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Abstract—Floquet–Bloch theory is used to calculate the elec-
tromagnetic fields in a leaky-mode grating-assisted directional
coupler (LM-GADC) fabricated with semiconductor and glass
materials. One waveguide is made from semiconductor materials
(refractive index �3.2) while the second is made from glass
(refractive index �1.45). The coupling of light between the two
waveguides is assisted by a grating fabricated at the interface
of the glass and semiconductor materials. Unlike typical GADC
structures where power is exchanged between two waveguides
using bound modes, this semiconductor/glass combination couples
power between two waveguides using a bound mode (confined to
the semiconductor) and a leaky mode (associated with the glass).
The characteristics of the LM-GADC are discussed. Such LM-
GADC couplers are expected to have numerous applications in
areas such as laser-fiber coupling, photonic integrated circuits,
and on-chip optical clock distribution. Analyses indicate that
simple LM-GADC’s can couple over 40% of the optical power
from one waveguide to another in distances less than 1.25 mm.

Index Terms—Electromagnetic coupling, gratings, leaky waves.

I. INTRODUCTION

T HE ability to couple diode laser outputs monolithically
and efficiently to a low loss cointegrated glass optical

waveguide will enable applications such as large scale pho-
tonic integrated circuits, on chip optical clock distributions for
high-speed microprocessors, and compact wavelength division
multiplexing laser sources.

In this paper, we present a new architecture of an integrated
grating-assisted directional coupler (GADC) which is made
of a III–V waveguide and a phosphorus-doped
silica glass (PSG) waveguide The use of
glass waveguides offers the combination of very low loss
( 0.01 dB/cm), silicon process compatibility, and simple, low
cost fabrication processes. In addition, the PSG waveguide
can have mode fields that are nearly identical in shape to
the fields of a single-mode fiber. The near perfect match of
properly designed PSG waveguide optical fields with those of
an optical fiber produces95% butt coupling between the PSG
waveguide and a single mode optical fiber without external
optics.
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TABLE I
THE PARAMETERS OF GRATING-ASSISTEDDIRECTIONAL COUPLERS

USING TWO SIMILAR SUBWAVEGUIDES [1]. THE FREE-SPACE

WAVELENGTH IS �0 = 1:55 �m: “SUBWAVEGUIDE A” I NCLUDES

LAYERS 5 AND 6 WHILE “SUBWAVEGUIDE B” I NCLUDES LAYER 2

A GADC consisting of two nonsynchronous waveguides
and a separate grating region is in reality a single, compos-
ite waveguide. However, for clarity, we will refer to two
subwaveguides called “subwaveguide S (semiconductor)” and
“subwaveguide G (glass).” In applications such as the one
discussed in this paper the geometry of the two waveg-
uides (waveguide dimensions as well as their corresponding
refractive indexes) are greatly different. Assuming the two
waveguides S and G are uncoupled and that each supports only
a single mode, the modes of the two individual guides would
have large differences in their effective indexes. To strongly
couple the two waveguides, a grating is designed to phase-
match the longitudinal propagation constants of the individual
waveguides. In GADC’s consisting of two guides with similar
refractive indexes but with different geometrical shapes, the
effective indexes of the individual modes are similar. In the
latter case, the grating wavenumber, used to phase-match the
longitudinal propagation constants of the individual modes
is rather small. Table I shows refractive indexes and layer
thicknesses of such an extensively studied GADC structure [1].
Although the two coupled waveguides are not identical, each
supports a bound mode and each is composed of “similar”
materials.

Fig. 1 shows a cross section of a leaky-mode grating-
assisted directional coupler (LM-GADC), which consists of
a laser waveguide integrated with a PSG waveguide. The
codirectional grating coupler, in the central region of the
figure, has a grating layer of length The rectangular-
tooth grating layer is composed of semiconductor material in
one region and glass in the other. Outside the grating region

and the two subwaveguides have negligible
interaction, i.e., no significant power can be coupled from the
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Fig. 1. The cross section of an integrated semiconductor-glass waveguide.
The grating is etched into the semiconductor cladding region and the glass
waveguide is deposited over the grating. The grating assists in coupling light
from the semiconductor subwaveguide to the glass subwaveguide and vice
versa.

semiconductor subwaveguide to the glass subwaveguide and
vice versa. In this study, the LM-GADC is excited with a laser
mode, where the optical field is predominantly confined to the
semiconductor waveguide, at the LM-GADC input, The
coupling efficiency is computed by calculating the percentage
of power at the input that is coupled to the glass waveguide
at the output, In the region there will be no
interaction between the two subwaveguides.

