGNETIC CASE. HX=EV=HZ=0. TANGENTIAL FY=
1+HY, FZ=-EZ. TRANSVERSE FX=+EX, FY=+HY. LONGITUDINAL FZ=-EZ./
2 99H YX=FZ/FY=-EZ/HY, AND YZ=FX/FY=4EX/HY, ARE WAVE INPEDANCES.

AND

EXPL

( =1 TE CASE, =2 TM CASE) )
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J(IN THE POS X, Z, OR WAVE DIRECTION). )
1308 --NUMBER OF LAYERS
1308 FORMAT(21HOLAYERED STRUCTURE. ,I3,14H LAYERS TOTAL. ,I3,
1 14H BOUNDARIES. ,I3,15H FINITE LAYERS./ )
C1310 --FIRST AND LAST SEMI-INFINITE LAYERS
1310 FORMAT(25X,4H PE=,1H(,F10.5,1H,,F10.5,1H),
1 2X,4H PH=, 1H(,F10.5,1H, ,F10.5,1H)/
2 4H  L,13,3X,15HSENI-INFINITE ,4H ON=,1H(,F10.5,1H,,F10.5,1H),
3 2X,4H YN=,1H(,F10.5,1H,,F10.5,1H)/
425X, 4H RN=,1H(,F10.5,1H,,F10.5,1H), )
C1315 FOR FINITE THICKNESS LAYERS
1315 FORMAT(25X,4H PE=,1H(,F10.5,1H,,F10.5,1H),
2X,4H PN=,1H(,F10.5,1H,,F10.5,1H)/
AH  L,13,3X,3HTL=,F10.5,2X,  4H ON=,1H(,F10.5,1H,,F10.5,1H),
2K, AH YN=,1H(,F10.5,1H, ,F10.5,1H)/ 9X,1H(,F10.5, 4HWVL),
1X,4H RN=,1H(,F10.5,1H,,F10.5,1H),
2X, 4HPHO=, 1H(,F10.5,1H, ,F10.5,1H) )
£1330 --FIRST BOUNDARY CONDITION
1330 FORMAT(4H L1=,13,43H---BOUNDARY FOR FIRST BOUNDARY CONDITION--,

oo ) =

1 4(10H=~~~n-=on ), )
C1335 --EACH BOUNDARY
1335 FORMAT (4K =--L,13,4H---XL=,F10.5,7H--~=-- TR 1 [ E—— ), )

C1340 --SECOND BOUNDARY CONDITION
1340 FORMNAT(4H L2=,13,43H---BOUNDARY FOR SECOND BOUNDARY CONDITION--,
1 4(10H--~------=~~), )
C1370 -~DESCRIPTION OF BOUNDARY CONDITIONS
1370 FORMAT(34HO FIRST BOUNDARY CONDITION. Li=,12,

1 84, KBC1=,12, BH, KBD1=,12,1H. )
1371 FORMAT(34HOSECOND BOUNDARY CONDITION. L2=,1I2,
1 84, KBC2=,I12, 8H, KBD2=,I12,1H. )

1372 FORMAT(1H+,59X,44HOPEN BOUNDARY, SEMI-INFINITE ADJACENT LAYER. )
1373 FORMAT(S0H PRINCIPAL BRANCH SPECIFICATION FOR WX. ANGLE APB=,Fé.3,
! 17H PI, VECTOR VPB=(,F6.3,1H,,F6.3,2H),,19H (WX+DOT+VPB.GE.0).,)
1374 FORMAT( 95H NON-EIGEN CONDITION. NO EIGEN-HODE SEARCH NADE. INWARD
t AND OUTUARD WAVE SOLUTIONS ACCEPTABLE.
1375 FORMAT(119H EIGEN CONDITION. INWARD WAVE SOLUTION ONLY. (DIRECTIO
IN OF DECAY IF IM(UX).GT.0, OF PHASE PROPAGATION IF RE(WX).6T.0.) )
1376 FORMAT(119H EIGEN CONDITION. OUTWARD WAVE SOLUTION ONLY. (DIRECTIO
IN OF DECAY IF IM(UX).GT.0, OF PHASE PROPAGATION IF RE(WX).6T.0.) )
1377 FORMAT(35H EIGEN CONDITION. CLOSED BOUNDARY. OUTER LAYERS IGNORED)
1378 FORMAT(42H FIXED SURFACE ADMIT.(TE)/IMPED.(TM) YB=,F10.5,1H,,

1 F10.5, )
1379 FORMAT(42H FIXED SURFACE INPED.(TE)/ADNIT.(TH) ZB=,F10.5,1H,,
1 F10.5, )
1390 FORMAT(27HOEND STRUCTURE DESTRIPTION., )
c
900 RETURN
£

END
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SUBROQUTINE SEARCH

C
C SEARCHES FOR SETS OF EIGENVALUES (QZ,KC) IN GZ PLANE FOR FIXED KC.
C FOR GIVEN STRUCTURE AND MODAL CONDITIONS. SETS UP INITIAL GUESSES
C AND CALLS SUBROUTINE CZEROM. PRINCIPAL RESULTS TO COMNON /MODSET/.
c
COMMON /KASETS/ KASE,KSUB,HN,HO,HK,HL, IDEN, INAX, INFX,
$QZNR,DZNI,KGSS, PHFR, PHDH, KGCZ WFHP,EPS1, EPS2, EPS3, 1L, KMDO,
$KD01,KD02,KDOS,KDOA , KEIF , KDOZ, KDO7 ,KDOS |
SKOU1,KOU2,KOUS,KOU4,KDUS,KOUZ,KOU?,KOUS
c MAIN,PUTS,SRCH,5YSH,EIGQ,CZRH, FLDS, PWRS
C --NOTE EQUIVOLENCE HERE OF KDOS=KDO3, AND KOUS=KOU3
£
COHMON /STRUCT/ LK,LL,LM,KS,KCC,KFC,TR(10),BN(10),KPLS, YN(10)
REAL KS
COMPLEX KCC,KFC,@N,YN
c
COMMON /BDYCON/ KPOL,L1,KBC1,KBD1,APB1,VUPB1,YB1,ZB1,
$L2,KBC2,KBD2,APB2, UPB2, B2, 782, KBCO
COMPLEX UPB1,YB1,ZB1,VPB2 |YB2,2B2
C
COMMON /MATSYS/ KDID,025,KCS,AQZ,UX(10),PH(10),PHR,PHI,YX(10),
$CL1(10),CL2(10),CL3(10),CHT, CH2, CH3,CHA, DETC(2),
$0X1,A0X1, FY1, F21,0x2, AOX2,FY2, F22 SK1,5H2, SH3, M4, DETS,WZ,YZ(10)
COMPLEX @1, KCS, WX, PH ,PHR, PHI, YX,CL1,CL2, CL3,CH1, CH2,CH3, CH4, DETC,
$X1,FY1,FZ1,0X2,FY2,F12, SH1,5H2, SH3, SHe,DETS, WZ,V1
c
COMMON /HODSET/ NM,NO,NK,NL,QZN(10),PHN(10),KNM(10)
COMPLEX QZM,PHN
C
COMMON /CZECON/ NN, NT,ZO(10),FH(10),IT(10),KR(10),
$EPSZ,EPSF,I1,KTUO
COMPLEX EIGEQF, 70
EXTERNAL EIGEQF
C
C --LOCAL AND SCRATCH VARIABLES
COMPLEX KC,KF
COMPLEX AC,BC,CC,DC
c

DATA PILED/ 3.1415924535898, 2.3025850922940/

[

URITE(6,1000) KASE,KSUB,KDDS,KOUS
1000 FORMAT(34HO*+**SUBROUTINE SEARCH. KASE NO.=,I4,1H. ,y12,

! BH, KDOS=,12, BH, KOUS=,I2,1H. )
[F(KBCO.GT.0) GO TO 5
WRITE(6,1002)
1002 FORMAT(1H+,T67,45HNON-EIGEN CONDITIONS. NO SEARCH MADE. RETURN. )
RETURN

c
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5 WRITE(4,1005) N, MK, ML
1005 FORNAT(18H SEARCHING FOR MN=,12,53H EIGENVALUES. FOR INTENDED NOD
$E INDICES FROM MNM=MK=,I3,10H TO MM=HL=,13,1H. )

KC= KCC
KF= KFC
NH= NN
NO= MO
NK= MK
NL= HL
L0= L1+
LP= L2-L1

10 --SURVEY COMPLEX @Z PLANE. FIND REPRESENTATIVE VALUES OF REAL GZ
--AS BASIS FOR GUESSES. SET INITIAL DEFAULT VALUES.
arRo0= 0.0
QR1= GINR
gR2= 0.3
QR3= 1.0
PR= 0.0
IF(LP.GE.1) GO TO 20

--FOR SINGLE BOUNDARY CASE.
IF(KBC1.LT.2.0R.KBC2.LT.2) GO TO 135
WRITE(6,1010)
1010 FORMAT(S4H s*++SINGLE BOUNDARY, DOUBLY CLOSED, NO CASE, STOP. )
sToP
--PHASE INTEGRAL NOT DEFINED, USE RECIPROCAL MEAN FOR GUESSES.
15 GR= 0.0
PHO= 0.0
IF(KBC1.LE.1) QR= @R+1.0/REAL(QN(LY))
IF(KBC2.LE.1) QR= GR+1.0/REAL(ON(L2+1))
@R3= 1.0/GR
KGSS=2
GO TO 80

--TYO0 OUTER BOUNDARIES. ONE OR MORE FINITE INNER LAYERS
--FIND MAX QR OF INNER LAYERS, KEEP QZNR.LT.9/10 OF MIN GR.
20 DO 30 L=LO,L2
AA= REAL(GN(L))
- @R3I= AMAX1(AA,0QR3)
AA= 0.9%AA
IF(0.0.LE.AA.AND.AA.LE.QZNR) QINR= AA
PR= PR+TR(L)
30 CONTINUE
QR1= QINR
£C= CMPLX(GRO,0.0)
CALL SYSMAT(CC,KC,2,0)
PMO= REAL(PHR)/PI
CC= CHMPLX(QR1,0.0)
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CALL SYSMAT(CC,KGC,2,0)
PM1= REAL{PHR)/PI
--A HEAN VALUE OF QR BASED ON PHASE THICKNESS FOR QR1=QINR.
@R2= (GR1+GR3I}/2.0
AA= REAL(PHR*FHR)
CC= KC+PR
@T= REAL{(CC)#REAL(CC)+AINAG(CC)*AINAG(LC)
IF(AA.LT.0.001.0R.QT.LT.0.001) GO TO 40
QR2= QR1 + AA/QT

40 QR2= (@R1+0R2+QR3)/3.0
CC= CHPLX(GR2,0.0)
CALL SYSMAT(CC,KC,2,0)
PM2= REAL(PHR)/PI
CC= CHPLX(OR3,0.0)
CALL SYSMAT(CC,KC,2,0)
PH3I= REAL(PHR)/PI
IF(KOUS.LE.1) GO TO 80
URITE(4,1030) QRO,GR1,QR2,0R3,PHO,PH1,PH2,PH3

