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Analysis of Grating-Assisted Directional
Couplers Using the Floquet–Bloch Theory

Nai-Hsiang Sun,Member, IEEE,Jerome K. Butler, Gary A. Evans, Lily Pang, and Phil Congdon

Abstract—The Floquet–Bloch theory is used to develop a
theory for grating-assisted directional couplers which predicts
the coupled power and coupling lengths and is applicable to
lossy waveguides. This theory views grating-assisted directional
couplers as conceptually similar to conventional synchronous
(nongrating) couplers. In the Floquet–Bloch analysis of the direc-
tional coupler, it is necessary to include both proper and improper
space harmonics. The determination of which space harmonics
are improper is critical to the understanding of the coupler
performance. The choice of the improper space harmonics used
for the analysis of the coupler is different from that used in
contemporary papers.

I. INTRODUCTION

W HEN two identical dielectric waveguides are in close
proximity, the composite structure has characteristic

modes whose shapes can be approximated from the field
shapes of the characteristic modes of the individual waveg-
uides. Accordingly, the modes of the composite structure
have power distributions that are predominantly confined to
the two “individual” waveguides. Depending upon the nature
of excitation of the composite modes, the total power that
propagates along the waveguide will be partitioned among
the modes. Since the modes propagate at different velocities,
the lateral profile of the power distribution will vary along
the propagation direction, thus causing a shifting of power
from one region to another (or from “one waveguide to
another”) [1], [2]. The waveguide configuration is known as
a directional coupler, and such components are important in
many opto-electronic systems [3]. For some applications, such
as frequency filters, two nonidentical waveguides with modes
which are in synchronism are designed to achieve power
transfer over a narrow frequency range [4]. In this case, the two
synchronous modes indicate that the two isolated slabs have
the same propagation constants of the fundamental mode.

If two nonidentical waveguides in close proximity are not
synchronous, a periodic grating structure located between the
two waveguides can lead to power transfer between the waveg-
uides. The combination of these two “subwaveguides” and the
grating is called a grating-assisted directional coupler (GADC)
and can be viewed as a single, composite waveguide. These
couplers are important elements for many optical applications
such as input–output couplers [5], [6], optical wavelength
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filters [7]–[10], and wavelength multiplexing devices [11],
[12].

Coupled mode theory (CMT) is widely used to analyze
grating-assisted directional couplers [13]–[19]. In addition to
CMT, a transfer matrix method (TMM) approach uses a
mode-matching technique to determine power coupling and
scattering in a GADC [20]. However, both the coupled mode
theory and the transfer matrix method are based on the
assumption that the interacting modes are mutually orthogonal.
These approaches give accurate results when the periodic
perturbation is weak and the coupled subwaveguides are
almost identical (i.e., very similar index profiles and guiding
layer thicknesses). On the other hand, the CMT and TMM
approach will be less accurate if the grating perturbation is
strong, and/or one or more layers of the structure are lossy.
Also, the CMT and TMM approaches are inaccurate if one of
the modes is leaky.

Recently, investigations of the GADC structure based on
a hybrid combination of coupled mode and Floquet–Bloch
theory have been discussed [21]–[25]. However, the inclusion
of coupled mode theory in these hybrid models limits the
applicability and accuracy.

In this paper, we present an accurate approach to the GADC
problem based solely on the Floquet–Bloch theory which has
been previously used [26]–[30] for the analysis of single mode
waveguides with gratings. According to the Floquet–Bloch
theory, if a plane wave propagates in an infinite unbounded
periodic medium, the complete field pattern should consist
of an infinite number of space harmonics. Fig. 1 shows the

diagram for a typical dielectric waveguide without
diffraction gratings. The two curves in Fig. 1 indicate the
dispersion relations of the zero order mode and the first
order mode, labeled as mode and mode respectively.
When a grating is a part of the dielectric waveguide, an
infinite number of “subdiagrams” are created [31]. Fig. 2
shows two of these subdiagrams for a periodic dielectric
waveguide with a wavevector where is the
grating period. When two space harmonics intersect, strong
coupling will occur and lead to energy transfer between modes.
Note that at the intersection points the amplitudes of the two
harmonics become dominant. Depending on the wavevector

of the grating, two types of coupling, codirectional and
contradirectional, can occur. For codirectional coupling, the
group velocities of the two coupled harmonics are parallel,
whereas the group velocities are antiparallel for contradirec-
tional coupling. Energy is transferred back and forth between
two space harmonics which are propagating in the same

0733–8724/97$10.00 1997 IEEE



2302 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 15, NO. 12, DECEMBER 1997

Fig. 1. ! � � plot for a typical dielectric waveguide. “ModeA” indicates
the zero order mode, and “modeB” is the first-order mode.

Fig. 2. Codirectional interaction between two space harmonics. The top
inset shows the phase matching condition. The bottom inset shows the mode
interaction at resonance.

direction (codirectional coupling, illustrated in Fig. 2) or in
opposite directions (contradirectional coupling).

By using the Floquet–Bloch theory, the dispersion curves of
two coupled modes are calculated in a GADC structure. Fig. 2
illustrates the codirectional coupling of mode and mode

of a composite GADC waveguide. The resonant condition
can be obtained from the dispersion relation (Fig. 2), and the
corresponding grating period satisfies

(1)

where and are real parts of the propagation constants of
the two independent modes. The parameteris thedeviation
wavenumberfrom the nominal resonant condition

A key point of this paper is that the field distributions of
the interacting modes of the GADC waveguide are greatly
modified near resonance compared to the field distributions off
resonance (which more closely resemble the field distributions
of the two modes if the grating was absent from the composite
waveguide). In other words, when the grating is present, the
partition of power into the two waveguide modes may greatly
differ from the power partition in the two modes in the absence
of the grating. This superposition of the two field distributions

Fig. 3. The basic geometry of the multilayer grating waveguide.

at the input of a directional coupler is the basic concept used
to explain synchronous couplers [4] (which do not require a
grating to obtain complete power transfer).