The analysis of the coupling between the glass and semi-
conductor layers is for a slab structure. (The geometry has
infinite extensions along the lateraldirection.) Accordingly,
the results obtained are reasonably accurate for a structure
whose transverse mode width (-direction) is small compared
to the lateral mode width (-direction).

The index profile of the semiconductor-glass LM-GADC is
shown in Fig. 2. Unlike typical GADC’s, where the power
exchange between the two subwaveguides occurs via bound
modes, the semiconductor-glass LM-GADC exchanges power
between subwaveguides using a bound mode of the semi-
conductor subwaveguide and a (fundamental) leaky mode of
the glass subwaveguide. In Fig. 2 the index of refraction of
the core in the glass region is much smaller than the index
of refraction of the semiconductor substrate. This high index
mismatch causes the modes of the glass waveguide to leak
energy to the semiconductor substrate. As a result, mode
propagation in the glass waveguide attenuates due to power
loss to the semiconductor substrate.

The concept of the grating coupler causing the two lowest-
order modes of the composite waveguide to have similar power
distributions in each subwaveguide was developed in [2] for
typical GADC’s. This same concept and the resulting physical
processes for power exchange between the two subwaveguides
applies directly to LM-GADC’s. However in the latter device,
the losses of each subwaveguide can be large and unequal. As
a result of these large and unequal losses, the maximum power
transfer between subwaveguides occurs before the power in the
other subwaveguide is a minimum.

The most common, simple, and intuitive theoretical analyses
of the GADC are based on coupled-mode theory (CMT) which
finds the coupling length, the coupled power distribution, and
the resonant grating period [1], [3]–[14]. Also, a transfer

Fig. 2. The refractive index profile of the semiconductor-glass waveguide
configuration. The bottom of the grating is the orgin.

matrix method (TMM) approach using the mode-matching
technique has been introduced to examine the power coupling
and radiation loss of the GADC structure [15]. To date,
CMT or TMM approaches have not been applied to GADC
structures with interacting leaky modes or to structures with
layers that have material losses.

Rather than add corrections to the CMT or TMM ap-
proaches, we use the Floquet–Bloch theory [16]–[19] to ana-
lyze the LM-GADC problem because it accounts for radiation
losses from leaky modes as well as material losses in the
various layers in a straightforward manner. In general, the
Floquet–Bloch analysis calculates radiation losses of the LM-
GADC from fundamental principles [2].

In Section II, a brief introduction of the Floquet–Bloch
theory [17] is presented. An example of the typical GADC
is discussed in Section III. Then, we analyze the LM-GADC
structure shown in Figs. 1 and 2. The complete field dis-
tributions and dispersion and attenuation characteristics are
discussed in Section IV. In Section V, the power coupling
mechanism of the semiconductor-glass LM-GADC is dis-
cussed.

II. PROBLEM FORMULATION

Consider a dielectric waveguide with arbitrary layers in-
cluding a periodic grating layer. The dielectric superstrate and
substrate regions are assumed to be half spaces. The dielectric
materials in each layer (except the grating layer) are isotropic
and homogeneous. A wave with time variation of the form

is assumed to propagate in the direction (see
Fig. 1), as The complex longitudinal propagation
constant is For the sake of simplicity assume the
field is invariant with respect to.

A. Characteristic Modes

For the GADC and LM-GADC structures, the field expres-
sions which are written in Floquet–Bloch form must satisfy
the boundary conditions at each interface. Assuming transverse
electric (TE) polarization, the-component of the electric field
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in the th layer can be written as

(1)

where is the grating wavenumber, is the grating
period, is the space harmonic order,indicates theth layer,
and is the amplitude of the th space harmonic. The
function is periodic and satisfies

The term is the complex propagation constant of the
th spatial harmonic and can be written as

(2)

where the real part of is the longitudinal propagation
constant of the th space harmonic, and , the imaginary
part of , is the attenuation constant due to leaky modes as
well as material losses. Similarly, the magnetic field along the

direction in the th layer, can be expressed as

(3)

where is the th space harmonic component of the
magnetic field in theth layer. Outside the grating layer, the
scalar Helmholtz equation can be written as