1030 FORMAT(44H REPRESENTATIVE VALUES OF REAL @Z AND CORRESPONDING PHAS

tE INTEGRAL, /&H QZR= ,4(F10.3,4H, )/6K PHM= ,4(F10.5,3HPI, )

80 --TEST AND REDUCE MODE SET TO ONLY PROPAGATING NON-EVANESCENT ONES
--REAL QZM.GT.QZNR AND PHM.LT.PHN(GZNR)
-~FUTURE IMPLEMENTATION

80 CONTINUE

--PREPARE GUESSES AND PARAMETERS FOR CALL TO CZEROM.
90 IF(KG5S.6T7.2) GO TO 300
IF(KG655.6T.1) 60 T0 200

100 --ELSE-90. KB6SS.LE.1, USE VALUES IN OZM AND KM FOR GUESSES.
--FROM INPUT, OK FROM JUST PREVIOUS CASE. KR=KN, NOT= KGCZ.
100 DO 110 M=1,MN
AC= QZH (M)
CALL SYSMAT(AC,KC,2,0)
BC= CHPLX(REAL(PHR)/PI,AIMAG(PHI)/ED)
Z0(H)= AC
PHM(M)= BC
FH(#)= -1.0
IT(N= 0
KR(H)= KM(M)
110 CONTINUE
WRITE(6,1120) KGSS,KGCZ
1120 FORWAT( 6HOKGSS=,12,84H. INITIAL GUESSES FROM QZM OF MODSET, EITH
1ER FROM INPUT OR RESULTS FROM PREV. CASE.,2X,5HK6CZ=,I2, )
G0 TD 400

200 --THEN-91. KGSS5.EQ.2, ALL INITIAL GUESSES THE SAME
-~ EQUAL TO MAX OR OF INNER FINITE LAYERS.
200 AC= CHPLX(OR3I,QINI)
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CALL SYSMAT(AC,KC,2,0)
BC= CHPLX(REAL (PHR)/PI,AINAG(PHI)/ED)
K6CZ= MINO(3,KGCZ)
DO 210 MN=1,MN
QzH(M)= AC
PHH(M)= BC
KM(NH)= KGCZ
20(H)= AC
FM(H)= -1.0
IT(H)= 0
KR(H)= KGCZ
CONTINUE
WRITE(4,1220) KGSS,AC,BC,KGCZ

FORMAT( 6HOKGSS=,12,38H. ALL INITIAL GUESSES THE SAME. 0I=(,
$ FB8.4,1H,,F8.4,1H),2X,5HPHN=(,F8.3,3HPI,,F8.4,4HDEC),

$ 2X,5HK6CZ=,12, )

GO TO 600

--THEN-90. KGSS.EQ.3, INDIVIDUAL GUESSES FOR 0Z. SIMPLE QUADRATIC
--APPROXINATION FROM GZM VS PHM FOR INTENDED MODE INDICES MM.
D= (QR1-@R3)/PH1
D2= (BR2-QR3)/PH2
A2= (D1-D2)/(PH1-PH2)
IF(A2.6T.0.0) A2= 0.0
Al=  D1-A2+PN1
--REVISE QUADRATIC COEFFICIENTS ON BASIS OF GR GUESS FOR AVG HM.
PH= (FLOAT(NK+NL)/2.0)+PHFR
OR2= GR3+(A1+A2+PN) +PH
BC= CHPLX(QR2,0ZNI)
CALL SYSNAT(BC,KC,2,0)
PH2= REAL(PHR)/PI
WRITE(4,1305) OR2,PN2
FORMAT( M GZR= ,F10.5,54,  ,10X,SHPHK= ,F10.5,2HPI, )
--REVISE COEFFICIENTS FOR APPROXIMATING QUADRATIC
D2=(QR2-8R3)/PN2
A2= (D1-D2)/(PH1-PK2)
IF(A2.67.0.0) A2= 0.0
Al= D1-A2¢PH1
--FORN INITIAL GUESSES
DO 320 MK=1,HN
PH= PHDH*FLOAT (NO+M)+PHFR
GR= ORI+(A1+A2¢PN) +PN
AC= CHPLX(OR,QZNI)
QZH(K)= AC
CALL SYSKAT(AC,KC,2,0)
PHN(N)= CMPLX(REAL (PHR)/PI,AIHAG(PHI)/ED)
KN(H)= KG6CZ
200M)= AC
FH(H)= -1.0
IT(N= 0
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KR{M)= KG6CZ
320 CONTINUE
C
€ 350 -~REFINE BY QUADRATIC INTERPOLATION BASED ON FIRST GUESSES.
C --FUTURE IMPLEMENTATION.
380 WRITE(4,1380) KGSS,K6CZ
1380 FORMAT( &HOKGSS=,12,1H.,2X,92HINDIVIDUAL GUESSES FOR EACH QZ. BASE
$D ON SINPLE QUADRATIC APPROXIMATION FOR REAL QZ VS PHM.,
$ 2X,5HKG6CZ=,12, )
GO TO 400

400 --INDIVIDUAL GUESSES FOR QZM. HIGHER ORDER POLYNOMIAL INTERPOLATE
--BASED ON REAL ROOT SEARCH FOR FIRST AMD LAST INTENDED MODE NOS.
--FUTURE IMPLEMENTATION.

500 --INDIVIDUAL GUESSES EACH BASED ON REAL ROOT SEARCH OF PHM VS QZ.
--FUTURE IMPLEMENTATION.

OO0 000

600 --ENDIF-90. DISPLAY INITAL GUESSES, CALL CZEROM FOR ROOT SEARCH
600 IF(KOUS.LE.2) GO TO 630
610 --0UTPUT /MODSET/ FOR INITIAL GUESSES.
610 DO 620 N=1,MN
KM= HO+M
WRITE(4,1710) M, HN,QZN(H) ,PHM(M) KN(M),IT(N)
620 CONTINUE

o

c
C --SET CZEROM PARAMETERS
630 NN=MN
EPSI= EPSI
EPSF= EPS2
1= IL

KTuo= KouZ
IF(KOUS.GE.1) WRITE(4,1630) NN,EPSZ,EPSF,II,KTUD,KEIF
1630 FORMAT(A4H CALLING CZEROM FOR CONPLEX ROOT SEARCH. NN=,I3,
1134 ROOTS, EPSZ=,E9.2,8H, EPSF=,E9.2,6H, II=,I3,8H, KOUT=,I2,
2 8H, KEIF=,I12,1H.)

Ly )

--MAIN CALL TO CZEROH
CALL CZEROM(EIGEQGF)

--REFINE EIGENVALUES BY SECOND CALL TO CZEROM.
--FUTURE POSSIBILITY

700 --TRANSFER RESULTS TO /MODSET/ WITH CALCULATION OF PHM
--QUTPUT VARIOUS PARAMETERS FOR EACH EIGENMODE.
700 URITE(4,1700)
MI= 2#ML
D0 710 M=1,MN
Hi= HO+M
AC= 20(M)

[ 3 o B¢ IR 9r B o)
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QIN(M)= AC

KH(K)= KRCN)

CALL SYSMAT(AC,KC, 5,0

BC= CHPLX(REAL(PHR)/PI,AINAG(PHI)/ED)
PHH(M)= BC

MI= MINO(MI,INT(REAL(BC)))

--QUTPUT EACH FOUND EIGENVALUE QZ AND PHH.
URITECS,1708) M, M, M, M, K, M, M, 08,8, 4 4,8
WRITE(6,1710) K,HM,AC,BC,KM(M),IT(M)
IF(IT(M).6T.0) GO TO 714
WRITE(6,1712)

IFCILLLE.IT(H)) WRITE(4,1714)

IF(K¥(M).GE.5) GO TO 718

WRITE(4,1716)

G0 T0 720

WRITE(4,1718)

IF(KOUS.LE,1.0R.KN(M).LT.KNDO) &0 TO 710

~-ELSE~720. PROPAGATION CONSTANT, PHASE INTEGRAL, AND SM MATRIX

WRITE(4,1720) WZ,PHR,PHI,AQZ
WRITE(6,1725) GM1,SM3,DETS,542,5H4
IF(KOUS.LE.2) GO TO 740

~--QUTPUT SYSTEM MATRIX AND WAVE PROPAG PARAMETERS FOR LAYERS
DC= DETC(1)~-CHPLX(1.0,0.0)
WRITE(6,1730) CM1,CH3,DC,CH2,CH4,DETC(2)
IF(KBC1.GE.2) GO TQ 730
L= L1
--FOR FIRST BOUNDING SEMI-INFINITE LAYER.
URITE(4,1740) L,WX(L),YX(L),0X1,AQX1
IF(KOUS.LE.3.0R.LP.LE.O} 60 TD 740
--UAVE PARAMETERS FOR EACH INNER FINITE LAYER.
bo 755 LstLo,L2
WRITE(6,1750) L,WX(L),YX(L),PH(L),CL1(L),CL2(L),CLICL)
CONTINUE
--FOR SECOND BOUNDING SEMI-INFINITE LAYER.
IF(KBC2.GE.2) &0 TO 710
L= L2+1
WRITE(4,1740) L, HNX{L),YX(L),0X2,A0X2

~--FORMAT GROUP

1708 FORMAT(THO,12(AH ---,12,4H ---))
1700 FORMAT (39HORESULTS FROM EIGENVALUE ROOT SEARCH. )
1710 FORMAT(1H ,12,4H MM=,13,2X,4H082=(,F13.8,1H,,F13.8,1H),2X,5HPHN=(,

t F8.3,3HPI,,F8.3,4HDEC),2X,3HKN=,12,13X,3HIT=,12,13X, )

1712 FORMAT(1H+,99X, 14HINITIAL GUESS.)
1714 FORMAT(1H+,99X,16HITERATION LIMNIT.)
1716 FORMAT(1H+,81X,10HNOT CONVG.)
1718 FORMAT(1H+,81X,10HCONVERGED.)
1720 FORMAT(12X,4HUZ=(,F13.8,1H,,F13.8,1H),2X,5HPHR=(,F8.3,1H,,FB.3,
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1 1H),2X,5HPHI=(,F8.3,1H, ,F8.3,1H), 9X,5HATGZ=,E11.4,5HP1/2.)
FORMAT (12X,3HSH=, 2(2H (,E11.4,1H,,E11.4,1H)), 5X,10HDET(SM)= (,
1 E11.4,1H, E11.4,1H) / 15X, 2(2H (,E11.4,1H,,E11.4,1H)),1H. )
FORMAT (12X, 3HCH=, 2(2H (,E11.4,1H,,E11.4,1H)), 5X,10HDET(CH)= (,
1 E11.4,1H, E11.4,13H) + (1.0,0.0)/15X,2(2H (,E11.4,1H,,E11.4,1H)),
2 1H.,4X,10HDETNORN= (,E11.4,1H,,E11.4,2H). )