The optical distribution at the input of one of the “sub-
waveguides” may be written as a linear combination of these
greatly modified field distributions. From the longitudinal
dependence of these two (greatly modified) field distributions,
we can obtain the power distribution in the two subwaveguides
and hence the distance (the coupling length) over which max-
imum power is exchanged between the two subwaveguides.
If there are no losses, the approximate expression for the
coupling length is given by

(2)

Surprisingly, the coupling length formula (2) is similar to that
of conventional (nongrating) synchronous couplers [4].

In Section II a brief derivation of the Floquet–Bloch theory
is presented. The branch choices for each space harmonic are
discussed in Section III. In Section IV, the analysis of the
conventional directional coupler without gratings is reviewed,
and in Section V, the field distributions for GADC waveguides
near resonance are developed. The coupling length formula is
derived in Section VI. In Section VII, we discuss the accuracy
of truncating the infinite number of space harmonics.

II. PROBLEM FORMULATION

The Floquet–Bloch theory used in this study is based on the
paper reported by Changet al. [28]. In this section we gen-
eralize the Floquet–Bloch approach to composite waveguides
with an arbitrary number of layers.

We begin by considering a dielectric waveguide structure
with multiple layers and with a grating region as shown in
Fig. 3. The superstrate (layer 1) and substrate (layer) regions
are assumed to be half spaces. Layeris the grating layer with
the grating period is the interface between theth and

th layer in the -direction, and is the thickness of the
th layer. For the sake of simplicity it is assumed that the field

is invariant with respect to. The dielectric materials in each
layer of Fig. 3 are isotropic and homogeneous. With a time
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dependence of the form being implied, the field in
each layer satisfies the scalar Helmholtz equation

(3)

where is the field component ( for TE modes,
and for TM modes), is the free space
wavenumber, is the dielectric constant, and designates
the layer . The two-dimensional wave function is
required to appear in the Floquet–Bloch form to satisfy the
periodic condition. Since the field is assumed to propagate in
the -direction, the solution of the differential equation (3)
becomes

(4)

where

(5)

Here is the grating wavenumber, is the space
harmonic order, and indicates theth layer. The value is
the complex propagation constant of theth spatial harmonic.
The real part of is the phase constant of theth space
harmonic, and the imaginary part of is the
attenuation constant due to the leakage of the guided-wave
energy into the substrate and the superstrate regions.

A. Field Solutions Outside the Grating Region

In the uniform layers above and below the grating, we can
use the transfer matrix method to solve (3). The 2-D Helmholtz
equation can be converted into the 1-D differential equation

(6)

The complex transverse wavenumber is written as and is
defined by

(7)

or

(8)

so (6) becomes

(9)

The solutions of (9) are given by

(10)
where and are amplitude coefficients. Note that the
transverse wave is considered to propagate away from the
structure in the semi-infinite layers. Hence, is zero in the
superstrate layer and is zero in the substrate layer. The
signs of the transverse wavenumbers in the superstrate and
substrate layer, and must be carefully chosen in
order to obtain physically meaningful solutions as discussed
in Section III.

In solving the electromagnetic problem, the boundary con-
dition should be applied to each interface of the structure.
Consider only the boundary condition outside the grating
layer. The field components and must be
continuous at the boundary where but

and . In addition, the normal derivative field
components: and for TE modes,
and and for TM
modes, must also be continuous at the boundaries. We define

and to be the amplitude coefficient vectors of
layer and layer with the th space harmonic. They
are expressed as

At the boundary the relationship between and

is

(11)

where and are 2 2 transfer matrices shown at
the bottom of the page.

According to (11), coefficients in layer can be substituted
by those in either layer or layer Consider

For TE

For TM

For TE

For TM
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the boundary above the grating layer. The coefficient of layer
with the th space harmonic becomes

(12)

where is the two by two

transfer matrix between and . Because is zero,

can be expressed as

(13)

where and are the matrix elements of . A similar
relationship between and can be found by the
same procedure. For the boundary below the grating layer,
the coefficient of layer with the th space harmonic
becomes

(14)

where . From (10), is zero,

so elements of can be replaced by :

(15)

B. Field Solutions Inside the Grating Region

Although the grating can be (and usually is) a periodic
boundary between two distinct layers, we always consider the
region defined by the height of the grating to be a separate
layer (or region) of the composite waveguide. Inside the
grating region, the solution provides most of the interesting
features of the present problem because dielectric constants are
nonuniform and vary periodically. Although the corresponding
field of the grating region still satisfies the Helmholtz equation,
we now have to account for a periodic permittivity which can
be written in terms of the Fourier series as

(16a)

(16b)

For the grating structure, the problem is addressed by
solving the equivalent Maxwell’s equations instead of the
Helmholtz equation

(17a)

(17b)

where for TE, for TM, and for TE,
for TM. and are expressed as

(18a)

(18b)

Note that the fields and in (18) are coupled
together with their spatial harmonics. Therefore, when we
substitute (18) into (17), the fields inside the grating region
become

(19a)

(19b)

where is the propagation constant of the zeroth spatial
harmonics. The vectors and are formed by the field
of spatial harmonics and , respectively, and
are written

...

