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Abstract—Floquet-Bloch theory is used to calculate the elec- TABLE |
tromagnetic fields in a leaky-mode grating-assisted directional THE PARAMETERS OF GRATING-ASSISTED DIRECTIONAL COUPLERS
coupler (LM-GADC) fabricated with semiconductor and glass UsING TWO SIMILAR  SUBWAVEGUIDES [1]. THE FREE-SPACE
materials. One waveguide is made from semiconductor materials WAVELENGTH IS Ao = 1.55 prm. "SUBWAVEGUIDE A" | NCLUDES
(refractive index =3.2) while the second is made from glass LAYERS 5 AND 6 WHILE "SUBWAVEGUIDE B INCLUDES LAYER 2
(refractive index ~1.45). The coupling of light between the two Layer Thickness(um) | Refractive Index
waveguides is assisted by a grating fabricated at the interface
of the glass and semiconductor materials. Unlike typical GADC 1 Supers‘“ate. o0 3.180
structures where power is exchanged between two waveguides 2 Sub-waveguide B 0.200 3.282
using bound modes, this semiconductor/glass combination couples 3 Cladding 1.450 3.180
power between two waveguides using a bound mode (confined to 4 Grating 0.010 3.180/3.282
the semiconductor) and a leaky mode (associated with the glass). 5 Step 0.450 3.982
The characteristics of the LM-GADC are discussed. S_uch LM- 6 Sub-waveguide A 0.257 3.450
GADC couplers are expected to have numerous applications in 7 Substrat 3180
areas such as laser-fiber coupling, photonic integrated circuits, ubstrate © -

and on-chip optical clock distribution. Analyses indicate that
simple LM-GADC'’s can couple over 40% of the optical power
from one waveguide to another in distances less than 1.25 mm. A GADC consisting of two nonsynchronous waveguides

and a separate grating region is in reality a single, compos-
ite waveguide. However, for clarity, we will refer to two
subwaveguides called “subwaveguide S (semiconductor)” and
. INTRODUCTION “subwaveguide G (glass).” In applications such as the one
HE ability to couple diode laser outputs monolithicallydiscussed in this paper the geometry of the two waveg-
and efficiently to a low loss cointegrated glass opticalides (waveguide dimensions as well as their corresponding
waveguide will enable applications such as large scale ptigfractive indexes) are greatly different. Assuming the two
tonic integrated circuits, on chip optical clock distributions fowaveguides S and G are uncoupled and that each supports only
high-speed microprocessors, and compact wavelength divisosingle mode, the modes of the two individual guides would
multiplexing laser sources. have large differences in their effective indexes. To strongly
In this paper, we present a new architecture of an integrateelple the two waveguides, a grating is designed to phase-
grating-assisted directional coupler (GADC) which is madaatch the longitudinal propagation constants of the individual
of a lll-V waveguide(n.g ~ 3.2) and a phosphorus-dopedwaveguides. In GADC's consisting of two guides with similar
silica glass (PSG) waveguidén.g ~ 1.45). The use of refractive indexes but with different geometrical shapes, the
glass waveguides offers the combination of very low losffective indexes of the individual modes are similar. In the
(«<0.01 dB/cm), silicon process compatibility, and simple, lovatter case, the grating wavenumber, used to phase-match the
cost fabrication processes. In addition, the PSG waveguid@gitudinal propagation constants of the individual modes
can have mode fields that are nearly identical in shape iforather small. Table | shows refractive indexes and layer
the fields of a single-mode fiber. The near perfect match tficknesses of such an extensively studied GADC structure [1].
properly designed PSG waveguide optical fields with those Afthough the two coupled waveguides are not identical, each
an optical fiber produces95% butt coupling between the PSGsupports a bound mode and each is composed of “similar”
waveguide and a single mode optical fiber without externalaterials.
optics. Fig. 1 shows a cross section of a leaky-mode grating-
assisted directional coupler (LM-GADC), which consists of
Manuscript received October 7, 1997; revised March 11, 1998. This woék laser waveguide integrated with a PSG waveguide. The
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Fig. 1. The cross section of an integrated semiconductor-glass waveguide. — - o

The grating is etched into the semiconductor cladding region and the glass
waveguide is deposited over the grating. The grating assists in coupling light ‘ ‘
from the semiconductor subwaveguide to the glass subwaveguide and vice 4 0 1 5 3 4+ 5 &

versa.
Transverse Direction x (umy)

. . . Fig.,2. The refractive index profile of the semiconductor-glass waveguide
semiconductor subwaveguide to the glass subwaveguide iguration. The bottom of the grating is the orgin.

vice versa. In this study, the LM-GADC is excited with a laser

mode, where the optical field is predominantly confined to the _ . . .
semiconductor waveguide, at the LM-GADC input= 0. The matrix method (TMM) approach using the mode-matching

coupling efficiency is computed by calculating the percenta%i;hmque has been introduced to examine the power coupling

of power at the input that is coupled to the glass wavegui ndT rg?'_ﬁ\'ﬂol\r;l ;ossrogiggg hicle?(rfots ttr):gt:r: [ﬁg]o.l tEoGC’i&sl[t)eé
at the outputz = L. In the regionz > L, there will be no P pp

: . ; structures with interacting leaky modes or to structures with
interaction between the two subwaveguides. .
layers that have material losses.

The analysis of. the coupling between the glass and SeMPL har than add corrections to the CMT or TMM ap-
conductor layers is for a slab structure. (The geometry has
S : L ) proaches, we use the Floquet—Bloch theory [16]-[19] to ana-
infinite extensions along the latergldirection.) Accordingly,

: lyze the LM-GADC problem because it accounts for radiation
the results obtained are reasonably accurate for a structgre

. N osses from leaky modes as well as material losses in the
whose transverse mode width-¢lirection) is small compared __ . : :
. A various layers in a straightforward manner. In general, the
to the lateral mode widthyfdirection).