FORMAT( BX,ZHL=,12,3X,4HUX=(,E11.4,1H,,E11.4,6H) YX=(,E11.4,1H,,
1 E11.4,7H)  OX=(,E11.4,1H,,E11.4,7H) ATAX=,F11.8,5HPI/2.)
FORKAT( 8X,2HL=,12,3X,4HUX=(,E11.4,1H,,E11.4,6H) YX=(,E11.4,1H,,
1 E11.4,7H) PH=(,E11.4,1H,,E11.4,1H),/
2 15X,3HCL=, 3(TH(,E11.4,1H,,E11.4,1H),5X),BH CL4=CLT, )

-- END FORMATS

CONTINUE

CONTINUE
-~ASSAY MODES IN /MODESET/ FOR ANY FURTHER USE BY FIELDS,POUERS

-~RESET INDICES TO LOWEST MODE FOUND AND MAX MM TRIED
NH= NT
NK= HINO(MI,NT)
NO= NK-1
NL= NO+NM
URITE(6,1810) NM,NK
FORMAT (82HORE-STATE MODE SET IN TERMS OF NUMBER TRIED AND LOWEST
$ACTUALLY FOUND. NO. TRIED=,12,18H. LOWEST FOUND=,12,1H., )
WRITE(6,1812) NK,NL
FORKAT( 9H NOW MM= ,I13,1H,I3,80H. FOR ANY MODE WITH PHHMM NOT IN
{INTENDED RANGE, VALUE OF KM IS REDUCED BY 1. )
--FOR MODES WITH PHM NOT IN INTENDED RANGE OF MM REDUCE KM BY ONE
DO 825 M=1,NT
AA= REAL(PHM(M))
IF(FLOAT(MK).GT.AA+0.5) KM(H)= KN(N)-1
IF(AA-1.5.6T.FLDAT(NL)) KN(N)= KMN(M)-1
CONTINUE

WRITE(6,1700)
FORMAT(25H #+++END SEARCH. RETURN.)

RETURN

END
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COMPLEX FUNCTION EIGE@F(ZZ,NR)

CALCULATES VALUE OF EIGEN EQUATION FUNCTION FROM SYSTEM CHARACTERISTIC
MATRICES AND BOUNDARY CONDITIONS THROUGH CALL TO SUBROUTINE SYSHAT
VALUE TO BE WADE ZERO BY ROOT SEARCHING FROM SUBROUTINE CZEROM CALLS

oMo O0

COMMON /KASETS/ KASE,KSUB,MN,MO,MK,ML,IDEN,INAX,INFX,
$QZNR,QZNI,KGSS,PHFR,PHDN,KGCZ,UFHP,EPST,EPS2,EPSS, IL ,KNDO,
$KDO1,KP02,KDO3,KD0O4,KEIF,KDOS,KDO7,KDOSB,
$KOU1,KOU2,KOU3,KOU4,KOUE,KOUS,KOU7,KOUB

~-~-NOTE EQUIVALENCE HERE OF KDOO=KEIF=KDOS5, AND KOUT=KOUE

MAIN,PUTS,SRCH,SYSN,EIGQ,CZRM,FLDS,PURS

--NOTE EQUIVALENCE HERE OF KDOO= KEIF=KDOS5, AND KOUT=KOUS

[ B or B o B o |

COMMON /BDYCON/ KPOL,L1,KBC!,KBD1,APB1,VPB1,YB1,ZB1,
$L.2,KBC2,KBD2,APB2,VPB2,YB2,7B2,KBCO
COMPLEX VPB1,YB1,ZB1,VPB2,YB2,7B2

CONMON /STRUCT/ LK,LL,LM,KS,KCC,KFC,TR(10),aN(10),KPLS,YN(10)
REAL KS
COMPLEX KCC,KFC,QN,YN

CONMON /MATSYS/ KDID,QZS,KCS,AQZ,UX(10),PH(10),PHR,PHI,YX(10),
$CL1(10),CL2(10),CL3(10),CH1,CH2,CH3,CHA,DETC(2),
sQX1,ABX1,FY1,FZ1,0X2,A0X2,FY2,FZ2,  SM(2,2),  DETS,VZ,YZ(10)

COMPLEX 0Z5,KCS,UX,PH,PHR,PHI,YX,CL1,CL2,CL3,CN1,CH2,CH3,CH4,DETC,
$ax1,FY1,F21,8X2,FY2,F12, SH, DETS,WZ,YZ

c --NOTE EQUIVALENCE OF SN(2,2) TO SH1,5M2,5M3,5H4 IN /MATSYS/

COMPLEX AC,2Z,0QZ,KC
DATA PI/ 3.1415926535898/

az= 22
KC= KCC
M¥= MO+NR
100 CALL SYSMAT(GZ,KC,4,0)

PHMM= REAL(PHR)/PI

C --SELECT EIGEN EQUATION FUNCTION FROM S MATRIX ELEMENTS
K1= HAXO(1,MINO(2,KBD1))
K2= MAXO(1,HINO(2,KBD2))
EIGEQF= SM(K2,K1)
WF= 1.0
IF(KEIF.LE.1) GO TO 900

C 200 --MODIFY EIGEQF BY A RENORKALIZATION RELATIVE TO UNITY
c --DIVIDE BY R.N.SQD.MAGNITUDES OF THE 4 ELEMENTS OF SM MATRIX
WF= 0.0
210 D0 215 K=1,2
DO 215 J=1,2
AC= SH(J,K)

- a—
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WF= WF+REAL (AC)*REAL (AC)+AIMAG (AC)*ATNAG(AC)
215 CONTINUE
WF= SORT(4.0/UF)
EIGEQF= WF*EIGEQF
IF(KEIF.LE.2) GO TO 900

300 --MODIFY EIGEGF TO BIAS SEARCH TOWARD INTENDED MODE INDEX
-~NULTIPLY BY POS REAL WEIGHT FUNCTION, SGD DIFF BETWEEN PHASE
--INTEGRAL AND INTENDED MODE INDEX
FLMN= FLOAT(NM)
~~WEIGHT FUNCTION. NOTE IF(MM.LE.PHMM.LE.MM+1) UF= 1,0
AA= AMAXT(PHMM-FLMN-1.0,-(PHMK-FLNM),0.0)

WF= UFHP*AA*¥AA + 1.0
EIGEQF= WF+EIGEQF
IF(KEIF.LE.2) 60 70 900

400 --ALTERNATIVE WORE RESTRICTIVE WEIGHT FUNCTION
-~FUTURE INMPLEMENTATION

500 -~MODIFY VALUE OF QZ OR KC TO OBTAIN APPROX DESIRED PHASE INTEGRAL

--FUTURE INPLEMENTATION

600 -~TEST FOR APPROACH TO BRANCH CUTS DURING SEARCH,
--0R THAT OTHER BRANCH EIGEQF ARE SHALLER.
~~SWITCH TO OTHER BRANCES OR REDIFINE PRINCIPAL BRANCES.
--FUTURE IMFLEMENTATION

900 IF(KOUE.GE.4) WRITE(4,1900) NR,QZ,EIGEQF,WF,PHNN,HM,SN

1900 FORMAT(4H NR=,12,4H 0QZ=(,F10.5,1H,,F10.5,10H) EIGEQF=(,E12.5,
$ 1H,,E12,5,5H) WF=,F10.5,7H. PHR=,F10.5,7HPT HH=,12/
$ 8X,4HSH= , 4(3H (,E11.4,1H,,E11.4,1H),) )
RETURN

END
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SUBROUTINE SYSMAT(BZA,KCA,KDOO,KTUD)

CALCULATES PROPAGATION VARIABLES, WAVE ADMIT/IMPED, PHASE THICKNESS
AND INTEGRALS, CHARACTERISTIC MATRICES AND EIGEN-EQUATION FUNCTION
FOR A SYSTEM OF LAYERS. PRINCIPAL INPUT FROH COMMON /STRUCT/ AND
PRINCIPAL OUTPUT TO COMMON /MATSYS/.

0z BETA(KZ/KO)-SQUARED, PROPAGATION COEFF IN Z DIRECTION.

KC COMPLEX FREQUENCY NORMALIZED TO K-ZERO (NORMALLY REAL UNITY)
KDOO INTEGER PARANETER CONTROLS EXTENT OF CONPUTATION

KTUO OUTPUT CONTROL INTEGER, =0 NO PRINTED PUTPUT

COMPLEX @ZA,0Z,KCA,KC

COMHON /BDYCON/ KPOL,L1,KBC1,KBD1,APB1,YPB1,YB1,ZB1,
SLZ,KBCZ,KﬁDZ,APB2,UPB2,Y82,ZBZ,KBCO
COMPLEX VPB1,YB1,2B1,VPB2,YB2,1B2

COMMON /STRUCT/ LK,LL,LN,KS,KCC,KFC,TR(10),0N(10),KPLS,YN(10)
REAL KS
COMPLEX KCC,KFC,ON,YN

CONHON /MATSYS/ KDID,0ZS,KCS,ARZ,UX(10),PH(10),PHR,FHI,YX(10),
$CL1(10),CL2(10),CL3(10),CH1,CH2,CH3,CHA, DETC(2),
$0X1,A0X1,FY1,F21,0X2,AQX2,FY2,F22,5H1,5K2,SK3, 54, DETS, UZ, YZ(10)

COMPLEX 25,KCS,UX,PH,PHR,PHI,YX,CL1,CL2,CL3,CH1,CNH2,CH3,CHA,DETC,
sax1,FY1,FZ1,0X2,FY2,FZ2,5H1,5H2,5K3,5M4,DETS,VZ,YZ

-~GCRATCH VARIABLES AND CONSTANTS

COMPLEX PBV1,PBV2

CONPLEX AC,BC,CC,DC,HC

COMPLEX €0,C1,CI

pata Cco,C1,CI/ (0.0,0.0),(1.0,0.0),(0.0,1.0)/

DATA PI,PI2,PIN/ 3.1415926535898,6.2831853071796,1.5707963267%4%/
DATA EPSQ/1.0E-12/

--STATMENT FUNCTION FOR MAGNITUDE SQUARED

ABSQ(CC)= REAL(CC)*REAL(CC)+AINAG(CC)*AINAG(LC)
--STATEMENT FUNCTION FOR ARCTAN QUADRANT INDICATOR
AQ(CC)= ATAN2(AIMAG(CC),REAL(CC))/PIH
--COEFFICIENTS OF POWER SERIES FOR SINC(Z) FUNCTION
DATA AD,A2,A4,A6,A8,A10 /1.0, 16.6666666666667E-2,

$ 83.33333333333¢L-4, 198.412698413E-4,
$ 27%5.5731922¢E-8, 250.52108E-10 /

--SET LOCAL VARIABLES FROM CALLING ARGUMENTS AND COMHON VARIABLES
62= QZA

KC= KCA

azs= QZ

KCS= KC
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KDID= KDOO
KoUT= KTUD
IF(KDID.GT.0) GO TO 100

--IMPORTANT. AN INITIAL CALL WITH KDOO=0 IS REQUIRED.