...

(20a)

...

...

(20b)

Note that the vectors and consist of
space harmonic components, and and are
matrices with elements

for TE

for TM
(21)

for TE
for TM

(22)

where is the propagation constant for theth space
harmonic, and is the th term in (16),
and is the Kronecker’s delta function when

and when . Equation (19) consists of
two systems of first-order linear constant coefficient ordinary
differential equations. We can reduce (19) into one system of
first-order linear ordinary differential equations as follows:

(23)

where

(24)
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is a square matrix. In this paper, (23) is solved by the
fourth-order Runge–Kutta method (RKM) [32], instead of the
Adams–Moulton method (AMM) used in [28], because the
RKM is faster and more stable than the AMM. The numerical
solution of (23) gives the field values within the grating region
in terms of the field values at the grating boundary. Since

is the initial value of the field in the grating layer,
and at can be written as

(25a)

(25b)

where and are l l matrices given by the
Runge–Kutta method (see Appendix).

C. The Characteristic Equation

The characteristic equation (which will provide the disper-
sion relation) of the GADC structure is obtained by matching
the boundary conditions at both grating layer interfaces.

First, we obtain the field distributions in the layers imme-
diately adjacent to the grating layers, layer and layer

. Inserting (13) into (10) relates the field distribution
of the th spatial harmonic in the layer to the field
amplitudes in the superstrate

(26)

Similarly, by substituting (15) into (10), the field distribution
of the th spatial harmonic in layer is related to the
field amplitudes in the substrate

(27)

Matching (18)–(26) at results (after some calcula-
tion) in the boundary condition

(28)

where and are square matrices, and their
sizes depend on the number of spatial harmonics. The elements
of matrices and are expressed as

for TE
for TM

(29)

(30)

where and indicate the th and th space harmon-
ics of the series, and the spatial harmonics are truncated
from to and
Note that is valid for both TE and TM
modes. and are elements of ma-
trix [see (11)].

Similarly, matching (18)–(27) at results in the
boundary condition

(31)

The elements of matrices has the same expressions as
(29), and the elements of are

(32)

where and are elements of matrix
[see (11)]. Combining (25), (28), and (31), we obtain

the characteristic equation [28]

(33)

where
is a matrix, is the initial value of the field in
the grating layer, and the unknown variable is the complex
propagation constant. The system of linear equations will have
a nontrivial solution when the determinant of matrix
is equal to zero. The solutions of the determinant equation

(34)

will give the propagation constants for the modes of the
structure. The complex roots can be found by Muller’s
method. The Floquet amplitudes for the field distribution in
all the uniform regions can subsequently be evaluated from
(33).

III. B RANCH CHOICES FORTRANSVERSEWAVEVECTORS

Choosing the correct signs in (8) is critical in obtaining the
correct complex roots of the determinant (34), since the sign
choice determines whether the field distribution of theth
spatial harmonic will be proper or improper. We introduce a
modified rule for general periodic waveguides to supplement
the conventional rule [31], [33] that applies to choosing branch
cuts in lossless periodic waveguides.

The conventional rule requires that the loci of in the
complex plane must be traced continuously to produce smooth
curves as a function of a defined physical parameter. Assuming
that lossless materials are in the semi-infinite regions of the
superstrate and substrate we only need
to determine the signs of the two transverse space harmonic
propagation constants, and in the superstrate and
substrate. Since and are double-valued functions
of different solutions exist corresponding to the choice
of sign in (8). For the superstrate, the choice for has
previously been prescribed by requiring that all the positive
spatial harmonics in the field represent proper waves,
i.e.

(35)

In cases where the space harmonics are negative
corresponded to proper waves if is negative

Im if Re for (36a)
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(a)

(b)

Fig. 4. (a) The index profile of a symmetric four-layer dielectric waveguide.
The grating layer is shaded. According to the conventional rule, then = �1

to �i harmonics are improper waves. (b) The index profile of a symmetric
four-layer dielectric waveguide. The grating layer is shaded. According to
our modification of the conventional rule, then = �j to �i harmonics are
improper waves.

and to improper waves if is positive [34]

Im if Re for (36a)

This rule is also applied to the choice of the branch cuts in
the substrate region.

In lossless materials around the second Bragg, the above rule
presents accurate results [26], [28]–[29], [34]. However, when

is much less than one, we show that this rule needs to be
modified, by considering a simple four-layer lossless dielectric
waveguide which includes a grating layer. The index profile
is shown in Fig. 4 where the uniform layers have refractive
indexes of and We define the smallest positive
effective index to be theth harmonic (i.e., and

and the effective index of the th harmonic
to be just less than (i.e.,
Fig. 4(a) shows that, according to the conventional rule, the
harmonics of to correspond to improper waves.
However, as shown in Fig. 4(b), the to

(a)

(b)

Fig. 5. (a) The arrows on the solid lines indicate the locus of� chosen by
the conventional rule (36) as a function of wavenumberk0: (b) The arrows
on the solid lines(k0<P2) and dotted lines(k0>P2) indicate the locus of
� chosen by the modified rule as a function of wavenumberk0:

harmonics should represent proper waves because their
effective indices are above the index of the substrate. This
observation suggests that the proper or improper property of
each space harmonic should not be related to the sign of the
space harmonic but should correspond to the location of the
effective index. If the effective index of a space harmonic is
greater than , it represents a proper mode even thoughis
negative. Thus, our modification to the conventional rule states
that the to harmonics should be chosen as
proper waves.