. . X .Floguet—Bloch analysis calculates radiation losses of the LM-
The index profile of the semiconductor-glass LM-GADC '%—:‘A?DUC from fundan)w/elmal priunciples [2|] I

shown in Fig. 2. Unlike typical GADC’S.’ where the POWET 1 sSection II, a brief introduction of the Floquet—Bloch

exchange betwgen the two subwaveguides occurs via bOLHH ory [17] is presented. An example of the typical GADC
Bmdes, the Eemlcoanctor-gl_ass LMb'GASC ezcha?gehs POWE discussed in Section I1l. Then, we analyze the LM-GADC
etween subwaveguides using a bound mode of the se@y,.yre shown in Figs. 1 and 2. The complete field dis-

conductor subwaveguide and a (fundamental) leaky mode,gf, iions and dispersion and attenuation characteristics are
the glass subwaveguide. In Fig. 2 the index of refraction Biscussed in Section IV. In Section V, the power coupling

the core in the glass region is much smaller than the ind?ﬁ‘echanism of the semiconductor-glass LM-GADC is dis-
of refraction of the semiconductor substrate. This high index,cgeq.

mismatch causes the modes of the glass waveguide to leak
energy to the semiconductor substrate. As a result, mode I

propagation in the glass waveguide attenuates due to power . ] . ) ) )
loss to the semiconductor substrate. Consider a dielectric waveguide with arbitrary layers in-

The concept of the grating coupler causing the two lowediluding a peri_odic grating layer. The dielectric superstrat_e and_
order modes of the composite waveguide to have similar powfPstrate regions are assumed to be half spaces. The dielectric
distributions in each subwaveguide was developed in [2] fgyaterials in each layer (except.the.gratmg _Iayer) are isotropic
typical GADC’s. This same concept and the resulting physical'd homogeneous. A wave with time variation of the form
processes for power exchange between the two subwavegufd@g¥Jjwt) is assumed to propagate in thedirection (see
applies directly to LM-GADC's. However in the latter device 19+ 1), a_seXp(_'Vz)" The complex longitudinal propagation
the losses of each subwaveguide can be large and unequalC@&stant isy = a.+ ;4. For the sake of simplicity assume the
a result of these large and unequal losses, the maximum poffeld i invariant with respect tg.
transfer between subwaveguides occurs before the power in the o
other subwaveguide is a minimum. A. Characteristic Modes

The most common, simple, and intuitive theoretical analysesFor the GADC and LM-GADC structures, the field expres-
of the GADC are based on coupled-mode theory (CMT) whigions which are written in Floquet-Bloch form must satisfy
finds the coupling length, the coupled power distribution, arttle boundary conditions at each interface. Assuming transverse
the resonant grating period [1], [3]-[14]. Also, a transfeelectric (TE) polarization, thg-component of the electric field

. PROBLEM FORMULATION
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in the ith IayerEZSi) can be written as kA
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where K = 27 /A is the grating wavenumbed, is the grating / e ( Py 7 S // e
period,n is the space harmonic ordérindicates theth layer, e - N S5 ////'/
and f,(f) is the amplitude of thenth space harmonic. The // K yrd
function () is periodic and satisfieg® (z, 2) = f@(z, 2z + et A e
A). The termk,,, is the complex propagation constant of the - o 0 2 an BA

nth spatial harmonic and can be written as Fig. 3. The kinematic properties of the codirectional coupling of two Flo-

. . quet-Bloch modes. Mode A represents the mode of the “semiconductor
ki = (B +nK) - ja=p, - ja 2) waveguide,” while Mode B is the mode of the “glass waveguide.”
whereg,,, the real part of.,,, is the longitudinal propagation
constant of thexth space harmonic, and (>0), the imaginary £%(z) andh?(z) are defined by (1) and (3). For transverse
part of k.., is the attenuation constant due to leaky modes gkectric (TE) polarization, the square matric§k.o) and
well as material losses. Similarly, the magnetic field along th@(k.,) have element®,,,, = jweo[(k.n/k)?6pnm—En—m] and

z direction in thesth layer, Hz(i) can be expressed as Qnm = Jwiobum, respectively, where,,,,, is the Kronecker
oo delta.
HO = Z h{D e =dkznz (3) The solutions of the Helmholtz equation (4) are given by the
n=—oo linear combination ofexp(jk%a:) and exp(—jkgiza:), while

G _ the equivalent Maxwell’s equations (6) and (7) can be solved
where h;,” is the nth space harmonic component of theyy the fourth-order Runge—Kutta method [20]. A resulting
magnetic field in theth layer. Outside the grating layer, thecharacteristic equation is obtained by appropriately matching

scalar Helmholtz equation can be written as the boundary conditions and simultaneously solving (6) and
2 (i)(x) ‘ (7). Considering TE polarization, the field components and
# + [KPe; — K21 fP(z) = 0 (4) their normal derivatives must be continuous at each interface.

. . After appropriate substitution, we obtain a system of linear
wherek = 2r/A is the free space wavenumber, is the equationsD(k.o) - f(z,_1) = 0 with the unknown variable
relative dielectric constant of theh layer, and the complex j,_, where D is a square matrix, angf(a:k_l) is the initial

transverse wavenumber for thgh space harmonic in th#h  yajue of the field at the bottom of the grating layer. The system

layer is defined b)(kng)2 = ek — K2, of linear equations has a nontrivial solution when [2]
The interesting features of Floquet—-Bloch modes, including
the generation of space harmonics results from the periodic det[D(k-0)] = 0. 8

grating layer. Because the refractive index in the grating Iay/g,rrter solving for the roots of (8) numerically [20], the Floguet
is nonuniform and varies periodically along the propagation '

L o . amplitudes of all space harmonics for the field distribution in
direction, the permittivity can be expressed as a Fourier ser] P P

&P layers can be evaluated.
e(z,z) = Zen(x)ejnl(z. (5)
n B. Kinematic Properties

The field solution for TE modes in the grating layer is ob- Many of the modal interaction features of grating-assisted
tained by solving the equivalent Maxwell’s equations insteaguplers can be understood by analyzing the— 5" plot

of (4) shown in Fig. 3. (The lines in the figure do not represent the
o) actual dispersion curves of the modes or the space harmonics.)
df :Q(kzo.)ﬁ(g)(x) (6) In the present case we will consider two Floguet-Bloch
dx modes of the LM-GADC, labeled modd and modeB.
and When the modes do not interact, say at some position below
dR @) resonance (smalk values), modeA represents the mode of
Fra P(k.o) 19 (z) (7) the semiconductor waveguide, while moderepresents the