~-CLEAR, INITIALIZE, AND SET LOCAL VARIABLES

L= L1+

LP= L2-L1

AQZ= -0.0

PHR= CO

PHI= CO

CH1= C1

CH2= €0

CH3= CO

CH4= C1

DETC(1)= -CO

DETC(2)= -CO

axi= €1

gx2= 01

ABX1= -0.0

A0X2= -0.0

PBV1= VPBI

PBV2= UPB2

SHi= -Co

SH2= -CO

SN3= -C0

SH4= -CO

DETS= CO

D0 30 L=1,10
Uxitr= €0
PH(L}= CO
YXiL)= ¢
CLI(L)= €1
CL2(L})= €O
CL3I(L)= €O
Yz{t)= 1

CONTINUE

60 TO 900

--IF NO FINITE LAYERS, LP.LE.O, SKIP CALC AND SET CM TO UNIT NATR.
IF(LP.LE.O) GO TO 300
--CALC VARIABLES FOR FINITE LAYERS LO THROUGH L2
Do 120 L= LO,L2
--TRANSY PROPAGATION COEFF, WX, FOR INNER LAYERS, POS REAL PART.
WC= CSORT(AN(L)-QZ)
WX(Lti= uc
--TRANSVERSE WAVE ADMIT(TE)/IMPED(TM) Y¥X
YX(L)= WC+YN(L)
CONTINUE
IF(KDID.LE.1) GO TO 900
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--PHASE THICKNESS FOR EACH LAYER AND ACCUMULATE PHASE INTEGRALS
--WITH ALL POS REAL PARTS (PHR) AND WITH ALL POS INAG PARTS (PHI)
--(POSSIBLE ENTRY POINT FOR RECALC VWITH OLD QZ AND NEW KC)

PHR= CO

PHI= CO

D0 220 L= LO,L2

AC= UX(L)*#KC*TR(L)
PH{L)= AC
PHR= PHR+AC
IF(AINAG(AC).LT.0.0) AC= -AC
PHI= PHI+AC

CONTINUE

IF(KDID.LE.2) GO TO 900

--CALCULATE LAYER MATRICES AND SYSTEM CHARACTERISTIC HATRIX
cH1= C1t
CH2= CO
CH3= CO
CH4= CI
IF(LP.LE.O) GO TO 400
--MATRIX FOR EACH LAYER (CL1,CL2,CL3,CLA=CLY)
po 320 L=L0,L2
--CALL LAYMAT(TR(L),WX(L),KC,YN{L),CL1(L),CL2(L),CLIIL))
--A CALL TD LAYMAT MAY REPLACE FOLLOWING CARDS THROUGH 350
--MORE EFFICIENT TO DO IN-LINE LOCALLY.
AC= PH(L)
CLI(L)= CCOS(AC)
BC= CSIN(AC)
CL2(L)= CMPLX{-AIMAG(BC#YX(L)),+REAL(BC*YX(L)))
IF(ABSQ(AC).GE.0.1) GO TO 340
--FOR TOO SKALL A PHASE THICKNESS USE PWR SERIES SINC FUNCTION
DC= AC#+AC
CC= AO-DC*(A2-DC*(A4-DC*(AS-DC*(AB-DC*AT0))))
AC= KCsTR(L)*CC/YN(L)
CL3(L)= CMPLX(-AINAG(AC),+REAL(AC))
60 TO 350
--FOR LARGE ENOUGH PH THICKNESS USE LIBRARY CSIN(PH)/VX
CL3(L)= CMPLX(-AIMAG(BC/YX(L)),+REAL(BC/YX{L)))
CONTINUE

--ACCUMULATE SYSTEN MATRIX
~-NULTIPLY BY EACH LAYER MATRIX, FROM THE LEFT
AC = CL1(L)*CM1 + CLI(L)*CH2
CH2= CL2(L)*CH1 + CL1(L)*CH2
CHi= AC
BC = CL1(L)+CM3 + CL3I(L)*CHA4
CMa= CL2(L)*CH3 + CL1(L)*CMA4
CH3= BC
CONTINUE
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-~-DETERMINANT AND ANTIDETERNINANT

{C= CM13CN4

DC= CHM2¥CHI

DETC(1)= CC-DBC

DETC(2)= CC+DC

--LAYER AND SYSTEM CHARACTERISTIC MATRICES COMPLETED
IF(KDID.LE.3) GO T0 900

--IMPOSE BOUNDARY CONDITIONS AT OUTER BOUNDARIES

--BOUNDARY CONDITIONS AT FIRST BOUNDARY L1

IF(KBC1.6E.2) GO 70 420

--TRANSVERSE PROPAGATION COEFFICIENT, WX, POSITIVE REAL PART.
AC= C1

axi1= GN(L1)-QZ

WC= CSART(AX1)

--FOR PRINCIPAL BRANCH HALF-PLANE OF WX, CHANGE SIGN IF NECESSARY.
IF (REAL(WC*CONJG(PBY1)).LT.0.0) WC= -UC

UX(Lt)= Wt

--TRANSVERSE WAVE ADMIT/IMPED, YX, FOR OUTER LAYER MATERIAL.
BC= WC*YN(LY)

YX(Lt)= BC

G0 TO 440

IF(KBC1.GE.3) GO TO 430

--A FIXED BOUNDARY SURFACE ADNIT(TE)/INPEB(TM) YBI
AC= C1

BC= YB1

axi= C1

GO TO 440 |

--A FIXED BOUNDARY SURFACE IMPED(TE)/ADMIT(TH) ZB1
AC= ZB1

BC= C1

x1= C1

--SAVE BOUNDARY FIELD VALUES AT L1
FY1= +AC

FZ1= -BC

IFCKBD1.LE.1) FZ1= -F11

--PARTIAL MATRIX PRODUCT, FROM THE RIGHT BY BOUNDARY MATRIX
CC = CH1sAC
BC = CH3*BC
SMt= CC+DC
543= CC-DC
= CHM2+4AC
BC = CH4*BC
SH2= CC+DC
SH4= CC-DC

450 --BOUNDARY CONDITION AT SECOND BOUNDARY, L2
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IF(KBC2.GE.2) 60 TO 470

--TRANSVERSE PROPAGATION COEFFICIENT, WX, POSITIVE REAL PART.
@x2= @N(L2+1)-0Z

wC= CSORT(QX2)

--FOR PRINCIPAL BRANCH HALF-PLANE OF WX, CHANGE SIGN IF NECESSARY.

IF (REAL (UC*CONJG(PBY2)).LT.0.0) HC= -WC

UX¢L2+1)= W€

--TRANSVERSE WAVE ADMIT/IMPED, YX, FOR OUTER LAYER MATERIAL.
AC= UC*YN(L2+1)

YX{L2+1)= AC

BC= Ci

GO TO 490

1F(KBC2.GE.3) GO TO 480

-~ FIXED BOUNDARY SURFACE ADMIT(TE)/IMPED(TM) YB2
AC= YB2

BC= C1

ax2= Ct

GO TO 490

--A FIXED BOUNDARY SURFACE IMPED(TE)/ADMIT(TN) ZB2
AC= Ct

BC= IB2

ax2= Ci1

--GAVE BOUNDARY FIELD VALUES AT L2

FY2= +BC

FZ2= +AC

IF(KBD2.LE.1) F12= -FI2

--CONPLETE THE MATRIX PRODUCT, FROM THE LEFT BY INV BDY NATRIX
CC = AC*SM1

DC = BC+5M2

SH1= CC+BC

§M2= CC-DC

CC = ACHSH3

DC = BC*SH4

5H3= CC+DC

SM4= CC-DC

DETS= SH1#SH4 — SH2#SH3

--MATRIX OF EIGENEQUATION FUNCTIONS COMPLETED
IF(KBID.LE.4) GO TD 900

--CALCULATE LONGITUDINAL PROPAGAT VARIABLES, WAVE ADMIT/INPED,
--AND QUADRANT INDICATORS FOR QZ AND GX PLANES.
WZ= CSORT(QZ)
DO 510 L=1,LN
YZ(L)= WZ*YN(L)
CONTINUE
--PROTECT FROM INDETERMINANT FORM ATAN2(0,0), (FATAL ERROR)
AQZ= -0.0
IF(ABS(REAL(RZ)) + ABS(AINAG(QZ)).LT.EPSG) GO TO 522
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ABZ= AQ0Z)

322 AQX1= -0.0
IF(ABS (REAL (QX1))+ABS(AINAG(@X1)).LT.EPSD) 6O TO 524
ARX1= AR(BXT)

324 AQX2= -0.0
IF(ABS(REAL(@X2))+ABS(AINAG(QX2)).LT.EPSQ) GO TO 524
AGX2= AQ(OX2)

926 CONTINUE

900 RETURN

END



SUBROUTINE FIELDS

--CALCULATES BOUNDARY FIELDS AND FIELD DISTRIBUTION IN LAYERS
--FOR EACH OF MODAL CONDITIONS LISTED IN COMMON /MODSET/

OO0

COMMON /KASETS/ KASE,KSUB,NN,MO,MK,HNL,IDEN, INAX,INFX,
$QZNR,0QZNI,KGSS,PHFR,PHDN,KGCZ,WFNP,EPST,EPS2,EPST, IL,KNDO,
$KDO1,KD02,KD03,KD0O4,KEIF,KDO4,KDOF ,KDOB,
$KOU1,K0U2,KOU3,KOU4,KOUS,KOUS,KOUF KOUB

MAIN,PUTS,SRCH,SYSH,EIGA,CZRN,FLDS,PURS

--NOTE EQUIVALENCE HERE OF KDOF=KDO7, AND KOUF= KOU?7

GO0

COKMON /LAYCOM/ XU,WVL,KO,KCR,KCI,KFR,KFI,LN,KXTL,XL(10),TL(10),
$PER(10) ,PEI(10) ,PHR( 1),PHI( 1)
REAL KO,KCR,KCI,KFR,KFI

COMMON /BDYCON/ KPOL,L1,KBC1,KBD1,AFPB1,VPB1,YB1,ZB1,
$L2,KBC2,KBD2,APB2,VPB2,YB2,2B2,KBCO
COMPLEX VPB1,YBY,ZB1,VPB2,YB2,7B2

COMMON /STRUCT/ LK,LL,LM,KS,KC,KF,TR(10),BN(10),KPLS,YN(10)
REAL KS
COMPLEX KC,KF,QN,YN

COMMON /MATSYS/ KDID,0IS,KCS,AQZ,WX{10),PH(10),PHR,PHI,YX(10),
$CL1¢10),CL2(10),CL3(10),CN1,CH2,CN3,CH4,DETC(2),
$QX1,AQX1,FY1,FZ1,0X2,A0X2,FY2,F22,5H1,542,543,5K4, DETS, UZ,YZ(10)

COMPLEX @25,KCS,WX,PH,PHR,PHI,YX,CL1,CL2,CL3,CH1,CH2,CH3,CH4, DETC,
$aX1,FY1,FZ1,0X2,FY2,FZ2,5K1,542,543,5H4,DETS,WZ, Y2

COMMON /MODSET/ NM,NO,NK,NL,QZN(10),PHN(10),KN(10)
COMPLEX QZM,PHM

COMMON /FIELDS/ FY(10),FZ(10),PX(10),PZ(10)
COMPLEX FY,FZ,PX,PZ

COMPLEX GY(10),6Z(10),FYX,FZX,FXX
COMPLEX KCO,0Z,FGY,F62,6F1,GF2,PZX,PXX
COMPLEX AC,BC,CC,DC,TH1,TH2,TH3

c --STATEMENT FUNCTION FOR ABSOLUTE MAGNITUDE SQUARED
ABSQ{CC)=REAL(CC)*REAL(CC) + AIMAG(CC)*AINAG(CL)