The value of the propagation constant should vary contin-
uously with the free space wavenumber Fig. 5(a) shows
an example of the attenuation constantas a function of
Assume that the effective index of the space harmonic
is equal to when is equal to The
locus of chosen by the conventional rule (36) is shown in
Fig. 5(a). In this case the harmonic represents the
improper wave whether is greater than or less than
However, as shown in Fig. 5(a), according to the modified
rule, the space harmonic should change from an improper
wave to a proper wave at as varies from to
to

Unfortunately, from Fig. 5(a), a discontinuity of the locus
of the attenuation occurs at Although our first
modification to the conventional rule correctly chooses the
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(a)

(b)

Fig. 6. The components of (a) modeA and (b) modeB for TE modes. The index profile is also shown. The parameters are listed in Table I.

branches, we now have a discontinuity of the propagation
constant at To resolve the discontinuity problem,
we notice that both the improper and proper space
harmonics have almost identical values of when
is greater than More importantly, the point
corresponds to a double root of the propagation constant.
Hence, we further modify the conventional rule to require a
branch change of the th harmonic at This choice
for the branch change is consistent with having the loci of the
propagation constant continuous asis varied, as shown in
Fig. 5(b). In practice, the region is very narrow
and can often be ignored.

IV. NONGRATING DIRECTIONAL COUPLERS

The conventional (nongrating) directional coupler used in
integrated optics consists of two synchronous subwaveguides.
There are always two lowest order solutions of the composite
waveguide with propagation constants and . For TE
polarization, the components of the two modes have even
and odd symmetry. Thus, the two modes can be added so that
their fields nearly cancel in one subwaveguide at the input
end of the coupler. However, in the other subwaveguide, the
two fields reinforce each other, representing light confined
one subwaveguide. Since the zero order mode and the first
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TABLE I
PARAMETERS FOR A DIRECTIONAL COUPLER

WITH TWO NONIDENTICAL SUBWAVEGUIDES [14]

order mode have slightly different propagation constants, their
relative phases will reverse at a distance At
this point, the two fields reinforce each other in the opposite
subwaveguide and the light has been totally coupled to the
other subwaveguide.

Assume now that the (nongrating) directional coupler is
made of two nonidentical subwaveguides with propagation
constants of the fundamental mode for each subwaveguide
given by and Complete power exchange between the
two subwaveguides occurs when the fundamental modes of
the two separate subwaveguides have the same propagation
constants If the modes of the composite structure
of this directional coupler are calculated, the two lowest
order modes of the directional coupler have slightly different
propagation constants with the coupling length of

[4].
If the fundamental modes of the two isolated subwaveg-

uides have significantly different propagation constants
very little power will be exchanged between the two

subwaveguides. Table I shows a structure consisting of two
nonidentical subwaveguides (without a grating), which is
discussed by Marcuse [14]. The composite structure of this
directional coupler has different propagation constants

. The components of the two lowest order modes
(modes and ) for the TE modes are shown in Fig. 6. Note
that the field patterns of modes and are confined mainly
to either subwaveguide or subwaveguide . Although the
input distribution of one subwaveguide can be approximated
as a linear superposition of the field distribution of the two
lowest order composite modes, only one mode receives a
significant portion of the input power. (This is in contrast
to synchronous couplers where each composite mode has
nearly equal power distribution in each subwaveguide.) In
short, an effective directional coupler can be made only if
the input power is distributed nearly equally among the two
modes.

V. GRATING-ASSISTEDDIRECTIONAL COUPLERS

Significant power exchange can occur between two non-
synchronous subwaveguides which have different propagation
constants if a diffraction grating is incorporated in the in-
termediate region between the two waveguides. This struc-
ture, called a grating-assisted directional coupler (GADC) and
shown in Fig. 7, is made of two nonidentical waveguides,
referred to as “subwaveguide” and “subwaveguide ” and
a grating layer. By using the Floquet–Bloch theory discussed

Fig. 7. Sketch of a grating-assisted directional coupler.

TABLE II
PARAMETERS FOR A GRATING-ASSISTED DIRECTIONAL

COUPLER WITH TWO NONIDENTICAL SUBWAVEGUIDES [14]

Fig. 8. The index profile of the grating-assisted directional coupler described
in Table II and shown in Fig. 7. The two dashed lines correspond to the
effective index of modeA (�3:30) and modeB (�3:19):

in Section II, rigorous solutions of the propagation constants
and the complete field distributions for the GADC structure
are found.

Consider the GADC structure analyzed by Marcuse [14].
The refractive index and the thickness of each layer are shown
in Table II and Fig. 8. The vacuum wavelength is 1.5m. The
dotted lines in Fig. 8 indicate the effective indices of the two
lowest TE modes (labeled modeand mode ) of the GADC
structure. By conventional coupled mode theory, a complete
exchange of optical energy between the two slabs occurs if
the difference between the effective indices of the modes that
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(a)

(b)

Fig. 9. The normalized (a) real part and (b) imaginary part of the propagation constants for modesA andB as a function of the grating period. The
insets in (a) show the field distributions of modeA and modeB at and near resonance.

are to be coupled satisfies the relationship [3]

(37)

where is the length of one period of the grating, is the
wavelength, and and are the effective indices of modes

and when the grating is absent. Since and are
calculated without a grating, (37) is an approximate formula
for the grating period.