mode of the glass waveguide. Away from resonance the field
whereg stands for the grating layer, and the variablg is the  distribution of the modes will be almost identical to the modes
complex propagation constant of the zeroth spatial harmonég. the individual subwaveguides in the absence of the other.
The vectorsf19)(x) and h(¥)(x) are formed by the group Mode A has an effective index, that lies between 3.386
of spatial harmonicg‘,(ﬂ)(a:) andhﬁf’)(a:), respectively, where and 3.165, while mode3 has an effective index g lying
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TABLE 1l T o T
THE PARAMETERS OF GRATING ASSISTED DIRECTIONAL COUPLERS
USING Two DIFFERENT SUBWAVEGUIDES. SUBWAVEGUIDE S CONSISTS o
OF LAYERS 7—15, WHILE SuBWAVEGUIDE G CONSISTS OF 2 10 r )
LAYER 3. THE FREE-SPACE WAVELENGTH IS Ag = 1.55 pm - Mode B
Layer Thickness(um) | Refractive Index 3 g .
1 Glass Cladding 0 1.448 s
2 Glass Cladding 3.0000 1.448 § 4 - ]
3 Glass Waveguide 5.0000 1.458 g
4 Glass Cladding 1.0000 1.448 g, L
5 Grating Layer 0.2870 3.165/1.448 2
6 Spacer 0.3175 3.165 £ Yode A
7 Confining Layer 0.1200 3.386 é 2r 1
8 Quantum Well 0.0090 3.532 =
9 Barrier 0.0100 3.386 0 .
10 Quantum Well 0.0090 3.532 @)
11 Barrier 0.0100 3.386
12 Quantum Well 0.0090 3.532 '
13 Barrier 0.0160 3.386 _
14 Quantum Well 0.0090 3.532 _ seerr| Grating Deptn - 0.01 .m .
15 Confining Layer 0.1200 3.386 a
16 Substrate Cladding 1.0000 3.165 = 32076 .
17 Substrate oo 3.165 g
3
§ 32075
between 1.458 and 1.448. The lower boundmonis 3.165 g,
and the lower bound fong is 1.448. In Fig. 3, the slope of g 32974} n =0 Space -
a.
the line representing modé is 1/3.165 and the slope of theg
line representing modé3 is 1/1.448. The actual dispersiong _ .. i
curves will lie slightly below the two dark lines of the figure.2
The space harmonics for the two modes intersect at an, ., ‘

infinite number of positions, represented by the poifts 14.00 14.02 14.04 14.08 14.08
where: represents the space harmonic of motland ; rep- Grating Period A (1m)
resents the space harmonic of madeThe two cone regions (b)

about thekA axis are the superstrate fast-wave region (FW@)Q. 4. The complex propagation constant of the two Floquet—-Bloch modes,
and substrate FWR. It should be noted that the fundameri@le A and modeB, for a GADC. The grating depth is 0.gim. (a) The
space harmonic for modB lies in the FWR of the substrate.modal attenuation coefficients which cross, and (b) the propagation constants
This means that for any grating period the glass mode vv?ﬁth%wgfsgécj Tgﬂ"sonéisct‘fg'g;fp:“tfir;jf’;f‘rgceThe minimum separation,
be leaky. At resonance, where the lines cross, there can bé
a number of leaky space harmonics. Fig. 3 shows four such
intersection points in the substrate FWR. The points to tfig]. The vacuum wavelength is assumed to be ArB in
right of the kA axis represents leaky mode radiation in théable I. Fig. 4 represents the typical characteristics of two
forward direction of the substrate while the points to the lefiateracting Floquet—-Bloch modes and shows the normalized
of the axis represents leaky mode radiation in the backwaieal and imaginary parts of the propagation constants, for
direction of the substrate. Assumirgn 4 and1/np are the modesA and B as a function of the grating period for the
slopes of the lines representing the two modes, the numberstiicture of Table I. The two curves in Fig. 4(b) correspond to
space harmonics that leak to the substrate is the integer vafigeand 32 whereg indicates the real part of the propagation
N =Int[2n.4/(n4 —np)]. The GADC of Table | has over 60 constant of the, = 0 space harmonic for modd, and 3 is
leaky space harmonics near resonance while the LM-GADRat of ther = 1 space harmonic for modg.
(Table 11) has only four leaky space harmonics. When two modes are interacting at resonance, requirements
Since strong modal coupling occurs only in the vicinity ofor strong coupling include the following:
the intersection points of Fig. 3, the dispersion curves for the1) phase-matching between one space harmonic of one
two modes will be shown only in the neighborhood of the mode with another space harmonic of the interacting
Iy,1 intersection. The relative shapes of the dispersion curves mode and
in the neighborhood of; ; are identical to the curve shapes 2) the intensity distributions of the two modes must be

around thely ; intersection. similar (as close as possible).
It can be seen from Fig. 4 that the first condition is met for
lll. GRATING-ASSISTED DIRECTIONAL COUPLER a range of grating perioda which satisfy

The conventional GADC problem, originally analyzed by
Marcuse [1], can be solved using the Floquet-Bloch theory B8 — Bt = 6(A) (9)
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where the propagation constant of the first space harmoilice effective index of model is approximately 3.2 while the
satisfies effective index of modeB is about 1.48. Since the refractive
index of the semiconductor material is much larger than that
of the glass, mode3 is always lossy with power leaking to
the semiconductor substrate. This is illustrated in Fig. 3 where
the “dispersion curve” for mod® always lies in the substrate
K =6(A) + 65t — 8. (11) fast wave region. (For the GADC with layer parameters given
in Table |, the superstrate and substrate fast wave regions are
Equation (11) provides a relationship between the gratiRgmost identical and neither mode’s dispersion curve lies in a
period A = 27 /K and the longitudinal propagation constantggst wave region.)
of mode A and modeB and the “deviation wavenumbe#’  The complex propagation constants for the two modes of
(see Fig. 4). the LM-GADC are shown in Fig. 5 for a grating depth of
Although (11) ensures phase matching, it does not guarangegg7 ;m. The space harmonic = 0 of mode A interacts
that a large fraction of power will be transferred betweegith the n = 1 space harmonic of modB. This interaction
subwaveguides. To ensure significant power transfer the moggsnt corresponds to the intersection paipt of Fig. 3. The
must have nearly identical power distributions (the SeCOfﬂﬁopagation constants of the two modes split, Fig. 5(b), as they
condition above). ModesA and B are closest to having gpproach resonance while the attenuation curves [Fig. 5(b)]
identical intensity shapes when their longitudinal propagatigfigss. The minimum value ofin/k &~ 5 x 10~* occurs at
constants differ by approximately, the grating wavenumber. the grating periodA = 0.86569 um. Using (12), assuming
This occurs wher® is a minimum. the minimum value of§, the calculated coupling length is
The normalized attenuation for the two modes for thg_ ~ 1.5 mm which is approximately 1790 grating periods.
structure of Table | is shown in Fig. 4. It should be notegjowever, this estimated coupling length is too large because
that all space harmonics for each mode exhibit identicide modal attenuation affects the true coupling length. (The
attenuation. In the vicinity of resonance, the power losses timized coupling length, discussed later, is about 1.25 mm,
low and nearly identical for both modes, ranging from abowy ahout 1440 grating periods.)
8 x 107°mm to 8.3 x 10~*/mm. Since these losses are As can be seen from Fig. 5(a), the curves representing
negligible, the coupling lengtlh.. can be estimated (with lessthe attenuation constants cross/fatx 0.86525 um, some-