DATA PI,ED /3.14159245358%98, 2.3025850922940/
DATA DELX,DELW /1.01E-04,1.0E-04/
C
WRITE(6,1000) KASE,KSUB,KDOF,KOUF
1000 FORMAT(IAHO*++#SUBROUTINE FIELDS. KASE NO.=,I16,1H.,I12,
{ 8H, KDOF=,12, 8H, KOUF=,I2,1H. )
IF(KDOF.GE.1) GO0 TO 40
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WRITE(6,1002)
1002 FORMAT(1H+,T67, 4OHND FIELDS CALCULATED. KDOF=0. RETURN. )
RETURN
c
40 WRITE(6,1040) NM,KHDO
1040 FORMAT( 49H CALCULATE FIELD SOLUTIONS FOR EACH QZM(M), M= 1,,12,
1 59H. (NOT CALC FOR NON-CONVG, OR POOR 0Z. SHOUN BY KM.LT.KMDO=,
2 12, 2H.) )
90 CONTINUE
KCO= KC+KO
LO= L1+
LP= L2-L1
L3= L2+

e

--5TART DO-LOOGP QUVER ALL MODAL GZ VALUES IN @ZM OF /MODSET/
100 CALCULATE TANGENTIAL FIELDS AND TRANSVERSE POYNTING POUER.
100 DO 101 M=1,NM
H -~D0 FOR EACH OZM VALUE IN MODSET
K= HO+M
az= QI8(H)

[ I 9]

[aw 3 o]

--PROPAGATION AND TRANSFORM MATRIX VARIABLES FROM CALL TO SYSHAT
CALL SYSMAT(GZ,KC,5,0)
PHM(H)= CHPLX(REAL(PHR)/PI,AINAG(PHI)/ED)
WRITE(6,11000 M M, M, M, M, M, 0,8, 8,4, H,H8
1100 FORMAT(1HO,12(4H ---,12,4H ---))
WRITE(6,1102) M,MN,0Z,AQZ,PHH(M) ,KN(N)
1102 FORNAT(3H N=,12, SH, HM=,I3, 7H. 0Z=(,F13.8,1H,,F13.8,1H),2¥,
1 GHATQZ= ,E11.4,4HPI/2,3X,5HPHN=(,F8.3,1H,,F8.3,1H),2X,3HKH=,12, )

C
IF(KM(M).GE.KNDO) GO TD 104

C -~FOR NON-CONVERGED EIGEN- OR POOR QZ SKIP FIELD CALCULATIONS

c --ELSE-100. OQUTPUT LINE FOR SKIPPED M AND GZ VALUE
WRITE(6,1104)

1104 FORMAT(1H+,T107,15HNO FIELDS CALC.)

GO 10 101

>

106 IF(KOUF.LT.3) 6O TO 120
AA= 0.5+A0Z
WRITE(6,1106) WZ,AA,PHR,PHI
1106 FORMAT(13X,7H  WZ=(,F13.8,1H,,F13.8,1H),2X,6HATUZ= ,E11.4,4HPI/2,
1 3X,SHPHR=(,FB.3,1H,,F8.3,8H) PHI=(,F8.3,1H,,F8.3,2H). )
c --SUMMARY OUTPUT OF WAVE PROPAGATION PARAMETERS IN EACH LAYER
108 IF(KOUF.LT.4) 60 TO 120
IF(KBC1.GE.2) GO TO 110
WRITE(6,1108) L1,WX(L1),YX(LT)
1108 FORMAT( 8X,2HL=,12,3X,4HUX=(,E11.4,1H,,E11.4,1H),
15H YX=(,E11.4,1H,,E11.4,1H),30H PH=UNDEFINED, SENI-INF LAYER, )
110 IFCLP.LE.0O) GO TO 114
BO 112 L=L0,L2
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WRITE(S,1110) L, WX(L),YX(L),PH(L)
FORMAT( BX,2HL=,12,3X,4HUX=(,E11.4,1H,,E11.4,1H),
1 SH YX=(,E11.4,1H,,E11.4,1H), 60 PH=(,E11.4,1H,,E11.4,1H), )
CONTINUE
IF(KBC2.6E.2) GO TO 116
URITE(4,1108) L3,UX(L3),¥YX(LD)
CONTINUE

--GET UP TWD PROVISIONAL SETS OF TANGENTIAL BOUNDARY FIELDS

-~FROM OUTER BDY FIELDS AND LAYER MATRICES SAVED IN /MATSYS/
--FY,FZ FROM FIRST BDY L1 TRANSFORM FORVARD TO SECOND BDY L2
--GY,6Z FRON SECOND BDY L2 TRANSFORK BACKWARD TO FIRST BDY L1

--THENDIF-106,108. SET OUTER BOUNDARY FIELDS
FY(L1)= FY1
FZ(L1)= FI1

“BY(L2)= FY2

125

130

135
136

140

145

6Z(L2)= FI2
--ACCUMULATE NORMALIZATION
FN= ABS@(FY1)+ABSQ(FZ1)
GN= ABSQ(FY2)+ABSQ(FZ2)
--IF SINGLE BOUNDARY CASE NO FINITE LAYER TRANSFORMATIONS
IF(LP.LE.O) GD TO 136
--MATRIX TRANSFORMATION ACROSS FINITE LAYERS., BOTH DIRECTIONS
Do 135 L=1,LP
Ki= Li+L
Ji= Kt-1
J2= L2-L
K2z J2+1
FY(K1)= +CLTICK1)*FY(J1) +CLI(K1)#FZ(J1)
FZ(K1)= +CL2(K1)*FY(J1) +CLU(K1)I#FZ(J1)
6Y(J2)= +CL1(K2)#6Y(K2) -CLI(K2)*GZ(K2)
G2(J2)= -CL2(K2)#GY(K2) +CL1(K2)#GZ(K2)
--ACCUNULATE NORMALIZATION
FN= FN + ABSQ(FY(K1)) + ABSQ(FZ(K1))
GN= GN + ABSQ(GY(J2)) + ABSQ(GZ(J2))
--ENDDO-130, THENDIF-123.
CONTINUE
CONTINUE
--RENORMALIZE FIELDS, UNITY R.H.SQD.MAGNITUDES OF BOUNDARY VALUES
~-~SIMPLE ARBITRARY CHOICE. OTHER NORMALIZATIONS POSSIBLE
GN= SART(2.0#FLOAT(LP+1)/6N)
FN= SORT(2.0#FLOAT(LP+1)/FN)
Do 145 L=Li,L2
FY(L)= FN*FY(L)
FZ(L)= FN$FZ(L)
GY(L)= GN*BY(L)
GZ(L)= GN*6Z(L)
CONTINUE
KBFG6= 1
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-~TANGENTIAL BOUNDARY FIELD SETS COMPLETED

--F%5 CKOSS PRGDUCTS FOR RECIPROCITY AND EIGEN CHECKS

F61= FY(L1)#6Z(L1)

FG2= FY(L2)#6Z(L2)

6F1= GY(L1)#FZ(L1)

GF2= BY(L2)#FZ(L2)

IF(KOUF.LT.2) GO TO 300

-~ELSE-190./0UTPUT SUMMARY OF PROVISIONAL FIELD SETS F AND G
--RECIPROCITY AND EIGEN CHECKS USING POYNTING CROSS PRODUCTS F*G
WRITE(6,1200) L1,L2

FORNAT(39HOTWO SOLN. FOR TANGENTIAL BDY. FIELDS, ,

1 A9HINDEPENDENTLY CALC., F(L) FRON BDY. COND. AT Li=, I2,
2 34H, AND G(L) FROM BDY. COND. AT L2=, I2, 1H. )

IF(KOUF.LT.3) GO TO 300

WRITE(6,1210)

FORMAT (116H NUMERICAL CHECKS, RECIPROCITY AND EIGEN CONDITIONS. US
$ING POYNTING CROSS PRODUCTS F#G. (F#G-DIFF IS WRONSKIAN DET.) )
DC= FG2-GF2

WRITE(6,1212) L2

FORMAT(17H EIG CHECK AT L2=,13,18H, FY#GZ
WRITE(6,1218) FG2,6F2,DC

DC= FG1-GF1

WRITE(4,1214) L1

FORMAT(17H EIG CHECK AT L1=,I3,18H, FYGZ
WRITE(6,1218) FG1,6F1,DC

AC= FG2-FG1

BC= GF2-GF1

CC= AC - BC

WRITE(4,1214)

FORMAT (38H RECIFROCITY CHECK. FG62-FG1=GF2-GF1, )
WRITE(4,1218) AC,BC,CC

FORMAT (1H+, 40X, 1H( ,E11.4,1H, ,E11.4,3H)=(,E11.4,
11H,,E11.4,9H). DIFF=(,E11.4,1H,,E11.4,4H)=0. )
--RECIPROCAL TRANSHISSION AND REFLECTION COEFFICIENTS AND
--NOT YET IMPLEMENTED

GY#FZ , )

GY#FZ , )

IF(KOUF.LT.4) GO TO 300
--ELSE-260. OUTPUT BOTH F AND G SETS OF TANGENTIAL BOUNDARY FIELDS
URITE(4,1245)

FORMAT (80H F(L) AND G(L) FIELD SETS AND WRONSKIAN DETERMINANT (FY#
16Z-GY#FZ) (=EIG CHECK) )
D0 275 L= L1,L2
DC= FY(L)*BZ(L)-GY(L)#FZ(L)
WRITE(4,1270) L,FY(L),6Y(L),FZ(L),6Z(L),DC
CONTINUE
FORMAT(3H L=,13,3X,4HFY=(,F13.4,1H,,F13.4,80)  GY=(,F13.4,1H,,
1F13.6,1H)/9X, AHFZ=( ,F13.6,1H,,F13.6,8H)  GZ=(,F13.6,1H,,F13.6,
212H)  W-DET= (,E13.6,1H,,E13.6,2H). )
--ENDELSE-2640, THENDIF -260
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--USE BOTH, ONE OR OTHER, OR AVG OF THE TWO FIELD SOLUTIONS
--ALS0 CALCULATE TIME-AVG TRANSVERSE POYNTING POWER
IF(KBCO.GE.3) GO T0 350

IF(KBCO.EG.2) GO 70 340

--ELSE-300,310.
--KBCO.LE.1, USE FIRST FIELD SET FY,FZ. ONLY SET IF KBCO.EQ.1
b0 325 L=Lt,L2
PX(L)= FYC(L)*CONJG(FZ(L))
CONTINUE
--PROCEDE VITH FIRST FIELD SET F
G0 TO 380