We can obtain exact values for and by including the
grating layer and using the Floquet–Block theory. Dispersion
curves of the two modes of the GADC structure are found as
a function of the grating period. Fig. 9 shows the normalized
propagation constants of modesand as a function of the
grating period where Fig. 9(a) and (b) correspond to the real
and the imaginary parts of the propagation constants, respec-
tively. In the vicinity of resonance, the two curves in Fig. 9(a)
do not intersect. According to the analysis of the nongrating
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directional coupler [4], the magnitudes of the two modes are
nearly identical at resonance. Similarly, the resonant condition
of a GADC structure can be determined by examining the total
field distributions of the two modes. The field distributions of
mode and mode [Fig. 9(a)] have large intensities in both
subwaveguides when the difference between the real parts of
the longitudinal propagation constants
is minimized, in which case the coupling between the two
subwaveguides is maximum. For this GADC structure excited
with radiation with a free space wavelength of 1.5m,
the resonant condition corresponds to a grating period of
14.05 m.

Because of the grating, the modes of the GADC structure
are expanded in an infinite number of space harmonics.
Fig. 10(a) and (b) show the spatial harmonics for mode
and mode at the resonant condition where the grating
period is 14.05 m. The duty cycle is 50% for the GADC
structure in this paper. There are two space harmonics for
these modes which have significant amplitudes. For mode
the and harmonics are dominant while the other
space harmonics are negligible. For mode the
and harmonics are dominant, while the other harmonics
are negligible. Note that the harmonic of mode
and the harmonic of mode have similar field
distributions which are both similar to the zero order mode
of the structure without a grating in Fig. 6(a). Similarly, the

harmonic of mode and the harmonic of
mode also have similar field distributions which are both
similar to the first order mode of the structure without a
grating in Fig. 6(b). The complete field pattern is obtained
by the summation of all space harmonics. Fig. 11(a) and
(b) show the total field distributions of modes and .
We obtain the “in-phase” (no zero-crossings of the electric
field distribution between the subwaveguides) solution for
mode and the “out-of-phase” (a single zero-crossing of the
electric field distribution between the subwaveguides) solution
for mode Moreover, in subwaveguide the field of
mode has almost the same amplitude but a different sign
as the field of mode , while both modes have the same
amplitudes in subwaveguide . This means that these two
modes can be superimposed so that their fields nearly cancel in
subwaveguide with most of the intensity in subwaveguide

at the input end of the coupler. Since both modes have
negligible amplitude attenuations and [see Fig. 9(b)],
their relative phases will reverse at a distance which is called
the coupling length At this point the sum of the two
modes superimpose so that most of the intensity is now in
subwaveguide

Fig. 12(a) shows that the two modes are superimposed
to yield an initial excitation in subwaveguide . At the
coupling length mm, the power has been coupled
over to subwaveguide as shown in Fig. 12(b). This result
is in good agreement (10%) with that reported in [14].
Because both field distributions of modesand have some
nonzero amplitude in the other subwaveguide, complete power
exchange cannot be achieved. After traversing the coupling
length distance, a small amount of residual energy will still
exist in the input subwaveguide.

(a)

(b)

Fig. 10. The real part of the amplitudes of the space harmonics for (a) mode
A and (b) modeB.

The powers in subwaveguides and are estimated by
[35]

Re

and

Re

for the TE mode. Fig. 13(a) shows the output powers through
subwaveguides and as a function of the propagation
distance at the resonant condition m

m . At the input, most of the power is excited in
subwaveguide and at a distance of 1.168 mm, a maximum
of 92% of the power has transferred to subwaveguide. The
fine oscillations in Fig. 13 have a period equal to that of
the grating [18]. If the grating period is not at the resonant
condition, both the power coupling and the coupling length
will decrease. Fig. 13(b) shows the ratios of the power in
subwaveguides and versus the propagation distance
for a grating period of 14 m. In this case, a maximum of
78% of the total power transfers from subwaveguideto
subwaveguide in a distance of 0.749 mm. When the grating
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(a)

(b)

Fig. 11. The real part of the total field distributions for (a) modeA and
(b) modeB.

period is reduced by 0.35%, the coupling length decreases by
36% and the coupled power is reduced by 14%.

Fig. 14 shows the dispersion and attenuation diagrams of
the GADC structure as described in Table II. The minimum
difference of and occurs at the wavelength of 1.5m
(for a grating period of 14.05 m) while the attenuations of
the two modes are different but negligible. Fig. 15 shows the
guided power in subwaveguidesand as a function of the
propagation distance away from resonance m .
The 0.3% change in wavelength reduces the coupling length
by 22% and the coupling power by 38%.

VI. THE COUPLING LENGTH FORMULA

This analysis of GADC structures is similar to that of
nongrating couplers [4] in that (1) at resonance, the field
distribution of the in-phase and out-of-phase modes both have
significant power in each subwaveguides and (2) the input
(or any) field distribution of the coupler is a superposition
of the in-phase and out-of-phase modes of the structure. Just
as an expression for the coupling length of conventional
(nongrating) couplers can be simply derived from the two
properties above, we can derive a similar formula for the
coupling length of a GADC structure:

(a)

(b)

Fig. 12. The magnitude of the sum of the field distributions of modesA and
B. The propagation distances are (a)z = 0 mm and (b)z = 1:168 mm.

From Fig. 10, only two space harmonics of modesor
are dominant at the resonant condition, while the others are
negligible. While the total field is expressed as

the field distributions of modes and can be approximated
as

(38)

and

(39)

where

layer 1
...

layer
...

layer .