P =pP + K (10)

so that (9) becomes

than 2% error) by [2] what below the resonant point whehnis a minimum (A ~
[T 12 0.86569 pm). Near resonance, the attenuation of mdgldas
cT s (12) a maximum, while the attenuation of modeis a minimum.

. . , These two features are usually exhibited in a resonant system
The grating periodA = 14.0387 um, corresponding to nd indicates that a stop band occurs for métehile mode
Smin/k ~ 6.5 x 10~* produces a coupling length of abouf? Nd! P u !

X . . is in a passband.
11.5 mm or 7,700 grating periods for a grating depth cﬁ‘x . . .
0.01 zm. This long coupling length occurs because of the The two key layer thicknesses affecting the coupling length

very weak grating. Stronger gratings produce much shorf’é?d the amount of power coupled from the region in the

. : X ) . vicinity of subwaveguide S to the region in the vicinity of
coupling lengths [2]. The grating period at the point witeis . : :
L : ; . : subwaveguide G, are (1) grating depth and (2) the thickness of
a minimum differs only slightly from the grating period Wher{he spacer layer (Table Il). In the present example, the tooth

a4 = (Qp. . . . . . .
The propagation characteristics described in Fig. 4 illua;e'ght Is 0.287um and the grating period is approximately

trate the standard behavior for typical GADC devices whic '?36 pm. £ th £ 1h ting | the fields of
exchange power between bound modes. A key point for tfhe i(ﬁlgzs)c edptrﬁS%]XeDCO ¢ € ?ra Ing fayer, 3 ('je. S0
GADC is that the modal losses are negligible for the typic e LV and the structures are expanded in an

[ . . )
GADC so0 that the coupling efficiency approaches 100%, aﬂ’dlnlte number of space harmonics. While the complete field
the coupling length is given by (12).

istributions consist of the summation of all space harmon-
ics, there are only a few space harmonics with significant
amplitudes. Away from resonance, only one space harmonic
IV. LEAKY MODE GRATING-ASSISTED is dominant, whereas at least two space harmonics have
DIRECTIONAL COUPLERS significant amplitudes at the resonant condition. For mdde
Consider now the structure of the semiconductor/glass LNten = 0 and —1 space harmonics are dominant, while other
GADC, as shown in Figs. 1 and 2, with parameters given space harmonics are negligible. For mddethen = 0 and1
Table Il. In the leaky mode coupler, subwaveguide S refespace harmonics are dominant, while the others are negligible.
to the semiconductor waveguide while subwaveguide G refersThe complete field pattern can be obtained by the sum-
to the glass waveguide. We assume that there are no matemation of all spatial harmonics. Fig. 6 shows the total field
losses in the layers, and the vacuum wavelength is Ar65 distributions of moded and modeB where moded represents
At grating periods far below resonance, the two modks the “in-phase” (no zero-crossings of the electric field distribu-
and B have negligible interaction. The field of modé is tion between the waveguides) solution, and maétidisplays
confined primarily to the semiconductor subwaveguide whitbe “out-of-phase” (a single zero-crossing of the electric field
the field of modeB is confined to the glass subwaveguidedistribution between the waveguides) solution. (The imaginary
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Fig. 6. The optical field distribution at resonance. Maderepresents the
“in-phase” mode whileB is the “out-of-phase” mode. The term Re is for the
3.246 | ‘ real part of the field and Im stands for the imaginary part.

a A value at resonance and (3)Aavalue above resonance.
Below resonance, modd is confined to the semiconductor
subwaveguide and mod®& is confined to the glass sub-
1 waveguide. Above resonance, modehas most of its power
confined to the glass subguide and mdgiés confined to the
semiconductor subguide.

The two modes switch their “mode profile signatures” as
they progress through resonance. It is interesting to note
that the modal group velocity is, = ¢/(d3/dk) for the

n = 0 Space harmonic

3.244

Normalized Propagation Constant p/k

3.242 L

t L

0.8645 0.8650 0.8655 0.8660 0.8665 propagating mode. (All space harmonics associated with the
Grating Period A (um) mode propagate with the same group veloeify This implies
(b) the mode maintains a given shape as it propagates.) The

Fig. 5. The complex propagation constant of the two Floquet—Bloch mod&?f|n".[|on of the .grOUp VelOC|ty mphedﬁ/dk beha\(es as an
Mode A and ModeB, for a LM-GADC representing the semiconductor-glas€ffective group indexy,. The value of the effective group
waveguide configuration. fhe grgti?l% depth is 0.261. (@) The attenuation index is a measure of where the optical intensities are confined.
constant for the two modes an the propagation constants of the t) . . .