(4)

where is the free space wavenumber, is the
relative dielectric constant of theth layer, and the complex
transverse wavenumber for theth space harmonic in theth
layer is defined by

The interesting features of Floquet–Bloch modes, including
the generation of space harmonics results from the periodic
grating layer. Because the refractive index in the grating layer
is nonuniform and varies periodically along the propagation
direction, the permittivity can be expressed as a Fourier series

(5)

The field solution for TE modes in the grating layer is ob-
tained by solving the equivalent Maxwell’s equations instead
of (4)

(6)

and

(7)

where stands for the grating layer, and the variable is the
complex propagation constant of the zeroth spatial harmonic.
The vectors and are formed by the group
of spatial harmonics and , respectively, where

Fig. 3. The kinematic properties of the codirectional coupling of two Flo-
quet–Bloch modes. Mode A represents the mode of the “semiconductor
waveguide,” while Mode B is the mode of the “glass waveguide.”

and are defined by (1) and (3). For transverse
electric (TE) polarization, the square matrices and

have elements and
, respectively, where is the Kronecker

delta.
The solutions of the Helmholtz equation (4) are given by the

linear combination of and while
the equivalent Maxwell’s equations (6) and (7) can be solved
by the fourth-order Runge–Kutta method [20]. A resulting
characteristic equation is obtained by appropriately matching
the boundary conditions and simultaneously solving (6) and
(7). Considering TE polarization, the field components and
their normal derivatives must be continuous at each interface.
After appropriate substitution, we obtain a system of linear
equations with the unknown variable

where is a square matrix, and is the initial
value of the field at the bottom of the grating layer. The system
of linear equations has a nontrivial solution when [2]

(8)

After solving for the roots of (8) numerically [20], the Floquet
amplitudes of all space harmonics for the field distribution in
all layers can be evaluated.

B. Kinematic Properties

Many of the modal interaction features of grating-assisted
couplers can be understood by analyzing the “ ” plot
shown in Fig. 3. (The lines in the figure do not represent the
actual dispersion curves of the modes or the space harmonics.)
In the present case we will consider two Floquet–Bloch
modes of the LM-GADC, labeled mode and mode
When the modes do not interact, say at some position below
resonance (small values), mode represents the mode of
the semiconductor waveguide, while moderepresents the
mode of the glass waveguide. Away from resonance the field
distribution of the modes will be almost identical to the modes
of the individual subwaveguides in the absence of the other.
Mode A has an effective index that lies between 3.386
and 3.165, while mode has an effective index lying
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TABLE II
THE PARAMETERS OF GRATING ASSISTEDDIRECTIONAL COUPLERS

USING TWO DIFFERENT SUBWAVEGUIDES. SUBWAVEGUIDE S CONSISTS

OF LAYERS 7–15, WHILE SUBWAVEGUIDE G CONSISTS OF

LAYER 3. THE FREE-SPACE WAVELENGTH IS �0 = 1:55 �m

between 1.458 and 1.448. The lower bound on is 3.165
and the lower bound for is 1.448. In Fig. 3, the slope of
the line representing mode is 1/3.165 and the slope of the
line representing mode is 1/1.448. The actual dispersion
curves will lie slightly below the two dark lines of the figure.

The space harmonics for the two modes intersect at an
infinite number of positions, represented by the points
where represents the space harmonic of modeand rep-
resents the space harmonic of modeThe two cone regions
about the axis are the superstrate fast-wave region (FWR)
and substrate FWR. It should be noted that the fundamental
space harmonic for mode lies in the FWR of the substrate.
This means that for any grating period the glass mode will
be leaky. At resonance, where the lines cross, there can be
a number of leaky space harmonics. Fig. 3 shows four such
intersection points in the substrate FWR. The points to the
right of the axis represents leaky mode radiation in the
forward direction of the substrate while the points to the left
of the axis represents leaky mode radiation in the backward
direction of the substrate. Assuming and are the
slopes of the lines representing the two modes, the number of
space harmonics that leak to the substrate is the integer value

The GADC of Table I has over 60
leaky space harmonics near resonance while the LM-GADC
(Table II) has only four leaky space harmonics.

Since strong modal coupling occurs only in the vicinity of
the intersection points of Fig. 3, the dispersion curves for the
two modes will be shown only in the neighborhood of the

intersection. The relative shapes of the dispersion curves
in the neighborhood of are identical to the curve shapes
around the intersection.