Since the harmonic of mode is similar to the
harmonic of mode and the harmonic of mode
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(a)

(b)

Fig. 13. The approximate power distributions in subwaveguidesA andB
as a function of the propagation distance with a grating period of (a) 14.05
�m and (b) 14.00�m and a wavelength of 1.5�m.

is similar to the harmonic of mode , we can make
the approximation

(40a)

(40b)

From we have

(41)

After substituting (41) into (39) and assuming

(42)

we find

(43)

Superimposing and at the input end the
amplitude of the sum is written as

(44)

(a)

(b)

Fig. 14. (a) Dispersion and (b) attenuation diagrams for modesA andB.

Fig. 15. Approximate power distributions in subwaveguidesA andB as a
function of the propagation distance with a grating period of 14.05�m and
a wavelength of 1.505�m.

When the propagation distanceis equal to

(45)
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reverses its phase, and the amplitude of the superposition
of and becomes

(46)

has a field distribution that is predominately concentrated
in subwaveguide , while has a field distribution that
is predominately confined to subwaveguide. Accordingly,
maximum power is shifted from subwaveguide to sub-
waveguide in a length .

When the two modes have almost equal attenuation [see
(42)], (45) can estimate the coupling length without computing
the power distribution along the propagation distance. For the
GADC structure shown in Table II, the estimated coupling
length from (45) is 1.208 mm. Compared with the result
plotted in Fig. 13(a), the relative error is about 3.3%.

VII. T HE TRUNCATION ACCURACY

In practice, the infinite number of space harmonics must
be truncated. Since the leaky space harmonics in the periodic
dielectric waveguide determine the attenuation of the mode,
it is important to consider them and develop a procedure for
determining the significant harmonics.

By varying the positive and negative space harmonics, we
can examine the accuracy of the propagation constants. For
the real part of the propagation constants, the relative errors
are less than 107 if seven space harmonics ( to )
are used. The imaginary parts of the propagation constants
are sensitive to the negative harmonics because these negative
harmonics represent leaky waves which produce radiation loss.

From the dispersion curve in Fig. 14(a), almost 59 negative
harmonics are leaky. However, we find that using the
to space harmonics results in a computational error of less
than 6% for the attenuation. Therefore, 12 space harmonics
were used in all the numerical calculations for this paper.

VIII. C ONCLUSION

In this paper we used a complete Floquet–Bloch solution
to analyze grating-assisted directional couplers. We show
that the presence of the grating greatly alters the modes
of the composite structure near resonance so that the “in-
phase” and “out-of-phase” modes have similar amplitudes in
both subwaveguide regions. As a result, the grating-assisted
coupling process is conceptually similar to that found in
conventional (nongrating) couplers. If the attenuation of both
modes is similar, a simple formula describes the coupling
length.

We also present a modification of the conventional rule for
choosing branch cuts that gives a physically consistent choice
for proper and improper space harmonics, yet maintains the
continuity of the propagation constant as is continuously
varied.

The analysis developed in this paper agrees with the results
of previously published grating-assisted directional couplers
analyzed by coupled mode theory. However, this more general
approach can be applied to composite waveguides where one
of the modes is leaky, and/or where the two modes have
significantly different attenuation.

APPENDIX

A system of first-order differential equations representing
Maxwell’s equations is written in vector form

(A1)

where the square matrix

(A2)

is formed from the two matrices and [see (21)
and (22)]. If we assume that layeris the grating layer, the
interfaces of the grating layer are at and
We define the vector [see (20)] as

(A3)

By applying the boundary condition [see (28)] at
can be found from so that

can be expressed as

(A4)

where

(A5)

and . Substituting
(A3) into (A1), we obtain

(A6)

By using the Runge–Kutta method, the grating region is
divided into intervals with a step size of where
is the thickness of the grating layer. The classical fourth-order
Runge–Kutta method produces

(A7)

(A8)

(A9)

(A10)

and

(A11)

for each Since the initial value of is set at
and is written as

(A12)
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can be expressed as

(A13)

Substituting (A4) into (A13), we obtain

(A14)

Since and are given by

(A15)

and can be rewritten as

(A16a)

(A16b)

where and are given by

(A17a)

(A17b)

REFERENCES

[1] A. Hardy and W. Streifer, “Coupled mode theory of parallel waveg-
uides,” J. Lightwave Technol., vol. LT-3, pp. 1135–1146, Oct. 1985.

[2] E. Marcatili, “Improved coupled-mode equations for dielectric guides,”
IEEE J. Quantum Electron., vol. QE-22, pp. 988–993, 1986.

[3] R. G. Hunsperger,Integrated Optics: Theory and Technology, 2nd ed.
Berlin, Germany: Springer-Verlag, 1984.

[4] D. Marcuse, “Directional couplers made of nonidentical asymmetric
slabs. Part I: Synchronous couplers,”J. Lightwave Technol., vol. LT-5,
pp. 113–118, Jan. 1987.

[5] T. L. Koch, E. G. Burkhardt, F. G. Storz, T. J. Bridges, and T. Sizer,
II, “Vertically grating-coupled ARROW structures for III-V integrated
optics,” IEEE J. Quantum Electron., vol. QE-23, pp. 889–897, June
1987.

[6] T. L. Koch, P. J. Corvini, W. T. Tsang, U. Koren, and B. I.
Miller, “Wavelength selective interlayer directionally grating-coupled
InP/InGaAsP waveguide photodetection,”Appl. Phys. Lett., vol. 51, no.
14, pp. 1060–1062, 1987.

