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Band Structure

In insulators, E, >10eV, empty conduction band
In metals, conduction bands are partly filled or

overlaped with valence bands.

In semicondutors, £ . 1s smaller than that of matals

so that electrons can possiblely jump to conduction band
In dopped semicondutors. There 1s an additional
donner level(n doped) near the bottom of condution

band( E_) or an acceptor level(p doped) near the

valence band(EV ) semiconductor o

filled E,
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Carrier concentration
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Density of states

* ¢(E)Is the number of states per volume in a
small energy range.

The conduction band is: gc( E) —4 % ) ( F— EC)J/Z for E> E,
2m \3/2
The valence band is: gv( E) — 47{ hzl?) ( E/ . E)J/Z forE<E,



Effective density of states
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Fermi Level

* The distribution of electron/holes satisfy Fermi-
Dirac distribution

1

J(E)= | 4 o E-Er)/kT

* Fermi Level can be defined by the occupation
probability of electrons at OK



Example:Density of states, distribution
function and electron density for degenerate
and non-degenerate n-type semiconductor
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Basic Properties of Fermi Level

» Fermi Level is an intrinsic property of the
material, it is sufficient to describe the
carrier occupation function by Fermi Level

* Only the available bands can have
electrons/holes even when the occupy
function f(E) is not zero.

* Intrinsic carrier density is a strong function
of temperature



Intrinsic semiconductor

Boltzmann approximation:
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For intrinsic semiconductor: ny = p,=n,  where n;is the intrinsic carrier density. and
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The non-Boltzmann approx. hole
Concentration
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We have:



Why do we need non-Boltzmann
model

The available situation for Boltzmann
approximation if that that the Fermi level is
far from band edges.

When highly doped, Fermi Levels are very
near band edges.

Most laser devices are highly doped.

The 3-D integration is a hard work. That is
the challenge of using Fermi-Dirac Model.






Doped semiconductor (extrinsic)

Introducing dopant will shift
the Fermi level but the Fermi-
Dirac distribution function
remains the same. This is the
characteristics of thermal
equilibrium.
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Still hold.

where n,and p, denote
the electron and hole
density at thermal
equilibrium.
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When we introduce dopant, the neutral dopant atom does not change the overall neutrality of the semiconductor.
Assuming 100% ionization of dopants, charge neutrality requires that: n, + N ; = P, -+ N;;

where N , and N; are ionized acceptor and donor concentrations, respectively.
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Temperature dependence

Er(I)

http://touch.caltech.edu/courses/EE40%20Web%20Files/Thermoelectric%.20Notes.pdf



Steady state vs. Equilibrium State

 Equilibrium refers to a condition of no
external excitation except for temperature,
and no net motion of charge.

« Steady state refers to a nonequilibrium
condition in which all processes are
constant and are balanced by opposing
process.



Quasi-Fermi level

_ _ EFn B EFi
For convenient, we introduce the concept n=n,+An=n,exp T
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Obviously, when the excess carrier concentration is small compare to the
equilibrium carrier concentration, the quasi-Fermi level must be very close
to the Fermi level. Otherwise it will be far from Fermi Level

For device operation, we often use a low-level injection condition, meaning
that while the minority carrier concentration is changed, the majority carrier
concentration remain un-affected. Thus the quasi-Fermi level of the majority
carrier is the same as the Fermi level.
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