III. GRATING-ASSISTEDDIRECTIONAL COUPLER

The conventional GADC problem, originally analyzed by
Marcuse [1], can be solved using the Floquet–Bloch theory

(a)

(b)

Fig. 4. The complex propagation constant of the two Floquet–Bloch modes,
modeA and modeB, for a GADC. The grating depth is 0.01�m. (a) The
modal attenuation coefficients which cross, and (b) the propagation constants
of the two space harmonics which split at resonance. The minimum separation,
�
min

=k of 6.5� 10�5, occurs at� = 14:041 �m:

[2]. The vacuum wavelength is assumed to be 1.5m in
Table I. Fig. 4 represents the typical characteristics of two
interacting Floquet–Bloch modes and shows the normalized
real and imaginary parts of the propagation constants, for
modes and as a function of the grating period for the
structure of Table I. The two curves in Fig. 4(b) correspond to

and where indicates the real part of the propagation
constant of the space harmonic for mode, and is
that of the space harmonic for mode.

When two modes are interacting at resonance, requirements
for strong coupling include the following:

1) phase-matching between one space harmonic of one
mode with another space harmonic of the interacting
mode and

2) the intensity distributions of the two modes must be
similar (as close as possible).

It can be seen from Fig. 4 that the first condition is met for
a range of grating periods which satisfy

(9)
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where the propagation constant of the first space harmonic
satisfies

(10)

so that (9) becomes

(11)

Equation (11) provides a relationship between the grating
period and the longitudinal propagation constants
of mode and mode and the “deviation wavenumber”
(see Fig. 4).

Although (11) ensures phase matching, it does not guarantee
that a large fraction of power will be transferred between
subwaveguides. To ensure significant power transfer the modes
must have nearly identical power distributions (the second
condition above). Modes and are closest to having
identical intensity shapes when their longitudinal propagation
constants differ by approximately the grating wavenumber.
This occurs when is a minimum.

The normalized attenuation for the two modes for the
structure of Table I is shown in Fig. 4. It should be noted
that all space harmonics for each mode exhibit identical
attenuation. In the vicinity of resonance, the power losses are
low and nearly identical for both modes, ranging from about
8 10 5/mm to 8.3 10 4/mm. Since these losses are
negligible, the coupling length can be estimated (with less
than 2% error) by [2]

(12)

The grating period corresponding to
produces a coupling length of about

11.5 mm or 7,700 grating periods for a grating depth of
0.01 m. This long coupling length occurs because of the
very weak grating. Stronger gratings produce much shorter
coupling lengths [2]. The grating period at the point whenis
a minimum differs only slightly from the grating period when

The propagation characteristics described in Fig. 4 illus-
trate the standard behavior for typical GADC devices which
exchange power between bound modes. A key point for the
GADC is that the modal losses are negligible for the typical
GADC so that the coupling efficiency approaches 100%, and
the coupling length is given by (12).

IV. L EAKY MODE GRATING-ASSISTED

DIRECTIONAL COUPLERS

Consider now the structure of the semiconductor/glass LM-
GADC, as shown in Figs. 1 and 2, with parameters given in
Table II. In the leaky mode coupler, subwaveguide S refers
to the semiconductor waveguide while subwaveguide G refers
to the glass waveguide. We assume that there are no material
losses in the layers, and the vacuum wavelength is 1.55m.
At grating periods far below resonance, the two modes
and have negligible interaction. The field of mode is
confined primarily to the semiconductor subwaveguide while
the field of mode is confined to the glass subwaveguide.

The effective index of mode is approximately 3.2 while the
effective index of mode is about 1.48. Since the refractive
index of the semiconductor material is much larger than that
of the glass, mode is always lossy with power leaking to
the semiconductor substrate. This is illustrated in Fig. 3 where
the “dispersion curve” for mode always lies in the substrate
fast wave region. (For the GADC with layer parameters given
in Table I, the superstrate and substrate fast wave regions are
almost identical and neither mode’s dispersion curve lies in a
fast wave region.)

The complex propagation constants for the two modes of
the LM-GADC are shown in Fig. 5 for a grating depth of
0.287 m. The space harmonic of mode interacts
with the space harmonic of mode. This interaction
point corresponds to the intersection point of Fig. 3. The
propagation constants of the two modes split, Fig. 5(b), as they
approach resonance while the attenuation curves [Fig. 5(b)]
cross. The minimum value of occurs at
the grating period m Using (12), assuming
the minimum value of the calculated coupling length is

mm which is approximately 1790 grating periods.
However, this estimated coupling length is too large because
the modal attenuation affects the true coupling length. (The
optimized coupling length, discussed later, is about 1.25 mm,
or about 1440 grating periods.)