[7] L. L. Buhl, R. C. Alferness, U. Koren, B. I. Miller, M. G. Young,
T. L. Koch, C. A. Burrus and G. Raybon, “Grating assisted vertical
coupler/filter for extended tuning range,”Electron. Lett., vol. 29, no. 1,
pp. 81–82, Jan. 1993.

[8] H. Sakata and S. Takeuchi, “Grating-assisted coupler filters using
AlGaAs/GaAs MQW waveguides,”IEEE Photon. Technol. Lett., vol.
3, pp. 899–901, Oct. 1991.

[9] R. C. Alferness, L. L. Buhl, U. Koren, B. I. Miller, M. G. Young, T.
L. Koch, C. A. Burrus and G. Raybon, “Broadly tunable InGaAsP/InP

buried rib waveguide vertical coupler filter,”Appl. Phys. Lett., vol. 60,
no. 8, pp. 980–982, 1992.

[10] C. Cremer, G. Heise, R. Marz, H. Riechert, and M. Schienle, “InGaAsP
Y -branch grating demultiplexer,”Electron. Lett., vol. 23, no. 7, pp.
321–322, 1987.

[11] J. M. Senior and S. D. Cusworth, “Devices for wavelength multiplexing
and demultiplexing,”Inst. Elec. Eng. Proc., vol. 136, Pt. J, no. 3, pp.
183–202, 1989.

[12] G. R. Hill, “Wavelength domain optical network techniques,” inProc.
IEEE, vol. 77, pp. 121–132, 1989.

[13] D. Marcuse, “Directional couplers made of nonidentical asymmetrical
slabs. Part II: Grating- assisted couplers,”J. Lightwave Technol., vol.
LT-5, pp. 268–273, Feb. 1987.

[14] , “Radiation loss of grating-assisted directional coupler,”IEEE J.
Quantum Electron., vol. QE-26, pp. 675–684, Apr. 1990.

[15] , Theory of Dielectric Optical Waveguides, 2nd ed. New York:
Academic, 1991.

[16] W. P. Huang and H. A. Haus, “Power exchange in grating-
assisted couplers,”J. Lightwave Technol., vol. 7, pp. 920–924, June
1989.

[17] H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-
mode theory of optical waveguides,”J. Lightwave Technol., vol. LT-5,
pp. 16–23, 1987.

[18] W. P. Huang, B. E. Little, and S. K. Chaudhuri, “A new approach to
grating-assisted couplers,”J. Lightwave Technol., vol. 9, pp. 721–727,
June 1991.

[19] W. P. Huang and J. W. Y. Lit, “Nonorthogonal coupled-mode theory
of grating-assisted codirectional couplers,”J. Lightwave Technol., vol.
9, pp. 845–852, July 1991.

[20] W. P. Huang and J. Hong, “A transfer matrix approach based on local
normal modes for coupled waveguides with periodic perturbations,”J.
Lightwave Technol., vol. 10, pp. 1367–1375, Oct. 1992.

[21] W. P. Huang, J. Hong, and Z. M. Mao, “Improved coupled-mode
formulation based on composite modes for parallel grating-assisted
co-directional couplers,”IEEE J. Quantum Electron., vol. QE-29, pp.
2805–2812, Nov. 1993.

[22] B. E. Little, W. P. Huang, and S. K. Chaudhuri, “A multiple-scale
analysis of grating-assisted couplers,”J. Lightwave Technol., vol. 9, pp.
1254–1263, Oct. 1991.

[23] B. E. Little and H. A. Haus, “A variational coupled-mode theory for
periodic waveguides,”IEEE J. Quantum Electron., vol. QE-31, pp.
2258–2264, 1995.

[24] B. E. Little, “A variational coupled-mode theory including radiation
loss for grating-assisted couplers,”J. Lightwave Technol., vol. 14, pp.
188–195, Feb. 1996.

[25] V. M. N. Passaro and M. N. Aremise, “Analysis of radiation loss in
grating-assisted codirectional couplers,”IEEE J. Quantum Electron., to
be published.

[26] S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric
waveguides,”IEEE Trans. Microwave Theory Tech., vol. MTT-23, pp.
123–133, Jan. 1975.

[27] W. Streifer, D. R. Scifres, and R. D. Burnham, “Analysis of grating-
coupled radiation in GaAs:GaAlAs lasers and waveguides,”IEEE J.
Quantum Electron., vol. 12, pp. 422–428, July 1976.

[28] K. C. Chang, V. Shah, and T. Tamir, “Scattering and guiding of waves
by dielectric gratings with arbitrary profiles,”J. Opt. Soc. Amer., vol.
70, no. 7, pp. 804–813, July 1980.

[29] G. Hadjicostas, J. K. Butler, G. A. Evans, N. W. Carlson, and R.
Amantea, “A numerical investigation of wave interactions in dielectric
waveguides with periodic surface corrugations,”IEEE J. Quantum
Electron., vol. 26, pp. 893–902, May 1990.

[30] J. K. Butler, W. E. Ferguson, Jr., Gary A. Evans, and P. J. Stabile, “A
boundary element technique applied to the analysis of waveguides with
periodic surface corrugations,”IEEE J. Quantum Electron., vol. 28, pp.
1701–1709, July 1992.

[31] R. E. Collin and F. J. Zucker, Eds.,Antenna Theory, vol. 2. New York:
McGraw-Hill, 1969, sec. 19.10, p. 203.

