Team is creating power-generating method

The research team is looking into ways to power medical devices.

BY JAMES NEIGHBORS
The Shorthorn staff

A research team at UTA has developed a prototype of a micro-windmill that might be able to generate enough power to run small devices such as cellphones.

The microelectromechanical systems team is

ONLINE

Read more stories related to engineering research at www.theshorthorn.com/ news.

led by electrical engineering professors Smitha Rao and J.C. Chiao. The design of the micro-windmill is not yet optimized, Chiao said about the one-year-old project, which is in its early stages. Future research will include exploring the physics behind the

small scale device, including the effects of humidity and friction which are some problems that are not typically critical with its large-scale counterparts, he said.

"Imagine this," Chiao said.
"If you could put a remote device in the middle of nowhere that could harvest energy, you could use that energy to run electronics without the need for a traditional power source and with less environmental impact."

The team is also looking into possible ways to harness

this technology to efficiently power medical devices, Chiao said.

The team used a cost-effective approach that opens the door for large-scale production, he said. Though Chiao does not anticipate making the device available directly to the general public, the team hopes to work with companies to include the technology in everyday objects.

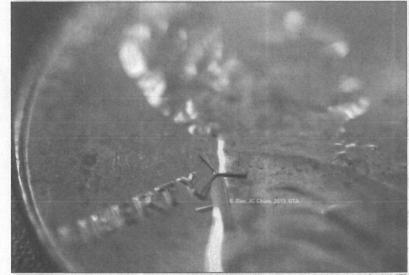
Chiao said he was thrilled that companies from around the

Courtesy: UTA

Research associate Smitha Rao, left, and electrical engineering professor J.C. Chiao developed a prototype of a micro-windmill that is capable of generating enough energy to power small devices. The device can be placed on surfaces such as highways, walls and cellular devices to generate power.

world, including from Taiwan, Germany and France, had already contacted the team about the future of the micro-windmill. The team has initiated the patenting process, he said.

Mechanical engineering junior William Seidmeyer from Magnolia, Texas said he came to UTA because he wants to take part in research worked on the project for like this. worked on the project for about one year, said Chiao.


"Projects like these are the reason I went to UTA," he said. "This windmill is genius and proves UTA is more than capable of advancing technology beyond our wildest dreams."

Rao, the lead on this project, who completed her master's and Ph.D at UTA, has

worked on the project for about one year, said Chiao. Rao began her work and research at UTA while she was still a student and has been on the research team for eight years, Chiao said.

@JAMES NEIGHBORS

james.neighbors@mavs.uta.edu

Courtesy: UT

A prototype of a micro-windmill that is capable of generating enough energy to power small devices lays on a penny. The micro-windmill was developed by research associate Smitha Rao and electrical engineering professor J.C. Chiao.