As can be seen from Fig. 5(a), the curves representing
the attenuation constants cross at m some-
what below the resonant point whenis a minimum

m Near resonance, the attenuation of modehas
a maximum, while the attenuation of modeis a minimum.
These two features are usually exhibited in a resonant system
and indicates that a stop band occurs for modewhile mode

is in a passband.
The two key layer thicknesses affecting the coupling length

and the amount of power coupled from the region in the
vicinity of subwaveguide S to the region in the vicinity of
subwaveguide G, are (1) grating depth and (2) the thickness of
the spacer layer (Table II). In the present example, the tooth
height is 0.287 m and the grating period is approximately
0.86 m.

Because of the presence of the grating layer, the fields of
the LM-GADC and the GADC structures are expanded in an
infinite number of space harmonics. While the complete field
distributions consist of the summation of all space harmon-
ics, there are only a few space harmonics with significant
amplitudes. Away from resonance, only one space harmonic
is dominant, whereas at least two space harmonics have
significant amplitudes at the resonant condition. For mode
the and space harmonics are dominant, while other
space harmonics are negligible. For modethe and
space harmonics are dominant, while the others are negligible.

The complete field pattern can be obtained by the sum-
mation of all spatial harmonics. Fig. 6 shows the total field
distributions of mode and mode where mode represents
the “in-phase” (no zero-crossings of the electric field distribu-
tion between the waveguides) solution, and modedisplays
the “out-of-phase” (a single zero-crossing of the electric field
distribution between the waveguides) solution. (The imaginary
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(a)

(b)

Fig. 5. The complex propagation constant of the two Floquet–Bloch modes,
ModeA and ModeB; for a LM-GADC representing the semiconductor-glass
waveguide configuration. The grating depth is 0.287�m. (a) The attenuation
constant for the two modes and (b) the propagation constants of the two
space harmonics which split at resonance. The mimimum separation,�

min
=k

of 5 � 10�4, occurs at� = 0:86569 �m:

part of the fields are also shown in the figure.) Note that
both field distributions have almost identical intensities in both
subwaveguides. It is the inclusion of the space harmonics that
produces the “in-phase” and “out-of-phase” solutions for the
two modes. The addition or subtraction of these two solutions
puts the tandem waveguide power in either subwaveguide S
or subwaveguide G. In other words, a linear combination of
the two modes can produce a field distribution with most of
the light in one of the waveguides. The fine structure on the
field patterns in Fig. 6 indicates the excitation of higher order
space harmonics.

The propagation characteristics shown in Fig. 5 are plotted
as a function of the grating period. Although this is not a
true “ ” plot it illustrates modal characteristics as a
function of grating period. A “classic dispersion” curve is
shown in Fig. 7. Again, the figure represents the characteristics
in the neighborhood of the intersection point The pairs of
dots correspond to specific values of the grating period. The
dots and corresponding field distributions are given for three
different grating periods, (1) a value below resonance, (2)

Fig. 6. The optical field distribution at resonance. ModeA represents the
“in-phase” mode whileB is the “out-of-phase” mode. The term Re is for the
real part of the field and Im stands for the imaginary part.

a value at resonance and (3) avalue above resonance.
Below resonance, mode is confined to the semiconductor
subwaveguide and mode is confined to the glass sub-
waveguide. Above resonance, modehas most of its power
confined to the glass subguide and modeis confined to the
semiconductor subguide.

The two modes switch their “mode profile signatures” as
they progress through resonance. It is interesting to note
that the modal group velocity is for the
propagating mode. (All space harmonics associated with the
mode propagate with the same group velocityThis implies
the mode maintains a given shape as it propagates.) The
definition of the group velocity implies behaves as an
effective group index, The value of the effective group
index is a measure of where the optical intensities are confined.
For example, the effective group index of a mode confined to
the glass waveguide is approximately equal to the refractive
index of the glass. (Because the slope of the curves in
Fig. 7 can never be greater than one.) Below resonance, the
effective group index of mode is approximately equal
to the effective group index of mode above resonance.
Likewise, below resonance is approximately equal to
above resonance. In the former case, a majority of the optical
power is confined to the semiconductor, whereas, in the latter
case, a majority of the optical power is confined to the glass
guide. As the two modes progress through resonance, they
reach the point when This condition implies that
each mode has very similar optical distributions. Specifically,
the “in-phase” and “out-of-phase” modes have nearly identical
intensity patterns.