space harmonics which split at resonance. The mimimum separégign/ & wgr example, the (_effe(_:tlve group index of a mode Conf'ned_to
of 5 x 10~4, occurs atA = 0.86569 um. the glass waveguide is approximately equal to the refractive

index of the glass. (Becausg > 1, the slope of the curves in

part of the fields are also shown in the figure.) Note th&t9- 7 can never be greater than one.) Below resonance, the
both field distributions have almost identical intensities in boffT€Ctivé group index of modd, n 4, is approximately equal
subwaveguides. It is the inclusion of the space harmonics tigthe effective group index of mode, ny, above resonance.
produces the “in-phase” and “out-of-phase” solutions for tHd<€WiS€.nyp, below resonance is approximately equaklo,
two modes. The addition or subtraction of these two solutio°VE resonance. In the former case, a majority of the optical
puts the tandem waveguide power in either subwaveguidepgwer is co.nfl.ned to the se_mmonductqr, Whgreas, in the latter
or subwaveguide G. In other words, a linear combination GASE: @ majority of the optical power is confined to the glass
the two modes can produce a field distribution with most §ide. As the two modes progress through resonance, they
the light in one of the waveguides. The fine structure on tgach the point when,, = nyp. This condition implies that

field patterns in Fig. 6 indicates the excitation of higher ord&§2¢h mode has very similar optical distributions. Specifically,
space harmonics. the “in-phase” and “out-of-phase” modes have nearly identical

The propagation characteristics shown in Fig. 5 are plot&§ensity patterns.
as a function of the grating period. Although this is not a
true “w — 3" plot it illustrates modal characteristics as a V. THE COUPLING MECHANISM
function of grating period. A “classic dispersion” curve is Excitation of the coupler from an external source such as
shown in Fig. 7. Again, the figure represents the characteristegonnecting waveguide will generate all of the modes of the
in the neighborhood of the intersection polpt; . The pairs of LM-GADC. To minimize scattering at their interface, the fields
dots correspond to specific values of the grating period. Thé the two waveguides (exciting and coupler waveguides)
dots and corresponding field distributions are given for threeust have similar shapes. A “smooth transition” can be
different grating periods, (1) & value below resonance, (2)obtained with an exciting guide that is almost identical to
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Fig. 7. The % — 3" diagram at the intersectiody ;. The field inserts in the figure are the real parts of the fields. The corresponding imaginary
parts (not shown) are relatively small.

the LM-GADC waveguide. In the present case, the excitingith power concentrated in the glass subwaveguide, at the
waveguide will be assumed to be identical to the coupldistant pointz = L,. Physically, the LM-GADC will be
waveguide, except the input waveguide will not have a gratirgycited from the semiconductor/glass waveguide section using
at the semiconductor/glass interface (see Fig. 1). The ingbe semiconductor mode that is incident from the 0 region.
waveguide has two trapped modes: one mode’s fields driee excitation at = 0 dictates how the power is partitioned
predominantly confined to the semiconductor subwaveguid€tween the two Bloch modes.

while the second mode will have fields predominantly confined At resonance, the field shapes of the Bloch modes have spe-
to the glass subwaveguide. When the exciting wavegui@&l and iptere;ting characteristic_s. (Neither Bloch que can
contains an incident field composed of only the semicoR€ Normalized in the transverse directiemo <z < oo, using
ductor mode, the fields in the semiconductor portion matdfi€ir intensity distributions. However, we have normalized
the fields of each of the two coupler modes. Near reg]e_nr |nt_er_15|ty p_atterns |n_the v!cmlty of the tandem waveguide
onance, both coupler modes will be excited with almodt®'n9 finite limits onz, including layers 2-15 of Table I1.)

. ' . By choosing a particular phase of one mode relative to the
;esqz:;%riggl)gtudes, and the field in the glass subwavegu@t%er, both Bloch modes have peak values (real parts) in the

The two Floquet-Bloch modes of the LM-GADC are insubwavegwde S, however, the fields in the subwaveguide G

: - are out of phase.
general nonorthogonal. As they propagate in théirection, P

. . ) neral solution to the fields in the coupler must be written as
transfer or “couple” power between the two subwaveguides.jinear combination of the two Flogquet-Bloch modes as
In particular, we discuss how to transform an initial power

distribution with power concentrated in the semiconductor
subwaveguide, say at= 0, to a transverse power distribution  E,(z,2) = aafa(z,2)e”74* +apfp(z,z)e”7%*  (13)
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e K - satisfy

L Grating Period B .
40 A =0.8657 um s(z) =0 forz € Glass subwaveguide

0.8656
g(z) =0 for x € Semiconductor subwaveguide

% 0.8655 It is interesting to note that the functiciix) is approximately

equivalent to the field distribution of the semiconductor mode

0.8654 ) in the absence of a grating layer. Similarly, the functign)

is approximately equivalent to the field distribution of the

0.8653 glass mode in the absence of the grating layer. Thus, when

the LM-GADC is excited with the “semiconductor mode,”

the excitation field shape is(x). On the other hand, when

the LM-GADC is excited with a “glass mode,” the excitation

0 , ‘ LYy >< field shape isg(z).

0 05 10 5 20 The overall field distribution as given by (1) across the
Grating Length Ly (mm) layers can be written as

20

Coupling Efficiency

Fig. 8. The coupling efficiency as a function of propagation distance. ; .
9 upling ethciency unet propagation di flz,z) = fO(x,2) forz e ith layer

wherea 4 andap are the expansion coefficients that measure Due to the nature of the field shapes as shown in Fig. 6,
the partition of the power into the modes. For the preseifite Floquet-Bloch modes can be approximated with the two
discussion, assume the coupler is excited with all the powdeminant space harmonics of modésndB. These dominant

in the semiconductor subwaveguide. At the input 0, the space harmonics are characterized by the two functi¢a$
field in the coupler is obtained by summing the two modes énd g(z)

Fig. 6, implyinga4 = ap = 1/2. As the two modes progress K

along thez direction, the continuously evolving field shape fa(w, 2) = 5(x) +Q($)G

amounts to a redistribution of power in the subwaveguides of fB(z,2) = s(x)e 5% — g(z).

the composite waveguide. _ . .
We estimate the powerB, and Py in subwaveguides S YSing the approximate expressions for the modes, the total

and G, respectively, as [2] field becomes (putting 4 = ap = 1/2)
> 1 JKz1 —vaz
Ps=-iRe [ B Ey(z,2) = 5[s(x) + glx)e e
0
1 K .
0 - —jKz _ YBZ
Pe=-14 Re/ E,H dx. gl gl e,

. ) o At an arbitrary position: the total field becomes
For the structure whose dispersion characteristics are shown

in Fig. 5, the percentage of the total input power coupled to _1 Kz

the glass waveguide, as a function of grating length is By(w,2) = 2{[3($) +g(@)e’™]

shown in Fig. 8. At the excitation point, the total waveguide + [s(a)e™ 57 — g(a)]em (B T1A)2 Az,

power is concentrated in the semiconductor side. The power

is transferred to the glass as the LM-GADC modes propagateAS seen from Fig. 5, the attenuation coefficients of the
Fig. 8 also shows the coupled power versus grating lengif0 modes near resonance have approximately equal values

with various grating periods of the LM-GADC structure of( @4 ~ ag), So that the ternavg — «4 can be dropped, so that

