

Carrier heating effects on Relative Intensity Noise (RIN)

Yue Xu

Advisor: Gary Evans

Outline

- Physical originations
- Simulations
- Experiment

Originations

- Spontaneous emission
- Carrier generationrecombination process
- Carrier heating

Total RIN

$$RIN = \frac{\left\langle \delta P(t)^2 \right\rangle}{P_0^2} = \frac{S_{\delta P}(\omega_0) * 2f}{P_0^2}$$

Laser RIN

$$RIN_{L} = \frac{RIN}{f} = \frac{2S_{\delta P}(\omega_{0})}{P_{0}^{2}}$$

Simulations (II)

Simulation (III)

Simulation (IV)

Experiment (I)

Experiment (II)

$$RIN = RIN_{M} - \frac{N_{th}}{R_{L}(rP_{AVG(opt)})^{2}} - \frac{N_{q}}{R_{L}(rP_{AVG(opt)})^{2}}$$

 $N_q(f)$ Thermal noise power per Hz

- N_{th} Photonic shot noise power per Hz
- R_L Load resistor of the spectrum analyzer input
- $P_{AVG(opt)}$ Average power of the photocurrent.

Experiment (III)

Conclusion

- Carrier heating reduces the peak position of the RIN spectrum especially at high injection levels.
- Carrier heating may contribute to the RIN in low frequency ranges