--THEN-310.
-~EXCHANGE F AND 6 SETS, FOR USE OF SECOND FIELD SET GY,6Z
--A RETURN ENTRY POINT FOR USING G SET AFTER USING F SET, KBCO=0
B0 345 L=L1,L2

AC= GY(L)

BC= GZ(L)

GY(L)= FY(L)

6Z(L)= FZ(L)

FY(L}= AC

FZ(L)= BC

PX(L)= AC*CONJG(BC)
CONTINUE
KBFG= 2
ENDTHEN-310/ PROCEDE UITH SECOND FIELD SET G, NOW IN F ARRAY
G0 TO 380

THEN-300./ & TRUE EIGEN-NODE CASE, F AND G SOLUTIONS EQUIVALENT
--FORM AVERAGE OF F AND G SETS AS EIGEN-FUNCTION SOLUTIONS
--STANDARDIZE GY SOLN TO BE SAKE AS FY AT L1. COMPLEX PHASE MULT.
CC= FY(L1)/6Y(LY)
B0 365 L=L1,L2

FY(L)= 0.5%(FY(L)+CC*BY(L))

FZ(L)= 0.5%(FZ{L)+CC*GZ(L))

PX{LY= FY(L)*CONJG(FZ(L))
CONTINUE
KBFG= 3
~-ENDTHEN-300/ PROCEDE UITH AVG FIELD SET, WNOW IN F-ARRAY
60 TO 380 :

~~ENDIF-300,310.
CONTINUE

--SUMMARY OUTPUT DESCRIPTION OF TYPE OF FIELD SOLUTION

-~AND LISTING OF TANGENTIAL FIELDS AT BOUNDARIES

WRITE(4,1400)

FORMAT( SOHOSOLUTION FOR TANGENTIAL FIELDS AT THE BOUNDARIES.)
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IF (KBFG.EQ.3) GO TO 430
IF(KBFG.ED.?) GO TO 420
410 URITE(6,1410)
1410 FORMAT( S4H FIELD SOLUTION BASED ON BOUNDARY CONDITION AT L1. (F))
G0 TO 440
420 URITE(6,1420)
1420 FORMAT( S4H FIELD SOLUTION BASED ON BOUNDARY CONDITION AT L2. (6))
60 TO 440
430 URITE(4,1430)
1430 FORMAT( 90H EIGEN-FUNCTION FIELD SOLUTION (AVG. OF SOLUTIONS BASE
$D ON THE TWO BDY. COND. SEPARATELY. )
CC= FZ1#FY(L1)-FZ(L1)*FY1
DC= FZ2¢FY(L2)-FI(L2)#FY2
WRITE(6,1432) CC,DC
1432 FORMAT( 39H BDY. COND. CHECKS. AT L1, YX#FY-FZ= (,E10.3,1H,,E10.3
$,22H). AT L2, YX#FY-FZ= (,E10.3,1H,,E10.3,2H). )
£ --ENDIFS-400.
440 CONTINUE
IF(KOUF.LT.2) GO TO 500
C 440 --OUTPUT TANGENTIAL BOUNDARY FIELDS AND TRANSV POYNT AVG POUER
WRITE(6,1440)
1440 FORMAT( 65H TANGENTIAL BOUNDARY FIELDS AND TRANSVERSE AVG. POYNTIN
$6 POMER. )
DO 445 L=L1,L2
WRITE(6,1700) L,XL(L),FY(L),FZ(L),PX(L)
445 CONTINUE
C 450 --TINE-AVG NET POYNTING POVWER INTO STRUCTURE FROM THE OUTSIDE
DC= PX(L1) - PX(L2)
URITE(6,1450) DC
1450 FORMAT(72H NET TINE-AVG POYNT. PWR. INTO STRUCTURE FROM OUTSIDE,
$PX(L1)-PX(L2}= (,E13.6,1H,,E13.4,2H). )

c
C 460 --OUTPUT WAVE ANPLITUDES AT OUTER BOUNDARIES, TRANS AND REFL COEFF
c --NOT YET IKPLEWENTED
c
C 500 --CALCULATE POWER AND ENERGY RELATIONS FOR FIELD SOLUTION
500 CALL POWERS
c
600 IF(KDOF.LE.1.OR.KOUF.LE.1) GO TO 800
C --ELSE-600./ CALCULATE AND OUTPUT FIELDS AS A FUNCTION OF X
WRITE(6,1600)
1600 FORKAT( J6HOFIELD SOLUTIONS AS A FUNCTION OF X. )
c --START DO-LOOP QVER ALL LAYERS
DO 605 L=L1,L3
c --D0 FOR EACH LAYER

610 IF(L.GT.LT) GO TO 630

620  IF(KBCY'.GE.2) 60 TO 790
--ELSE-610,620/ FOR FIRST SEMI INFINITE LAYER IF PRESENT
-~SET UP AN INITIAL BOUNDARY AND FIELDS AT INFX

C --FACTORS OF £ OR RADIANS INTO SEMI-INF LAYER

OO0
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TX= FLOATCINFX)/(CABS(UX(L)*KCO)+DELW)
X1= XL(L)-TX
CALL LAYMAT(KO*TX,UX(L),KC,YN(L),TH1,TH2,TH3)
FYX= +THISFY(L) -TN3#FZ(L)
FIX= -TH2#FY(L) +THIsFZ(L)
GO TO 640
630  --THEN-410. SET INITIAL X AND FIELDS FOR EACH OF OTHER LAYERS
430 LI= L-1
X1= XL(LI)
FYX= FY(LD)
FIX= FZ(LD)
--ENDIF-410.
640  IF(L.GT.L2) GO TO 450
--ELSE-440/ SET UP FINAL X AS XL(L), EXCEPT 2ND SEKI-INF LAYER
X2= XL(L)
G0 TO 640
650 --THEN-640. FOR SECOND SEMI-INF LAYER IF PRESENT
650  IF(KBC2.GE.2) 60 TO 790
--GET UP A FINAL BOUNDARY AT INFX FACTORS
© --OF E OR RADIANS INTO SEMI-INF LAYER
TX= FLOATCINFX)/(CABS(WX(L)#KCD)+DELW)
X2= XL(L2)+TX
660  CONTINUE
660 --ENDIF-640/ CALCULATE INCREHENT DX AND TRANSFORM MATRIX

TX= X2-X1
DX= 1.0/(FLOAT(IDEN)*(CABS(UX(L)+KCO)+DELW))
DX= AMAX1(DX,TX/FLOAT(INAX),DELX)
--ROUND OFF DX TO A THO DIGIT FACTOR TIMES A FOUER OF TEN
-~ROUNDED VALUES OF 1.0,1.5,2.0,2.5,4.0,5.0,7.5,10.0.
--0F EACH RANGE, ABOUT 1/3 ROUNDS UP AND 2/3 ROUNDS DOWN
-~-L0G10 OF DX. INTEGER AND FRACTIONAL PART
L= ALOG10(DX)
JL= INT(BL)
BL= DL-FLOAT(JL)
--CHECK THAT FRACTIONAL PART IS POSITIVE
IF(DL.GT.0.0) GO TO 665
DL= DL+1.0
JL= JL-1
--PUR OF 10 FACTOR, AND ROUND THE FRACTIONAL PART
665  DP= 10.0%+JL
DX= 1.0
IF(DL.LT.0.11) GO TO 4670
bX= 1.5
IF(DL.LT.0.26) GO TO 67¢
DXs 2.0
IF(DL.LT.0.36) GO TO 670
DX= 2.5
IF(BL.LT.0.53) GO T0 &70
BX= 4.0
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IF(DL.LT.0.47) 60 T0O 470
bDX= 5.0
IF(DL.LT.0.81) 60 TO 670
bX= 7.3
IF{BL.LT.0.94) GO TO 670
DX= 10.0

670  BX= DX=DP

C 680 --ROUND DOUN INITIAL X! TO INTEGER NO. OF DX, AND SET UP FIELDS
TX= X1
X1= DX#AINT(X1/DX)
TF(TX.LE.XT)  X1= X1-DX
TX= X1-TX
CALL LAYMATC(KO*TX,WX(L),KC,YN(L),TH1,TH2,TH3)
BC=  +THI*FYX +THI*FZX
FIX= +TH2*FYX +THIsFZX
FYX= DC

c --TRANSFORMATION MATRIX FOR BX THICKNESS IN LAYER L
CALL LAYNAT(KO#DX,UX(L),KC,YN(L),TH1,TN2,TH3)

C 700 --CALCULATE AND OUTPUT FIELDS FROM X1 TO X2, INCREMENTS OF DX
IX= INT((X2-X1)/DX+1.5)
PXX= FYX*CONJG(FZX)
URITE(6,1700) L,X1,FYX,FZX,PXX
WRITE(4,1702)
IF(KOUF.LT.3) GO TO 700
FXX= YZ(L)*FYX
PZX= CONJG(FXX)*FYX
WRITE(6,1720) FXX,PIX
c --START DO-LOOP INCREMENTING DX THROUGH EACH LAYER
700 DB 710 1I=1,IX
XX=  X1+FLOAT(I)DX
DC=  +THI#FYX +TH3I*FIX
FIX= +TH2#FYX +TH1#FZX
FYX= DC
PXX= FYX+CONJG(FZX)
WRITE(4,1700) L,XX,FYX,FZX,PXX
1700 FORKATCIX,13,3H X=,F11.5,3X,3X,4HFY=(,F13.6,1H,,F13.4,1H),4X,
1 ANFI=(,F13.6,1H,,F13.6,1H),3X, 4HPX=( ,E13.4,1H, ,E13.4,1H) )
1702 FORNAT (1H#,17X,3H¥%+%)
1704 FORMAT(1H+,17X,3HBBY)
720 IF(KOUF.LT.3) 60 T0 730
C --ELSE-720.
c --CALCULATE AND QUTPUT FX AND PZ
FXX= YZ(L)*FYX
PIX= CONJG(FXX)*FYX
WRITE(6,1720) FXX,PIX
1720 FORMAT(24X,32X,3X,4HFX=(,F13.6,1H, ,F13.6,1H),3X,
| AHPI=(E13.6,1H,,E13.4, 2H).
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C 730 -~THENDIF-720.
730 IF(XX.LE.X2) &0 70 710
c --ELSE-730/ END OF LAYER L, OUTPUT FIELDS AT BOUNDARY
WRITE(6,1702)

740 IF(L.GE.L3) GO TO 710
WRITE(6,1700) L ,X2,FY(L),FZ(L),PX(L)
WRITE(6,1704)
G0 TO 405
£ 710 --ENDBO-700, THENDIF-730,740./END EACH DX INCREMENT
710  CONTINUE
€ 790 --THENDIF-610,450. END SKIPPING OF SEMI-INF LAYERS
790  CONTINUE

605 -ENDDO-600. FINISHED WITH EACH LAYER L

605 CONTINUE

C --FINISHED UITH THE FIELD SOLUTION OVER ALL THE LAYERS
800 CONTINUE

|3 M o)

c
C --FOR EIGEN CONDITIONS AT NEITHER BDY RETURN FOR SECOND SOLUTION
IF(KBCO.LE.O.AND.KBFG.EG.1) G0 TO 340
c
810 URITE(6,1810) M
1810 FORMAT(33H END FIELD SOLUTIONS FOR MODE, M=,I3, )
C

