

A PDB file of alanine

Copy and paste the coordinates 🕮 1:lennon.ccr.buffalo.edu - lennon - SSH Secure Shell Edit View Window Help □ □ □ □ M Ø Ø №? Quick Connect 📋 Profiles \$molecule -0 1 Molecular charge -9.333 23.768 -8.409 24.090 7.664 -9.259 22.490 21.738 7.046 -8.771 Multiplicity of the -8.523 22.651 9.579 -9.084 23.360 electronic wave 9.518 -8.468 21.698 8.820 -7.517 23.034 function 7.948 -10.700 22.062 7.747 -11.616 22.848 Connected to lennon.ccr.buffalo.edu SSH2 - aes128-cbc - hmac-md5

Geometry optimized

Final geometry

Final dipol moment

Atomic charges

Geometry optimized

Coordinates after geometry optimization

Molecular oscillations calculations

Results of oscillations calculations

IR intensity as a function of oscillation frequency

Copy and paste optimal geometry

Electrostatic potential at the atomic positions

Final values of the electrostatic potential at the atomic positions

Electrostatic potential at the grid points

Definition of the grid points 🕮 1:lennon.ccr.buffalo.edu - lennon* - SSH Secure Shell Edit View Window 🗾 🖺 🖺 🕒 🖊 🎉 🎒 🧼 🥀 🙌 Quick Connect Profiles ianlty 200 igdesp electrostatic poter. mem static 512 Static memory mem total 2000 ! Total memory \$end Number of grid points \$plots in the x direction Electrostatic potential on a grid 5.0 5.0 5.0 Minimum and 5.0 maximum values \$end "ala-ele.in" 37L, 942C Connected to lennon.ccr.buffalo.edu

Results are written in the plot.esp file

Electrostatic potential at one points

Three diemsional grid definition

Results of electrostatic potential grid calculations

ViewerPro - [cyto.pdb] <u>V</u>iew <u>T</u>ools <u>M</u>odify <u>W</u>indow Initial geometry of * 📭 🖶 📜 🚳 🙈 cytosine ø 100 m Ø_T 媢

Initial geometry of cytosine

Geometry optimization

Geometry optimization is converged

Converting qchem output into a PDB file

Final geometry of

cytosine

Coordinates after geometry optimization

Frequency calculations

Calculations are finished correctly <

Generating two pdb files of a molecular oscillation from q-chem output

The program generates two PDB files of two phases of the oscillation

QM molecular oscillations of cytosine

Visualization of the

molecular oscillation

Optimal coordinates after geometry optimization

Single point calculations (no geometry optimization)

Details of the plot calculations 🕮 1:bono.ccr.buffalo.edu - U2 - SSH Secure Shell Edit View Window Help 📕 🖺 🖺 🦳 🙌 🤌 🛚 🗾 Quick Connect 🛮 📄 Profiles Number of points m<mark>em total</mark> 2000 ! Total memory in the x direction \$plots Electrostatic potential on a grid Minimum and maximum \$end values of the grid in the x direction Connected to bono.ccr.buffalo.edu SSH2 - aes128-cbc - hmac-m

Results of the grid calculations are written in the plot.esp file

Executing the converting program

Output from qchem

gchem

Cube file

Visualization of the electrostatic potential using the Molekel program

Plane cut through the electrostatic potential

Initial geometry of an alanine and water dimer

Initial coordinates of the dimer

Geometry optimization using cartessian 🕮 1:bono.ccr.buffalo.edu - U2 - SSH Secure Shell coordinates Edit View Window Help 📕 🖺 🔓 🦰 🖊 🚇 📮 🦠 🤣 🥀? 📝 Quick Connect 🛚 🧰 Profiles -4.085 1.333 -0.153-3.828 0.595 1.281 \$end \$rem ! geometry optimiza jobtype opt exchange b3lyp ! hybrid exchange 6-31+G* ! Pople's double ze basis ! cartessian optimi geom opt coords mem static ! Static memory 512 mem total ! Total memory 2000 \$end

Connected to bono.ccr.buffalo.edu

SSH2 - aes128-cbc - hmac-md

Optimization converged

🡺 ViewerPro - [alaw-opt-3.pdb] Geometrical 騿 File Edit <u>Vi</u>ew <u>T</u>ools <u>M</u>odify <u>W</u>indow <u>H</u>elp parameters of H 🚱 the dimer - 3 Dimer - 3 2.02 $I_{\rm T}$ ø. -174.1

Intermolecular distance R

Final energy for a constrained distance

QM properties of alanine-water dimer

Atomic charges before and after hydrogen bonding

QM properties of alanine-water dimer

Atomic charges before and after hydrogen bonding

QM properties of alanine-water dimer

Vibration involving

the hydrogen move

Initial geometry ViewerPro - [cytw-1.pdb] of the cytosine 騿 <u>Fi</u>le <u>E</u>dit <u>V</u>iew <u>T</u>ools <u>M</u>odify <u>W</u>indow <u>H</u>elp and water dimer 🗅 🚅 🔲 🥔 🐰 📭 💼 📜 🕝 🛆 H 🚱 **∕**o