Fig. 1. The curves indicate that the maximum coupling drof8€ exponents —v4 = ap —aa+j(Bs — fa) = j(6 — K).

as the coupler is detuned from resonance. At resonangg€ resulting field simplifies to

we obtain the maximum coupled power and the optimum

__—j(1/2)6=
coupling length. Off resonance, both the coupled power an y(z,2) =12

the optimum coupling length are reduced. As shown in Fig. 8, < [s(z) cos(362) + jg(z)e?™* sin(362)]e 747,

the maximum coupled power is greater than 40% with a (14)
coupling length of 1.25 mm, and the optimum grating period

is 0.8657 um. The first term in the brackets characterizes the field in the

We now determine the coupling characteristics from theemiconductor guide while the second term characterizes the
raw dispersion data of Fig. 6. Due to the “symmetric” anfleld in glass. To find the optimum coupling length, where
“asymmetric” shapes of the two fields illustrated in Fig. 6, ithe power in the glass guide is maximized, the magnitude of
is convenient to write the fields in terms of two functior{s) the second term must be maximized relativez{oand the
and g(z). The functions(z) represents the field distributionoptimum z value will represent the best coupling length. In
in the semiconductor subwaveguide whjler) represents the the optimization process, the phase tessp[j(K — 73,)2]
field in the glass subwaveguide. In addition, the two functions dropped because the envelope amplitude, characterized by
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sin(6z/2) exp(—a42), is to be maximized. After simplifica- - r ' ' r
tion, the optimum coupling length. is found to be a solution

to the transcendental equation 15 Grating Period - 0.8670 um
1) 1)
tan-L, = —. 15
M 2 (15)

(Because the attenuation coefficients are approximately equad, 10 -
the terma 4 has been replaced hy.) Although the results
obtained for the optimum coupling length assumes approxim
mately equal values of attenuation for both modes, a 5|m|Ia§
result can be obtained when modal attenuations are differeng. )
In the limiting case ofo — 0, (15) reduces to (12).
To determine the coupling length for optimum power trans-
fer for the structure described in Table II, the value of the ‘
deviation coefficient§ = &, = (5 x 10749k and « =~ 0 01 0.2 03 0.4 05
(7.5x 10~°)k are substituted into (15) These optimum values GratingDepth  (um)
produce a coupling length ok, ~ 1.25 mm which agrees ig. 9. The normalized modal attenuation for the LM-GADC as a function
with the value obtained from the numerical computations f@F tooth height. The grating period is fixed at 0.867@. The grating period
the coupling efficiency, shown in Fig. 8. chosen for this calculation is not near the resonance condition.

ttenu_gﬁon a/k (x 108 )

| A

Normalf

VI. OPTIMIZATION similar in that their maximum and minimum values eflie

The coupling depends on the combination of the differen@e ranges similar to those shown in Fig. 9. Namely, motle
betweens3i! and £ and the attenuation coefficients of thehas minimuma values at grating depths near 0 and pr8.
modes. In many cases modal attenuation is a dominant facddtenuation of modeB is rather insensitive to grating depth.
resulting in low power transfer. When one mode attenuatesGrating depths that produce the best coupling efficiency are
much faster than the second, it is difficult to achieve higin those ranges where, is very close tayg. In addition, these
percentages of power transfer. A major result of this analysasnges correspond to the smallest values of attenuation. These
is that the attenuation of the Bloch modes plays a significapést ranges occur at grating depths near zero andut3
role in determining the optimum coupling length in gratind\t grating depths near zero, the coupling strength is very
couplers. small which produces very smadl,;, values. These small

The field distributions of the two Floquet-Bloch modes$,,;, values extrapolate to relatively long coupling lengths
evolve as the. — 3 plot progresses through resonance. As the. that are typically impractical. When the grating depth is
modes exchange their “signatures,” it can be shown that thémereased, the difference of the two attenuationsand ap
is a single point where both have the same group velocity aimtreases. Although the LM-GADC structure changes coupling
the deviation wavenumbef is minimized. This implies that strength with an increased tooth height, the low values of either
they have almost equal intensity shapes. When this conditibfxv,s or 1/ap, the length when the mode amplitude drops
occurs, the usual “in-phase” and “out-of-phase” fields allow fdo 1/e of its initial value, are smaller than computed values
a linear combination of the modes to produce a distribution of 1/6,,;, where the best coupling length occurs. Thus, the
power which is concentrated in one waveguide or the other.nfode attenuates before a 28@lative phase change occurs.
the modes are combined (say added) with equal amplitudEsy tooth heights near zero, the coupling efficiency is generally
the resulting field places the power in the semiconductbelow 10% while for grating depths near Q.f, the coupling
subwaveguide. Likewise, if the modes are subtracted, thficiency is about 40%.
power is placed in the glass subwaveguide. Furthermore,The coupled power to the glass region as shown in Fig. 8
when one mode vanishes over a distance smaller th@n reaches a peak value and then drops back to near zero. This
only one mode remains and field shape in the compostkssic oscillation (with auxiliary attenuation due to leakage of
waveguide is invariant witk. Therefore, to find the maximum power) occurs because power shifts back and forth between
coupling, the attenuation characteristics of the two modes mtis¢ two subwaveguides. The power in the semiconductor
be evaluated. subwaveguide oscillates out of phase relative to the power in

The key parameter that affects modal attenuation is th®e glass subwaveguide. At the optimum coupling length when
coupling strength. (Both the grating depth, period and gratirtike power in the glass peaks, the power in the semiconductor
duty cycle affect the coupling strength. A 50% duty cycle iaveguide is at a minimum.
used in all of our calculations.) Fig. 9 shows the normalized Fig. 10 shows the coupled power as a function of tooth
attenuation coefficient as a function of grating depth for modégight, assuming the parameters given in Table Il. In fact the
A and B. The grating period is fixed at 0.867Mn, which is optimum value of approximately 40% or about 4 dB, occurs at
well below the resonant condition. In addition, the thicknessgrating depth of 0.284m. The optimum coupling length is
of layer 6 (see Table 1), is 0.317&m. It should be noted that L. ~ 1.25 mm. Even though the coupling length increases
other values of the grating period and spacer layer thickndss grating depths above 0.287m, the coupling efficiency
produce a differently shaped curve, but all resulting curves ateops.
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Assuming the semiconductor and glass waveguide dimensions
and refractive indexes are those given in Table I, the optimum
grating depth is 0.2&m. The resulting coupling efficiency is
about 40%, or about 4 dB, and the optimum coupling length is
1.25 mm. The grating period at the optimum is about Q.86

The coupling efficiency obtained by this method is applica-
ble to the two dimensional model where the slab has infinite
extension in the lateral direction. Generally, slab models are
applicable to similar three dimensional structures when the
widths of the modes in the lateral-@xis) dimension are
large compared to the widths in the transversedifection)
dimension.