C 101 --ENDDO-100. FINISHED WITH EACH MODE VALUE OF QZ
101 CONTINUE

900 URITE(6,1900) KASE,KSUB
1900 FORMAT(26H #++++END FIELDS. KASE NO.=,146,1H.,12,%H RETURN. )
RETURN

END
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SUBROUTINE LAYMAT(TR,UX,KC,YN,TH1,TH2,THD)

¢
C --CALCULATE FIELD TRANSFORMATION MATRIX FOR ANY LAYER
C --TR= NORMALIZED RADIAN THICKNESS, TR= KO#(X2-X1)
£ --WX= PROPAG COEFF IN X, NORMALIZED TO KO, KX= KOsWX
£ --KC= COMPLEX FREQUENCY FACTOR, A MULTIPLIER OF KO,
c --YN= TRANSV VAVE ADMIT/INPED FACTOR, YX= WX#YN
e --TH1,TH2,TH3, MHATRIX ELENENTS, THA= TH1.
£
COMPLEX WX,KC,YN,TH1,TN2,TH3
COMPLEX 2Z,TH,SN,QH,5C
C
C --STATEKENT FUNCTION FOR SQUARED MAGNITUDE
ABSQ(2Z)= REAL(ZZ)#REAL(ZZ) + AIMAG(ZZ)*AINAG(ZL)
c
c --COEFFICIENTS OF POMER SERIES FOR SINC(Z) FUNCTION
DATA AO,A2,A4,A6,AB,A10 /1.0, 16.6666666666647E-2,
$ 83.33333333333E-4, 198.412698413E-4,
$  275.5731922E-8, 250.52108E-10 /
C
C --COMPLEX PHASE THICKNESS, COSINE, AND SINE
TH= WX*KC#TR
TH1= CCOS(TH)
SH=  CSIN(TH)
11= UX*YN*SN
TH2= CMPLX(-AIMAB(ZZ),+REAL(ZI))
100 IF(ABSO(TH).ET.0.1) GO TO 120
€ -~ELSE-100. FOR TOO SMALL TH USE POWER SERIES FOR SIN(TH)/TH
110 QH= THATH
SC= AO-DH*(A2-0H® (AA-0H* (A5-DH*(AB-BH*A10))))
11= KC*TR$SC/YN
TH3= CMPLX(-AINAG(ZZ),+REAL(ZZ))
60 T0 130
c --THEN-100. FOR LARGE ENOUGH TH USE LIBRARY CSIN(TH)/YX
120 2Z= SN/ (WX*YN)
TH3= CHPLX(-AINAG(ZZ),+REAL(ZZ))
C --ENDIF-100. FINISHED, RETURN
c

130 RETURN
END
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SUBROQUTINE POMERS

-~CALCULATES POYNTING POUER FLOWS AND ENERGY DENSITIES FOR
--TANGENTIAL AND TRANSVERSE FIELDS

CONNON /KASETS/ KASE,KSUB,MN,H0,NK,HL, IDEN, INAX, INFX,
$QZNR,0QINI,KGSS,PNFR,PMDN,KGCZ, WFHP,EPST,EPS2,EPS3, IL,KHDO,
$KDO1,KD02,KD0O3,KDOA4,KEIF ,KDO&,KDO7,KDOP,
$KOU1,KOU2,KOU3, KOU4,KOUS,KOUG,KOU7 ,KOUP

NAIN,PUTS,SRCH,SYSH,ETGQ,CZRN,FLDS,PURS

--NOTE EQUIVALENCE HERE OF KDOP=KDO8, AND KOUP=KOUS

COMMOM /LAYCOM/ XU,WYL,KOQ,KCR,KEI KFR,KFI,LN,KXTL,XL(10),TL(10)},
$PER(10),PEI(10),PNR( 1) ,PKI( 1)
REAL KO,KCR,KCI,KFR,KFI

CONNON /BDYCON/ KPOL,L1,KBC1,KBDY,APB1,VUPB1,YB1,ZB1,
$L2,KBC2,KBD2,APB2,VPB2,YB2,ZB2,KBCO
COMPLEX VPBt,YBt!,ZB1,VPB2,YB2,ZB2

CONMON /STRUCT/ LK,LL,LN,KS,KC,KF,TR(10),aN(10),KPLS,YN(10Q)
REAL KS
COMPLEX KC,KF,ON,YN

COMMON /MATSYS/ KDID,015,KCS,ADZ,UX(10),PH(10),PHR,PHI,YX(10),
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$CL1(10),CL2¢(10),CL3(10),CH1,CH2,CH3,CHA,DETC(2),

$0X1,AQX1,FY1,F21,0X2,A0X2,FY2,FZ2,5K1,542,5H3,544,DETS ,WZ,YZ(10)
COMPLEX QZS,KCS,UX,PH,PHR,PHI,YX,CL1,CL2,CL3,CH1,CH2,CH3,CN4,DETC,
sax1,FY1,F21,0X2,FY2,FZ2,541,5M42,543,544,DETS, W2, Y2

COMMON /NODSET/ NM,NO,NK,NL,BZN(10),PHN(10),KN(10)
COMPLEX QZH,PHM

COMMON /FIELDS/ FY{(10),FZ(10),PX(10),PZ(10)
COMPLEX FY,FZ,PX,PZ

COMPLEX C0,C1,CI

DATA €0,C1,C1/ (0.0,0.0),(1.0,0.0),(0.0,1.0)/

DATA PI,PI2,PIH/ 3.1415926535898,4.2831853071796,1.5707943267949/
WRITE(6,1000) KASE,KSUB,KDOP,KOUP

FORMAT (34HO#**+SUBROUTINE POUERS. KASE NO.=,I4,1H.,I2,
{ 8H, KDOP=,12, 8H, KOUP=,I12,1H. )
IF(KDOP.GE.1) GO TO 100
WRITE(4,1010)
FORMAT(1H+,T67, 40HND POVERS CALCULATED. KDOO=0. RETURN. , )
G0 TD 900 '
CONTINUE
WRITE(4,1100)

FORMAT(42H NO CALCULATION OF POWERS YET IMPLEMENTED.)
--NOT YET INPLEMENTED

RETURN

END
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SUBROUTINE CZERONM(CFCN)

FINDS COMPLEX ROOTS OF COMPLEX FUNCTION CFCN(Z,N). USING NULLER-TRAUB
METHOD. QUADRATIC FIT TO LAST THREE ITERATES PREDICTS NEXT ONE.
COMPLEX FUNCTION CFCN(Z,N) HNUST BE PROVIDED. OTHER NAME MAY BE USED
IN CALLING PROGRAM. NAME USED MUST BE DECLARED AS EXTERNAL.

WRITTEN BY ROBERT B. SMITH, UNIVERSITY OF WASHINGTON, ELECT ENG DEPT.
SEATTLE, WASHINGTON. FEBRUARY, 1977,

CFCN  COMPLEX FUNCTION CFCN(Z,N) WHDSE ROGTS ARE TO BE SEARCHED FOR

COMMON /CZECOM/ BELOW MUST BE PROVIBED ALSO IN CALLING PROGRAM FOR
COMMUNICATION OF VARIABLES, PARAMETERS, AND RESULTS BETNEEN PROGRANS.
IN HAIN PROGRAM COMMON OTHER VARIABLE NAMES MAY BE USED, BUT LIST MUST
AGREE IN TYPE, DIMENSIONS, AND NUMBER OF VARIABLES.

COMMON /CZECOM/ NN,NT,Z0(10),FK(10),1T(10),KR(10),
$EPSZ,EPSF,1I,KTUD"
COMPLEX CFCN, Z0
NN NUMBER OF ROOTS TO BE SEARCHED FOR. TEN NAX. INPUT.
NK NUMBER OF ROOT LAST TRIED. IF NK=NN ALL ROOTS TRIED. OUTPUT.
10 INPUT, USED FOR GUESSES. DUTPUT, COMPLEX ROOTS FOUND
Fi ABS MAGNITUDE OF TRUE FUNCTION AT ROOTS. SHOULD BE ZERO.
IT NUMBER OF ITERATIONS COMPLETED FOR EACH ROOT. OUTPUT.
KR ROOT STATUS AND QUALITY INDEX. CONTROLS USE OF GUESSES ON INPUT
SHOWS TYPE OF CONVERGENCE ON QUTPUT. INPUT/OUTPUT.

KR= .LT.0 ROOT IGNORED, NO ACTION./ =0, NO GUESS, USE 1.0 AND UNIT RA-
bIus./ =t,2,3, POOR,GOOD,VG GUESSES, USE Z0 AND RADIUS= 0.1,0.01,
0.001/ =4, EXCELLENT GUESS, USE Z0 AND RADIUS E-4. Z0 DIVIDED OUT
FOR OTHER ROOTS. ON OUTPUT KR=4 MEANS ITERATION LIMIT./ =5 CONVERG
OF REDUCED FUNCTION ONLY. MAY BE USED FOR INPUT ALSO, GUESS RADIUS
=E-5./ =6, CONVERG OF TRUE FUNCTION./ =7, CONVERG OF DZ./ =8, A
FIXED ROGT OR POLE TO BE DIVIDED OUT, NO SEARCH./

ROOT SEARCH FOR ZO(N) MADE ONLY FOR KR(N), O0.LE.KR.LE.?

Z0(N) DIVIDED OUT FOR ALL OTHER ROOTS OR GUESSES IFF KR(N).GE.4
RADIUS FOR INITIAL ITERATES= 1.0E-KR, USING INPUT VALUE FOR KR
(RADII NOT ABOUT Z0 BUT ABOUT AN ORIGIN. SUBSEQUENT MOBIUS
TRANSFORMATION TO A NON-CENTERED CIRCLE ABOUT Z0)

QUTPUT. ITERATION LINIT IF KR= 4. CONVERGENCE IF S.LE.KR.LE.7.

EPSZ EPSILON FOR CONVERGENCE TEST OF DELTA Z. INPUT.

EPSF EPSILON FOR CONVERGENCE TEST OF FUNCTION MAGNITUDE. INPUT.