V. THE COUPLING MECHANISM

Excitation of the coupler from an external source such as
a connecting waveguide will generate all of the modes of the
LM-GADC. To minimize scattering at their interface, the fields
of the two waveguides (exciting and coupler waveguides)
must have similar shapes. A “smooth transition” can be
obtained with an exciting guide that is almost identical to
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Fig. 7. The “! � �” diagram at the intersectionI0;1: The field inserts in the figure are the real parts of the fields. The corresponding imaginary
parts (not shown) are relatively small.

the LM-GADC waveguide. In the present case, the exciting
waveguide will be assumed to be identical to the coupler
waveguide, except the input waveguide will not have a grating
at the semiconductor/glass interface (see Fig. 1). The input
waveguide has two trapped modes: one mode’s fields are
predominantly confined to the semiconductor subwaveguide,
while the second mode will have fields predominantly confined
to the glass subwaveguide. When the exciting waveguide
contains an incident field composed of only the semicon-
ductor mode, the fields in the semiconductor portion match
the fields of each of the two coupler modes. Near res-
onance, both coupler modes will be excited with almost
equal amplitudes, and the field in the glass subwaveguide
is negligible.

The two Floquet–Bloch modes of the LM-GADC are in
general nonorthogonal. As they propagate in thedirection,
there may be an exchange of power from one mode to the
other. (This power exchange between modes is not our present
concern.) The primary focus here is to understand how to
transfer or “couple” power between the two subwaveguides.
In particular, we discuss how to transform an initial power
distribution with power concentrated in the semiconductor
subwaveguide, say at to a transverse power distribution

with power concentrated in the glass subwaveguide, at the
distant point Physically, the LM-GADC will be
excited from the semiconductor/glass waveguide section using
the semiconductor mode that is incident from the region.
The excitation at dictates how the power is partitioned
between the two Bloch modes.

At resonance, the field shapes of the Bloch modes have spe-
cial and interesting characteristics. (Neither Bloch mode can
be normalized in the transverse direction, using
their intensity distributions. However, we have normalized
their intensity patterns in the vicinity of the tandem waveguide
using finite limits on including layers 2–15 of Table II.)
By choosing a particular phase of one mode relative to the
other, both Bloch modes have peak values (real parts) in the
subwaveguide S, however, the fields in the subwaveguide G
are out of phase.

To appreciate the special shapes of the complex LM-GADC
modes at resonance, we explore how a combination of the two
modes allows an excellent match to an input exciting field. The
general solution to the fields in the coupler must be written as
a linear combination of the two Floquet–Bloch modes as

(13)
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Fig. 8. The coupling efficiency as a function of propagation distance.

where and are the expansion coefficients that measure
the partition of the power into the modes. For the present
discussion, assume the coupler is excited with all the power
in the semiconductor subwaveguide. At the input the
field in the coupler is obtained by summing the two modes of
Fig. 6, implying As the two modes progress
along the direction, the continuously evolving field shape
amounts to a redistribution of power in the subwaveguides of
the composite waveguide.

We estimate the powers and in subwaveguides S
and G, respectively, as [2]

For the structure whose dispersion characteristics are shown
in Fig. 5, the percentage of the total input power coupled to
the glass waveguide, as a function of grating length is
shown in Fig. 8. At the excitation point, the total waveguide
power is concentrated in the semiconductor side. The power
is transferred to the glass as the LM-GADC modes propagate.

Fig. 8 also shows the coupled power versus grating length
with various grating periods of the LM-GADC structure of
Fig. 1. The curves indicate that the maximum coupling drops
as the coupler is detuned from resonance. At resonance,
we obtain the maximum coupled power and the optimum
coupling length. Off resonance, both the coupled power and
the optimum coupling length are reduced. As shown in Fig. 8,
the maximum coupled power is greater than 40% with a
coupling length of 1.25 mm, and the optimum grating period
is 0.8657 m.

