Radiative and Nonradiative Recombination

Ying Wan

9/1/2003

]

Contents

- Introduction to Laser Principle
- Radiative Recombination
- Nonradiative Recombination
- Threshold Current Density
- Leakage Current Density
- **♦** Temperature Dependence
- Reference

Laser Principle

Requirement for Semiconductor Laser

- Gain Medium
 - Semiconductor material
- Optical Feedback
- Cleaved Facets (Fabry-Perot cavity)
- Mode Confinement
 - Dielectric Waveguiding
- Optical Gain
 - Electrical/optical pumping

Definition of Recombination

- A process whereby electrons and holes (carriers) are annihilated or destroyed.
- Reversed process is **Generation**: A process whereby electrons and holes are created.
- Classification:
 - A. Radiative Recombination: Photon
 - B. Nonradiative Recombination: Phonon or Lattice vibration

Radiative Recombination

- Radiative Recombination occurs when an electron in the conduction band recombines with a hole in the valence band and the excess energy is emitted in the form of a photon.
- Optical processes associated with radiative transitions are:
 - A. spontaneous emission
 - B. absorption or gain
 - C. stimulated emission

Radiative Transitions Processes

Absorption

✓ transition probability B_{12}

Spontaneous emission

- √ transition probability A₂₁
- √ random phase and direction

Stimulated emission

- √ transition probability B₂₁
- has the same frequency and phase as the incident light
 - ⇒ light amplification

Important Terms

Transparency

As pump rate increases, E_{fc} increases and E_{fv} decreases, the semiconductor becomes transparent at

$$E_{fc}$$
 - E_{fv} = E_g

Optical gain

Difference between the stimulated emission and the absorption rate.

$$E_{fc}$$
 - E_{fv} > E_g

Threshold current (I_{th})

The lowest current at which stimulated emission exceeds spontaneous emission.

Below I_{th} , output mainly consists of spontaneous emission

Above I_{th} , stimulated emission begins to dominate

Spontaneous Emission Rate

- Spontaneous emission rate increases when high enough (threshold) carrier density is injected into material to achieve optical gain.
- For every spontaneous photon emitted, A new carrier must be injected into the active region.
- Spontaneous emission contributes to threshold current, esp. in short-wavelength material.
- The total spontaneous emission rate per unit volume:

$$R(E) = \frac{4 \pi q^{2} \mu E}{m_{0}^{2} \varepsilon_{0} c^{3} h^{2}} \int_{-\infty}^{\infty} \rho_{c}(E') \rho_{c}(E'') f_{c}(E'') f_{v}(E'') |M_{if}|^{2} dE''$$
Where E'' = E' - E

Radiative Current Density

Spontaneous emission rate can be approximated by

$$R = Bnp$$

where B: radiative recombination coefficient.

n and p: electron and hole density respectively.

The current density due to spontaneous emission alone:

$$J_r = qdR$$

where d: active-layer thickness.

Nonradiative Recombination

- An electron in the conduction band recombines with a hole in the valence band and the excess energy is emitted in the form of heat in the semiconductor crystall lattice.
- Characterized by the absence of any useful emitted photons in the recombination process.
- Affecting performance of injection laser by increasing the threshold current
- Nonradiative Recombination processes include:
 - A. Auger Recombination
 - B. Surface Recombination
 - C. Recombination at defects

Auger Recombination

- Generally the predominant nonradiative mechanism
- Involving 4 particle states (CCCH, CHHS, CHHL)

Auger Recombination Rate

Representative values at room temperature:

 $C = 2 \sim 3 \times 10^{-29} \text{ cm}^6/\text{s} \text{ (bulk 1.3um InGaAsP)}$

 $C = 7 \sim 9 \times 10^{-29} \text{ cm}^6/\text{s} \text{ (bulk 1.55um InGaAsP)}$

 $C = 4 \sim 5 \times 10^{-30} \text{ cm}^6/\text{s} \text{ (bulk GaAs)}$

Auger Recombination rate is not well characterized for other material systems.

- Difficulty with Auger recombination:
 - A. Accurate information of the band structure at more than a bandgap away from the band edge must be known.
 - B. Overlap integrals of "k-space distant" Bloch functions must also be known.
- Theories are inevitably made very simplifying assumptions.

Nonradiative Recombination Current Density

Auger Recombination rate (approximately)

$$R_a = Cn^{-3}$$

Where C: Auger coefficient

n: injected carrier density

Defect and Surface Recombination rate $R_d = A_{nr} n$

Where A_{nr} : Trap and surface recombination coefficient

The current density due to Nonradiative Recombination :

$$J_{nr} = qd (R_a + R_d) = qd (Cn^3 + A_{nr} n)$$

Threshold Current Density

Total threshold current density:

$$J_{th} = qd (A_{nr} n_{th} + Bn_{th}^{2} + Cn_{th}^{3}) + J_{L}$$

where n_{th}: the injected carrier density at threshold

 J_1 : the leakage current density

For good quality laser, e.g. InGaAsP, the first term is negligible,

$$J_{th} \cong qd \left(Bn_{th}^2 + Cn_{th}^3\right) + J_L = J_r + J_{nr} + J_L$$
where
$$J_r = qd \left(Bn_{th}^2\right) = qdR$$

$$J_{nr} = qd (Cn_{th}^{3}) = qdR_{a}$$

Heterojunction Carrier Leakage

- Caused by diffusion and drift of electrons and holes from the edges of the active region to the cladding layers.
- Must be considered under high temperature or material systems which do not have the luxury of large heterobarriers.
- Calculation: find the minority carrier density spill over the active layer into the cladding layer interface, then find the diffusion and drift currents.

9/1/2003

Leakage Current Density

Electron leakage current:

$$J_{n} = qD_{n}N_{p0}\left[\sqrt{\frac{1}{L_{n}^{2}} + \frac{1}{L_{nf}^{2}}} \coth \sqrt{\frac{1}{L_{n}^{2}} + \frac{1}{L_{nf}^{2}}} x_{p} + \frac{1}{L_{nf}}\right]$$

where D_n: minority electron diffusion, coefficient

 N_{p0} : electron population at the edge of p-cladding

L_n: minority electron diffusion length

L_{nf}: drift length

In quantum well laser, it can be approximated to:

$$J_L = qd \frac{N}{\tau_n}$$

where \mathcal{T}_n : minority carrier lifetime

d: active layer thickness

Temperature Dependence of J_{th}

For double-heterostructure lasers:

$$I_{th}(T) = I_0 \exp(T/T_0)$$

where T0: characteristic temperature

High temperature dependence of Jth of InGaAsP Laser

- Heterobarrier leakage
- Auger Recombination
- •Intervalence band absorption

Measured J_{th} as a fun. Of temperature for a 1.3 um InGaAsP-InP laser

Reference

- G.P. Agrawal and N.k.Dutta, "Long-Wavelength Semiconductor Lasers", Von Nostrand Reinhold Co. Inc., 1986
- http://omm.hut.fi/optics/l_o/2002/luennot/fundamentals_ of_lasers.pdf
- L.A.Coldren, "Diode Lasers and Photonic Integrated Circuits", John Wiley & Sons, Inc,
- Robert F. Pierret, "Advanced Semiconductor Fundamentals"
- Peter S. Zory, "Quantum Well Lasers", Academic Press Inc. 1993

9/1/2003