11 ITERATION LINIT FOR EACH ROOT SEARCH. INPUT.

KTOY CONTROLS AMOUNT OF OUTPUT. INPUT. LOCALLY KOUT=KTOU.
/=0, NO OQUTPUT. /=1, ONE LINE EACH CALL. /=2, TUO LINE SUMMARY.
/=3, SUMMARY OF ROOTS FOUND. /=4, EACH ITERATION.
/=3 T0 8, BEBUG, ADDITIONAL VARIABLES.
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c
C ~-ARRAY OF ITERATES AND EQUIVALENCE
COMPLEX 21(4),7A,2B,2C,2Z,26,F1(4),FA,FB,FC,FCZ,F2Z
DIMENSION FO(4)
EQUIVALENCE (Z1(1),Z4),(Z1(2),IB),(Z1(3),2C),(21(4),22),
$(FO(4),FOR), (FI(1),FA),(FI(2),FB),(FI(3),FC),(FI(4),FZ)
£
£ --SCRATCH YARIABLES AND CONSTANTS

COMPLEX CA,CB,CC,CD,CZ,DFAB,DFBC,DDFC,DFDZ,DZ,C0,C1,C6,ROTC
DATA CO,C1,ROTC / (0.0,0.0), (1.0,0.0), (-0.4,+0.8) /

c -~MACHINE CONSTANT. FLOATING PT. RESOLUTION
DATA AM / 1.0E-14 /

--STATEMENT FUNCTION FOR SQUARED MAGNITUDE
ABSA{CA)= REAL(CA)*REAL(CA) + AIMAG(CA)*AIMAG(CA)

c
C NAMELIST /DEBUGtY/ ZA,F0(1),ZB,F@(2),IC,FQ(3)
C NAMELISY /DEBUG2/ DFDZ,DZ,ZZ,FOR
C
C
C --INITIALIZE AND SET LOCAL VARIABLES.
NN= NINO(NN,10)
NT= 0
IF(NN.LE.O) GO TO 900
NL= NN
c --A LOWER LIMIT ON THE EPSILONS

AA= 100.0%AN
IF(EPSZ.LT.AA) EPSZ= AA
IF(EPSF.LT.AAR) EPSF= AA
C --SQUARED EPSILONS. FORM USED IN CONVERGENCE TESTS.
EPQZ= EPSZ*EPSZ
EPOF= EPSF#EPSF
C6= ROTC
KOUT= KTUO
KANT= 0
IF(KOUT.GE.1) WRITE(4,10%0)
1090 FORMAT(J0HOSUBROUTINE CZEROM ITERATIONS.)
IF(KOUT.GE.3) WRITE(4,10%1)
1091 FORMAT (3X, tHN,2X,2HKR,3X,1HI,T23,5HDZ(1),T49,4HZ(I),T74,4HF(2),
$795,12HF(Z)-REDUCED, T115,5HF-50D )
€
c --HAIN LOOP SEARCHING FOR NN ROOTS
100 DO 110 N= 1,NL
NT= N
NR= N
KS= KR(N)
1= Z0(N)

112 IF(0.LE.KS.AND.KS.LE.?) GO TO 115
C --NO SEARCH FOR IGNORED OR FIXED ROOTS. SET PARAMETERS FOR THEM.
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IT(N)=0

bZ= CO

FCZ= CFCN(ZZ,NR)

Fz= -C0

FQR=-0.0

60 T0 590

--ENDELSE-112. BYPASS ROOT SEARCH

-~THEN-112. PROCEDE WITH EACH ROOT SEARCH

CONTINUE

--SET UP GUESSES. THREE ON A CIRCLE ABOUT Z0, AND ONE NEAR Z0
1= ¢

IF(KS.EQ.0) 2Z= (!

CC= CONJG(ID)

--SET A MAX RADIUS FOR CIRCLE OF GUESSES ABOUT AN ORIGIN.
RR= CABS{21)

RR= 0.5/(RR+0.5)

--USE A FRACTION OF MAX RADIUS, POWERS OF (0.1)#*KR
FF= 1.0

IF(KS.GT.1) FF= 0.1%sKS§

--SET RADIUS VECTOR FOR FIRST GUESS.

CZ= FF*RR+(CG

--GENERATE THE FOUR GUESSES

120 DO 130 K=1,4

140

160
150

-~UNITARY MOBIUS TRANSFORMATION TO POINTS ABOUT Z0
6= (II+CI)/(C1-CCHCT)
Z1(K)= 26
FCZ= CFCN(ZG,NR)
-~FACTOR DUT KNOWN AND FIXED RDOTS. FORK DENONINATOR POLYNOMIAL
Ch= Ci
DO 150 L=1,NL
--BUT NOT OTHER GUESSES, PODRLY KNOWN, OR CURRENT ROOT
IF (KR(L).LE.3.0R.L.EQ.N) GO TO 150
CA= 26-Z0(L)
-~IF TOO NEAR A KNOWN ROOT ACCEPT AS A MULTIPLE ROOT
--AVOIDS INFLATING REDUCED FUNCT OR NUMERICAL INDETERMINACY
--CHORDAL METRIC ON RIEMANN SPHERE FOR Z-PLANE
BB= (1.0+ABS0(26))%(1.0+ABSA(ZO(L)))
IF(ABSQ(CA).GT.EPQZ*BB) GO T0 140
1= 16
FI= FCZ
FaR= FA(K)
KS= KR(L)
IT(N)= 0
60 TO 500
CD= CD+CA
CONTINUE
~~-DIVIDE OUT POLYNOHIAL OF KNOWN ROOTS
CD= FCZ/CB
FI(K)= CD
FO(K)= ABSB(CD)
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~-~ROTATE RADBIUS VECTOR FOR NEXT GUESS. FOR LAST GUESS USE SKALL
-~RADIUS FOR APPROX ZERD AVG OF THE FODUR GUESSES.
CZ= CZ+ROTC
IF(K.GE.3) CZ= (-.019,+.064)+CZ
~-~QUTPUT EACH INITIAL GUESS ITERATE
IF(KOUT.GE.4) WURITE(6,1470) N,KS,I,CO,ZICK),FCZ,FI(K),FQ(K)
CONTINUE
--SET RADIUS VECTOR START FOR NEXT(NTH+1) SET OF GUESSES.
C6= -CG+ROTC
--GUESSES COMPLETED

-~REORDER GUESSES IN DECREASING ABSGD OF REDUCED FUNCTION
--FQ1.GE.F@2.GE.FO3.GE.FOA
D0 185 I=1,3
J= T+1
DO 185 K= J,4
IF(FR(K).LT.FR(I)) 6O TO 185
CA= ZI(I)
CB= FI(I)
Ad= FO(I)
(D= ZI(K)
FI(I)= FI(K)
FA(I)= FA(K)
ZI(K)= CA
FI(K)= CB
FO(K)= AA
CONTINUE
--DUKP GUESS FOR LARGEST F@, PUSH UP THE REST.
D0 195 I=1,3
J= I+
II¢D= 710D
FItD)= FI(J)
FtI)= Fa(J)
CONTINUE
--GUESSES ORDERED, USED AS INITIAL ITERATES

-~-MAIN MULLER ITERATION LOOP
KS= 4

KR(N}= KS

DO 210 I= 1,11

-~CALCULATE NEXT MULLER ITERATE. TRAUB FORMULAS
-~ITERATIONS BASED ON REDUCED FUNCTION
IF(KOUT.GE.J) URITE(6,DEBUGY)

DFAB= (FA-FB)/(1A-1B)

BFBC= (FB-FC)/(ZB-1C)

BDFC= (DFAB~DFBC)/(ZA-IC)

CB= DFBC+(ZC-ZB)*DDFC

CA= CSQRT(CB*CB-4.0#FC+DDFC)
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CC= CB+CA

Cb= CB-CA

-~SELECT LARGEST DENOMINATOR
IF{ABSQ(CC).LT.ABSQ(CD)) CL= CD
DFDZ= 0.5sCC

~--INCREMENT FOR ITERATE

bDZ= -FC/DFBL

--NEU ITERATE APPROXIMATION FOR ROOT
1= IC+DZ

~-~EVALUATE FUNCTION AT NEW ITERATE
300  FCZ= CFCN(ZZ,NR)

FZ= FCZ

F@zZ= ABSA(FCZ)

--FACTOR OUT KNOWN ROOTS. FORM DENOMINATOR POLYNOWIAL.
Cb= C1!
310 DO 320 L= 1,NL
--BUT NOT GUESSES, POORLY KNOWN, OR CURRENT ROOT
IF(KR(L).LE.3.0R.L.EQ.N) GO TO 320
Ca= ZZ-70(L)
--IF TOD NEAR A KNOUN ROOT ACCEPT AS A MULTIPLE ROOT
--AVOIDS INFLATING REDUCED FUNCT OR NUMERICAL INDETERMINACY
--CHORDAL METRIC ON RIEMANN SPHERE FOR Z-PLANE
IF(KR(L).LE.4) GO TO 330
BB= (1.04ABSQ(ZZ))*(1.0+ABSR(ZO(L)))
IF (ABSQ(CA).GT.EPQZ*BB) 60 TO 330
KS= KR(L}
IT(N)= 1
G0 TO 500
330 €b= CD=CA
320  CONTINUE
--DIVIDE OUT POLYNOMIAL OF KNOWN ROOTS
FZ= FZ/CD
FQR= ABSQ(FZ)
IF(KOUT.GE.S) WRITE(6,DEBUG2)

400 --TESTS FOR CONVERGENCE.
~~CONVERGENCE TEST ON MAGNITUDE OF REDUCED FUNCTION
IF(FAQR.LT.EPOF) KS= 5
--CONVERGENCE TEST ON MAGNITUDE OF ACTUAL FUNCTION
IF(FQZ.LT.EPQF) KS= 6
-~CONVERGENCE TEST ON ITERATE INCREMENT DI
-~CHORDAL METRIC ON RIEMANN SPHERE FOR Z-PLANE
IF(ABSA(DZ).LE.EPQZ*(1.0+ABSQ(ZZ)**2)) KS= 7
IF(KS.LT.5) GO TO 440
ITtN= 1
G0 TO 500

--NOT CONVERGED. COMPLETE ITERATION, UPDATE ARRAY OF ITERATES
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--DUNP BIGGEST OLD ITERATE, INSERT NEW ITERATE IN ORDER

440 DO 450 J= 1,2

K= J+1

IF(FOR.GT.FO(K)) GO TO 460

210 = ZI(K)

FI(J)= FI(K)

FR(J) = FOCK)
450  CONTINUE

[ap]

J=3
460  ZI(DH= 12
FItJd)= FZ
FQ{J)= FOR
c
c --0UTPUT EACH ITERATION

470 IF(KOUT.GE.4) WRITE(4,1470) N,KS,1,DZ,2Z,FCZ,FZ,FOR
1470  FORMAT(1X,13,14,14, 3(2H (,E10.3,1H,,E10.3,2H) ),

$ 2H (,E10.3,1H,,E10.3,2H) ,610.3 )
C
c --EACH ITERATION COMPLETED
210 CONTINUE
c
c --ITERATION LINIT
ITiN= 11

KANT= KANT+1

0

-~ACCEPT ITERATE AS A CONVERGED ROOT OR AS LAST ITERATE.
00 Z0(N)= 12

FH(N)= SQRT(F@QZ)

KR(N)= KS§

IF(KS.GE.5) KANT= 0
c --QUTPUT CONVERGED ROOT, LAST ITERATE, OR FIXED Z0.

390 IF(KOUT.GE.J3) WRITE(6,1470) N,KR(N),IT(N),DZ,Z0(N),FCZ,FZ,FOR
C --IF TWO SUCCESSIVE ITERATION LIMITS GIVE UP ON REMAINING ROOTS.
IF(KANT.GE.2) GO TG 900

c --END LOOP FOR NTH ROOT
110 CONTINUE

c
c -~NN ROOTS COMPLETED, OR GIVE UP. END CZEROM
C

900 RETURN

END
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