We now determine the coupling characteristics from the
raw dispersion data of Fig. 6. Due to the “symmetric” and
“asymmetric” shapes of the two fields illustrated in Fig. 6, it
is convenient to write the fields in terms of two functions
and . The function represents the field distribution
in the semiconductor subwaveguide while represents the
field in the glass subwaveguide. In addition, the two functions

satisfy

for Glass subwaveguide

for Semiconductor subwaveguide

It is interesting to note that the function is approximately
equivalent to the field distribution of the semiconductor mode
in the absence of a grating layer. Similarly, the function
is approximately equivalent to the field distribution of the
glass mode in the absence of the grating layer. Thus, when
the LM-GADC is excited with the “semiconductor mode,”
the excitation field shape is On the other hand, when
the LM-GADC is excited with a “glass mode,” the excitation
field shape is

The overall field distribution as given by (1) across the
layers can be written as

for th layer

Due to the nature of the field shapes as shown in Fig. 6,
the Floquet–Bloch modes can be approximated with the two
dominant space harmonics of modesand These dominant
space harmonics are characterized by the two functions
and

Using the approximate expressions for the modes, the total
field becomes (putting

At an arbitrary position the total field becomes

As seen from Fig. 5, the attenuation coefficients of the
two modes near resonance have approximately equal values

so that the term can be dropped, so that
the exponent
The resulting field simplifies to

(14)

The first term in the brackets characterizes the field in the
semiconductor guide while the second term characterizes the
field in glass. To find the optimum coupling length, where
the power in the glass guide is maximized, the magnitude of
the second term must be maximized relative to, and the
optimum value will represent the best coupling length. In
the optimization process, the phase term
is dropped because the envelope amplitude, characterized by
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is to be maximized. After simplifica-
tion, the optimum coupling length is found to be a solution
to the transcendental equation

(15)

(Because the attenuation coefficients are approximately equal,
the term has been replaced by.) Although the results
obtained for the optimum coupling length assumes approxi-
mately equal values of attenuation for both modes, a similar
result can be obtained when modal attenuations are different.
In the limiting case of (15) reduces to (12).

To determine the coupling length for optimum power trans-
fer for the structure described in Table II, the value of the
deviation coefficient and

are substituted into (15). These optimum values
produce a coupling length of mm which agrees
with the value obtained from the numerical computations for
the coupling efficiency, shown in Fig. 8.

VI. OPTIMIZATION

The coupling depends on the combination of the difference
between and and the attenuation coefficients of the
modes. In many cases modal attenuation is a dominant factor
resulting in low power transfer. When one mode attenuates
much faster than the second, it is difficult to achieve high
percentages of power transfer. A major result of this analysis
is that the attenuation of the Bloch modes plays a significant
role in determining the optimum coupling length in grating
couplers.

The field distributions of the two Floquet–Bloch modes
evolve as the plot progresses through resonance. As the
modes exchange their “signatures,” it can be shown that there
is a single point where both have the same group velocity and
the deviation wavenumber is minimized. This implies that
they have almost equal intensity shapes. When this condition
occurs, the usual “in-phase” and “out-of-phase” fields allow for
a linear combination of the modes to produce a distribution of
power which is concentrated in one waveguide or the other. If
the modes are combined (say added) with equal amplitudes,
the resulting field places the power in the semiconductor
subwaveguide. Likewise, if the modes are subtracted, the
power is placed in the glass subwaveguide. Furthermore,
when one mode vanishes over a distance smaller than
only one mode remains and field shape in the composite
waveguide is invariant with Therefore, to find the maximum
coupling, the attenuation characteristics of the two modes must
be evaluated.

The key parameter that affects modal attenuation is the
coupling strength. (Both the grating depth, period and grating
duty cycle affect the coupling strength. A 50% duty cycle is
used in all of our calculations.) Fig. 9 shows the normalized
attenuation coefficient as a function of grating depth for modes
A and B. The grating period is fixed at 0.8670m, which is
well below the resonant condition. In addition, the thickness
of layer 6 (see Table II), is 0.3175m. It should be noted that
other values of the grating period and spacer layer thickness
produce a differently shaped curve, but all resulting curves are

Fig. 9. The normalized modal attenuation for the LM-GADC as a function
of tooth height. The grating period is fixed at 0.8670�m. The grating period
chosen for this calculation is not near the resonance condition.

similar in that their maximum and minimum values oflie
in ranges similar to those shown in Fig. 9. Namely, mode
has minimum values at grating depths near 0 and 0.3m.
Attenuation of mode is rather insensitive to grating depth.