[32] R. L. Burden and J. D. Faires,Numerical Analysis, 4th ed. Boston,
MA: PWS-KENT, 1984.

[33] J. Jacobsen, “Analytical, numerical, and experimental investigation of
guided waves on a periodically strip-loaded dielectric slab,”IEEE Trans.
Antennas Propagat., vol. AP-18, pp. 370–387, May 1970.

[34] M. Matsumoto, M. Tsutsumi, and N. Kumagai, “Bragg reflection charac-
teristics of millimeter waves in a periodically plasma-induced semicon-
ductor waveguide,”IEEE Trans. Microwave Theory Tech., vol. MTT-34,
pp. 406–411, Apr. 1986.

[35] W. P. Huang, “Coupled-mode theory for optical waveguides: an
overview,” J. Opt. Soc. Amer. A, vol. 11, no. 3 ,pp. 963–983, Mar. 1994.



SUN et al.: DIRECTIONAL COUPLERS USING THE FLOQUET–BLOCH THEORY 2315

Nai-Hsiang Sun (S’93–M’97) was born in Tainan, Taiwan, R.O.C., in 1962.
He received the B.S. degree in electronic engineering from Chung Yuan
Christian University, Chungli, Taiwan, in 1984, the M.S. degree in electrical
engineering from the National Cheng Kung University, Tainan, Taiwan, in
1986, and the Ph.D. degree in electrical engineering from Southern Methodist
University, Dallas, TX, in 1997.

In 1997, he joined the faculty of Electrical Engineering at the I-Shou
University, Kauhsiung, Taiwan, where he is an Assistant Professor. His current
research interest is in the area of photonic integrated wavelength division
multiplexing sources, periodic dielectric waveguides, and numerical modeling
of semiconductor lasers.

Jerome K. Butler was born in Shreveport, LA. He received the B.S.E.E.
degree from Louisiana Polytechnic Institute, Ruston, and the M.S.E.E. and
Ph.D.degrees from the University of Kansas, Lawrence.

He was a Research Assistant and held a CRES Fellowship at the Center
for Research in Engineering Sciences, University of Kansas. He conducted
research concerned with electromagnetic wave propagation and the opti-
mization and synthesis techniques of antenna arrays. He joined the faculty
of the School of Engineering and Applied Science, Southern Methodist
University, Dallas, TX, where he is now a University Distinguished Professor
of Electrical Engineering. His primary research areas are solid-state injection
lasers, radiation and detection studies of lasers, millimeter-wave systems,
integrated optics and the application of integrated optical circuits, and quantum
electronics. In 1977, he was given the Southern Methodist University Sigma
Xi Research Award. In the summers from 1969 to 1990, he was a Staff
Scientist, at the David Sarnoff Research Center (formerly RCA Laboratories),
Princeton, NJ. During the 1996–1997 academic year, he was on sabbatical
leave with the Photonics and Micromachining System Components Laboratory
at Texas Instruments. At present, he holds a consulting appointment with the
Components and Materials Research Center at Texas Instruments, Dallas. He
has also held consulting appointments with the Central Research Laboratory
of Texas Instruments, Inc., the Geotechnical Corporation of Teledyne, Inc.,
Earl Cullum Associates of Dallas, Texas and the University of California Los
Alamos Scientific Laboratory, Los Alamos, NM.

Dr. Butler is a member of Sigma Xi, Tau Beta Pi, and Eta Kappa Nu, and
is a registered Professional Engineer in the State of Texas.

Gary A. Evans was born in Omak, WA. He received the B.S.E.E. degree from
the University of Washington, Seattle, in 1970, and the M.S.E.E. and Ph.D.
degrees in electrical engineering and physics from the California Institute of
Technology, Pasadena, in 1971 and 1975, respectively.

After postdoctoral work at Caltech, he worked for R&D Associates, Marina
Del Rey, CA, and was a Visiting Assistant Professor in the Electrical
Engineering Department at the University of Washington (1977–1979). He
has worked at the Aerospace Corporation, El Segundo, CA, (1979–1981),
TRW, Redondo Beach, CA, (1981–1984), and RCA Laboratories (now
Sarnoff Corporation), Princeton, NJ, (1984–1992). In 1992 he joined Southern
Methodist University, Dallas, TX, as a Professor in the Electrical Engineering
Department. Since 1979, he has primarily worked on the design, growth,
and fabrication of conventional and surface emitting semiconductor lasers,
has over 180 publications, and is a co-editor of the bookSurface Emitting
Semiconductor Lasers(New York: Academic).

Dr. Evans is a licensed professional engineer, has served on numerous
IEEE committees, is a Past-Chairman of the Princeton Lasers and Electro-
Optics Society (LEOS) Section, a past Chairman of the Santa Monica Bay
Section of the IEEE, and from 1990 to 1996, was an Associate Editor of the
IEEE JOURNAL OF QUANTUM ELECTRONICS.

Lily Pang received the B.S. degree in electrical engineering from University
of California at Irvine in 1986. She also received the M.S. and Ph.D. degrees in
electrical engineering from Massachusetts Institute of Technology, Cambridge,
in1989 and 1993, respectively.

She jointed Central Research Laboratories of Texas Instruments, Dallas, in
1993, worked on silica-glass waveguide optical switches. Since 1995, she has
been working on integrated silica-glass waveguide multiplexer coupled WDM
semiconductor lasers, VCSEL’s on Si-CMOS, and high-power efficient visible
lasers.

Phil Congdon, photograph and biography not available at the time of
publication.