The simple LM-GADC is not an efficient coupler compared
to the GADC. While the GADC of Table | can transfer almost
100 percent of its power from one region (first subwaveguide)
Fig. 10. The effect of tooth height variations on the coupling efficiency. TH® @ second region (second subwaveguide), the LM-GADC
waveguide parameters are given in Table II. (a) The coupling efficiency apd Table Il can transfer only about half of its input power
(b) the optimum coupling length. from one guide to a second guide. The major reason for this
difference is due to the fact that the LM-GADC has more
radiation loss and the corresponding modal attenuation plays
a dominant role in determining the optimum transfer length.
By incorporating multilayer reflective stacks in the substrate,
we expect the coupling efficiency can be increased to 70%. In
the present examples, the modal attenuation of the LM-GADC
of Table | is about one order of magnitude greater than the
modal attenuation of the GADC of Table I. The LM-GADC
losses are due mainly to power leaking to the substrate.

Finally, Floquet-Bloch modes exchange “signatures” as
they progress through resonance. The classical coupling length
(when losses are negligible such as for the GADC), is deter-
mined from the minimum longitudinal propagation constant
separationd,,;, using (12). When losses become significant
(such as with the LM-GADC), the coupling length must be
determined from (15).

40

Coupling Efficiency
w
o1

30

(ww) yibua Bundnog winwiydo

25 ) I I .
0.24 0.26 0.28 0.30 0.32

Grating Depth  (um)

40

Grating Length
L9 =1.25 mm

Resonant Wavelength

30 A= 1.55 pym

20 [

Coupling Efficiency

-20 10 20

-10 0

Free-Space Wavelength Deviation from Resonance &% (Angstroms)

Fig. 11. The coupling efficiency about the resonant
A = 1.55 pum. The resonant grating period is = 0.86569 pm.

wavelength
REFERENCES

[1] D. Marcuse, “Radiation loss of grating-assisted directional coupler,”
IEEE J. Quantum Electronvol. 26, pp. 675-684, Apr. 1990.

N. H. Sun, J. K. Butler, G. A. Evans, L. Pang, and P. Congdon, “Analysis
of grating-assisted directional couplers using floquet bloch thedry,”
Lightwave Technal.vol. 15, pp. 2301-2315, Dec. 1997.

D. Marcuse, “Directional couplers made of nonidentical asymmetric
slabs. Part I: Synchronous couplerd,”Lightwave Technglvol. LT-5,

pp. 113-118, Jan. 1987.

When the grating period, or the wavelength is changed,
the optimum coupling is reduced. For example, in Fig. 8, thez)
grating periodA = 0.8657 m requires the coupler to have a
length of L, = 1.25 mm. If the actual length is different from 3]
1.25 mm, the coupling efficiency will be decreased.

. A CharaCte”Stlc of the LM-GADC IS. its frequency Sele(.:tlv_ [4] , Theory of Dielectric Oprical Waveguidegnd ed. New York:

ity or its narrow-banded property. Using the results of Fig. 8, ° academic, 1991.

the coupling efficiency for the 1.25 mm length LM-GADC as a[5] W. P. Huang and H. A. Haus, “Power exchange in grating-assisted
function wavelength deviatiofi\ about\ = 1.55 pm is shown couplers,’J. Lightwave Technglvol. 7, pp. 920-924, June 1989.

. : . : . . H. A. Haus, W. P. Huang, S. Kawakami, and N. A. Whitaker, “Coupled-
in Fig. 11. We find the FWHP of the coupling bandwidth is" "~ mode theory of optical waveguides]” Lightwave Technalvol. LT-5,
about 9A.

pp. 16-23, Jan. 1987.
[7] W. P. Huang, B. E. Little, and S. K. Chaudhuri, “A new approach to
grating-assisted couplersJ: Lightwave Technaqlvol. 9, pp. 721-727,
June 1991.
W. P. Huang and J. W. Y. Lit, “Nonorthogonal coupled-mode theory

VII. CONCLUSION

Floquet—Bloch analysis has been been applied to the stuc@
of LM-GADC's that are fabricated with two very different
materials such as semiconductor materials (refractive index o
approximately 3.2) and glass (refractive index of about 1.48).
The complex propagation constants of the two lowest-ord 1r
modes of the tandem waveguide system are determined versu

various parameters such as grating period and grating depth.

of grating-assisted codirectional couplerd,”Lightwave Technqlvol.

9, pp. 845-852, July 1991.

W. P. Huang, J. Hong, and Z. M. Mao, “Improved coupled-mode
formulation based on composite mode for parallel grating-assisted
co-directional couplers,”IEEE J. Quantum Electron.vol. 29, pp.
2805-2812, Nov. 1993.

W. P. Huang, “Coupled-mode theory for optical waveguides: An
overview,” J. Opt. Soc. Amer. Avol. 11, no. 3, pp. 963-983, Mar.
1994.



1048 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 16, NO. 6, JUNE 1998

[11] B. E. Little, W. P. Huang, and S. K. Chaudhuri, “A multiple-scale Nai-Hsiang Sun(S'93-M'97) was born in Tainan,
analysis of grating-assisted coupler3, Lightwave Technalvol. 9, pp. Taiwan, R.O.C., in 1962. He received the B.S.
1254-1263, Oct. 1991. degree in electronic engineering from Chung Yuan

[12] B. E. Little and H. A. Haus, “A variational coupled-mode theory Christian University, Chungli, Taiwan, in 1984,
for periodic waveguides,1EEE J. Quantum Electron.vol. 31, pp. ¢ 1?{? ' the M.S. degree in electrical engineering from the
2258-2264, Dec. 1995. = National Cheng Kung University, Tainan, Taiwan, in

[13] B. E. Little, “A variational coupled-mode theory including radiation e 1986, and the Ph.D. degree in electrical engineering

loss for grating assisted couplersl’ Lightwave Technglvol. 14, pp. from Southern Methodist University, Dallas, TX, in

188-195, Feb. 1996. el 1997.