Grating depths that produce the best coupling efficiency are
in those ranges where is very close to In addition, these
ranges correspond to the smallest values of attenuation. These
best ranges occur at grating depths near zero and 0.3m.
At grating depths near zero, the coupling strength is very
small which produces very small values. These small

values extrapolate to relatively long coupling lengths
that are typically impractical. When the grating depth is

increased, the difference of the two attenuationsand
increases. Although the LM-GADC structure changes coupling
strength with an increased tooth height, the low values of either

or the length when the mode amplitude drops
to 1/e of its initial value, are smaller than computed values
of where the best coupling length occurs. Thus, the
mode attenuates before a 180relative phase change occurs.
For tooth heights near zero, the coupling efficiency is generally
below 10% while for grating depths near 0.3m, the coupling
efficiency is about 40%.

The coupled power to the glass region as shown in Fig. 8
reaches a peak value and then drops back to near zero. This
classic oscillation (with auxiliary attenuation due to leakage of
power) occurs because power shifts back and forth between
the two subwaveguides. The power in the semiconductor
subwaveguide oscillates out of phase relative to the power in
the glass subwaveguide. At the optimum coupling length when
the power in the glass peaks, the power in the semiconductor
waveguide is at a minimum.

Fig. 10 shows the coupled power as a function of tooth
height, assuming the parameters given in Table II. In fact the
optimum value of approximately 40% or about 4 dB, occurs at
a grating depth of 0.287m. The optimum coupling length is

mm. Even though the coupling length increases
for grating depths above 0.287m, the coupling efficiency
drops.
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Fig. 10. The effect of tooth height variations on the coupling efficiency. The
waveguide parameters are given in Table II. (a) The coupling efficiency and
(b) the optimum coupling length.

Fig. 11. The coupling efficiency about the resonant wavelength
� = 1:55 �m: The resonant grating period is� = 0:86569 �m:

When the grating period or the wavelength is changed,
the optimum coupling is reduced. For example, in Fig. 8, the
grating period m requires the coupler to have a
length of mm. If the actual length is different from
1.25 mm, the coupling efficiency will be decreased.

A characteristic of the LM-GADC is its frequency selectiv-
ity or its narrow-banded property. Using the results of Fig. 8,
the coupling efficiency for the 1.25 mm length LM-GADC as a
function wavelength deviation about m is shown
in Fig. 11. We find the FWHP of the coupling bandwidth is
about 9 Å.

VII. CONCLUSION

Floquet–Bloch analysis has been been applied to the study
of LM-GADC’s that are fabricated with two very different
materials such as semiconductor materials (refractive index of
approximately 3.2) and glass (refractive index of about 1.48).
The complex propagation constants of the two lowest-order
modes of the tandem waveguide system are determined versus
various parameters such as grating period and grating depth.

Assuming the semiconductor and glass waveguide dimensions
and refractive indexes are those given in Table II, the optimum
grating depth is 0.28m. The resulting coupling efficiency is
about 40%, or about 4 dB, and the optimum coupling length is
1.25 mm. The grating period at the optimum is about 0.86m.

The coupling efficiency obtained by this method is applica-
ble to the two dimensional model where the slab has infinite
extension in the lateral direction. Generally, slab models are
applicable to similar three dimensional structures when the
widths of the modes in the lateral (-axis) dimension are
large compared to the widths in the transverse (-direction)
dimension.

The simple LM-GADC is not an efficient coupler compared
to the GADC. While the GADC of Table I can transfer almost
100 percent of its power from one region (first subwaveguide)
to a second region (second subwaveguide), the LM-GADC
of Table II can transfer only about half of its input power
from one guide to a second guide. The major reason for this
difference is due to the fact that the LM-GADC has more
radiation loss and the corresponding modal attenuation plays
a dominant role in determining the optimum transfer length.
By incorporating multilayer reflective stacks in the substrate,
we expect the coupling efficiency can be increased to 70%. In
the present examples, the modal attenuation of the LM-GADC
of Table I is about one order of magnitude greater than the
modal attenuation of the GADC of Table I. The LM-GADC
losses are due mainly to power leaking to the substrate.

Finally, Floquet–Bloch modes exchange “signatures” as
they progress through resonance. The classical coupling length
(when losses are negligible such as for the GADC), is deter-
mined from the minimum longitudinal propagation constant
separation using (12). When losses become significant
(such as with the LM-GADC), the coupling length must be
determined from (15).
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