[14] V. M. N. Passaro and M. N. Aremise, “Analysis of radiation loss ir i In 1997, he joined the Faculty of Electrical En-
grating-assisted co-directional coupler$£EE J. Quantum Electron. gineering at the 1-Shou University, Kauhsiung, Tai-
vol. 31, pp. 1691-1697, Sept. 1995. wan, where he is an Assistant Professor. His current research interest is in the

[15] W. P. Huang and H. Hong, “A transfer matrix approach based on locgfea of photonic integrated wavelength division multiplexing sources, periodic

normal modes for coupled waveguides with periodic perturbatiahs,” gielectric waveguides, and numerical modeling of semiconductor lasers.
Lightwave Technal.vol. 10, pp. 1367-1375, Oct. 1992.

[16] S. T. Peng, T. Tamir, and H. L. Bertoni, “Theory of periodic dielectric
waveguides,"|lEEE Trans. Microwave Theory Techiol. MTT-23, pp.
123-133, Jan. 1975.

[17] K. C. Chang, V. Shah, and T. Tamir, “Scattering and guiding of waves
by dielectric gratings with arbitrary profiles,J. Opt. Soc. Amer.vol.
70, pp. 804-813, July 1980.

[18] G. Hadjicostas, J. K. Butler, G. A. Evans, N. W. Carlson, and H
Amantea, “A numerical investigation of wave interactions in dielectri
waveguides with periodic surface corrugationsZEE J. Quantum
Electron, vol. 26, pp. 893-902, May 1990.

[19] J. K. Butler, W. E. Ferguson, G. A. Evans, P. J. Stabile, and A. Rosq
“A boundary element technique applied to the analysis of waveguid
with periodic surface corrugations|EEE J. Quantum Electron.vol.
28, pp. 1701-1709, July 1992. and was a Visiting Assistant Professor in the

[20] R. L. Burden and J. D. Faire®Numerical Analysis4th ed. Boston, Electrical Engineering Department at the University
MA: PWS-KENT, 1984. of Washington, Seattle (1977-1979). He has worked at the Aerospace

Corporation, ElI Segundo, CA, (1979-1981), TRW, Redondo Beach, CA,

(1981-1984), and RCA Laboratories (now Sarnoff Corporation), Princeton,

NJ, (1984-1992). In 1992, he joined Southern Methodist University, Dallas,

, , , , TX, as a Professor in the Electrical Engineering Department. Since 1979, he

Jero".‘e K. Butler (S'59-M 65_8'\_/' 78-F'80) was p5q primarily worked on the design, growth, and fabrication of conventional

born in Shreveport, LA. He received the B.S.E.E5. gyrface emitting semiconductor lasers, has over 180 publications, and

degree from Louisiana Polytechnic Institute, RuSig 3 co-Editor of the bookSurface Emitting Semiconductor Lase{iew

ton, and the M.S.E.E. and Ph.D. degrees from thg. Academic).

University of Kansas,hLawr_ence. d held Dr. Evans is a licensed Professional Engineer, has served on numerous
He was a Research Assistant an el a _CRE%EE committees, is a Past Chairman of the Princeton Lasers and Electro-

Fellowship at the Center for Research in Engineersyiics society (LEOS) Section, a Past Chairman of the Santa Monica Bay

ing Sciences, University of Kansas. He conducte&eion of the IEEE, and was an Associate Editor of the IEBERIAL OF
research concerned with electromagnetic wave PrORSuANTUM ELECTRONICS from 1990 to 1996.

agation and the optimization and synthesis tech-
nigues of antenna arrays. He joined the Faculty
of the School of Engineering and Applied Science, Southern Methodist
University, Dallas, TX, where he is now a University Distinguished Professor
of Electrical Engineering. His primary research areas are solid-state injection
lasers, radiation and detection studies of lasers, millimeter-wave systetd¥/ Pang (M'93) received the B.S. degree in electrical engineering from
integrated optics and the application of integrated optical circuits, and quantiiversity of California, Irvine, in 1986. She also received the M.S. and Ph.D.
electronics. In the summers from 1969 to 1990, he was a Staff Scientistdggrees in electrical engineering from Massachusetts Institute of Technology,
the David Sarnoff Research Center (formerly RCA Laboratories), Princetdgambridge, in 1989 and 1993, respectively.
NJ. During the 1996-1997 academic year, he was on sabbatical leave witfphe joined Central Research Laboratories of Texas Instruments, Dallas, in
the Photonics and Micromachining System Components Laboratory at Ted93, worked on silica-glass waveguide optical switches. Since 1995, she has
Instruments, Dallas. At present he holds a consulting appointment with thgen working on integrated silica-glass waveguide multiplexer coupled WDM
Components and Materials Research Center at Texas Instruments. He Sgagiconductor lasers, VCSEL'’s on Si-CMOS, and high-power efficient visible
also held consulting appointments with the Central Research Laboratorylagers.
Texas Instruments, Inc., the Geotechnical Corporation of Teledyne, Inc., Earl
Cullum Associates of Dallas, TX, and the University of California Los Alamos
Scientific Laboratory, Los Alamos, NM.

Dr. Butler is a member of Sigma Xi, Tau Beta Pi, Eta Kappa Nu, and is a

registered Professional Engineer in the State of Texas. In 1977, he was gig@filip Congdon (M'96), photograph and biography not available at the time
the Southern Methodist University Sigma Xi Research Award. of publication.

Gary A. Evans (S'69-M'74-SM'82—-F'92) was
born in Omak, WA. He received the B.S.E.E. degree
from the University of Washington, Seattle, in 1970
and the M.S.E.E. and the Ph.D. degree in electrical
engineering and physics from the California Institute
of Technology (Caltech), Pasadena, in 1971 and
1975.
After Postdoctoral work at Caltech, he worked

for R&D Associates, Marina Del Rey, CA,