Initial geometry of the cytosine and water dimer

Optimization converged

Final geometry of Dimer -1

Final geometry of Dimer -2

Final geometry of Dimer - 3

Calculations with a constrained distance

Constrained distance between two atoms

Final energy with a constrained distance

Energy as a function of a constrained distance

Initial geometry of Thymine and Adenine dimer

Initial geometry of the dimer taken from an experimental PDB file

```
🕮 2:bono.ccr.buffalo.edu - U2 - SSH Secure Shell
     <u>E</u>dit
         <u>V</u>iew <u>W</u>indow <u>H</u>elp
             Quick Connect 📄 Profiles
$molecule
 0 1
      -22.499 41.963 108.627
      -21.341 41.372 108.173
      -20.381 41.762 108.495
      -21.396 40.312 107.336
      -20.105 39.697 106.831
      -20.044 38.655 107.127
      -20.082 39.730 105.744
      -19.243 40.231 107.216
      -22.680 39.773 106.909
      -22.800 38.809 106.158
"ta-opt.in" 43L, 1701C
Connected to bono.ccr.buffalo.edu
                                     SSH2 - aes128-cbc - hmac-r
```

Geometry optimization of the dimer

Optimization converged

A series of calculations for the constrained R value

A constrained distance between two atoms

Final energy for a constrained distance

The energy as a function of the R(N-H) distance

A constrained interatomic distance

The energy as a function of the R(N-H) distance

Two tautomers of alanine

Geometry optimization

Geometry optimization with a constrained distance

🡺 ViewerPro - [ace-1w.pdb] Alanine and File Edit View Tools Modify Window water dimers * Pa 🕮 📜 🚳 🔬 H 🚱 **+** €. 1.96 1.79 1.80 1.95

Geometry optimization

Calculations with a constrained distance

Energy of the Microsoft Excel - ace-w.xls proton transfer Format Edit Insert Tools Data Window Adobe PDF 🛅 🖺 🕶 🍼 19 -344.850017687 С D Е G Α В Proton Transfer between Acetic Acid and Water 45.0 3 4 40.0 6 7 8 35.0 Energy (kcal/mol) 30.0 25.0 10 20.0 12 13 15.0 14 10.0 15 5.0 16 17 0.0 18 2.2 2.4 2.6 0.8 1.0 1.2 2.0 2.8 19 20 Distance Ro.H (Angstrom)

Geometry optimization

Geometry optimization with a constrained distance

Energy of proton transfer in the dimer

5 Spartan `06 - ace-1:M001 Electrostatic File Edit Model Geometry Build Setup Display Search potential

Electrostatic potential of hydrogen bonded dimer

QM tautomerization - Cytosine

Geometry optimization of three cytosine tautomers

QM tautomerization - Cytosine

Geometry optimization of three cytosine tautomers

Final results of the calculations

Energy of the first phase of proton transfer

Energy of the second phase of proton transfer

Two tautomers of the cysteine and water dimer

Energies of the calculated dimers

Energy of proton transfer

Two tautomers of the cysteine water dimer

Energy of proton transfer between tautomers of the dimer

Two tautomers of a cysteine water trimer

Energy of proton transfer in cytosine dimer and trimer

Electrostatic potential of cytosine tautomer - 1

Electrostatic potential of cytosine tautomer - 2

Electrostatic potential of cytosine tautomer - 3

Electrostatic potential of cytosine water dimer (AW)

Electrostatic potential of cytosine water dimer (BW)

运 Spartan `06 - cyt-cw:M001 File Edit Model Geometry Build Setup Display Search Electrostatic potential of cytosine water dimer (CW)

Electrostatic potential of cytosine water dimer (DW)

Menshutkin reaction

Reaction coordinate for reactants

Constrained geometry optimization

Reaction coordinate for products

Creating a peptide bond

Reaction coordinate in reactants

Geometry optimization with a constrained distance

Reaction coordinate in products

Geometry optimization with a constrained distance

Transition state structure of the peptide reaction

Transition state structure of the peptide reaction, which is stabilized by a water molecule

Reactants and products of the peptide reaction in a presence of a water molecule

Reaction ViewerPro - [react-w.pdb] coordinate for 騎 File Edit <u>V</u>iew <u>T</u>ools <u>M</u>odify <u>W</u>indow <u>H</u>elp reactants 🗅 🚅 🔛 🥌 🐰 🗈 📵 📜 🖝 🚕 📗 H 🕖 📗 R(C-N)

Geometry optimization with a constrained distance

Geometry optimization with a constrained distance

Microsoft Excel - profile-2.xls Reaction profile of the Insert Format Tools Data Window Help peptide reaction with a Q | № K | % E E - ✓ | 10 -Y Ar presence of a water E18 G Н Κ molecule 2 Peptide Reaction with Water - B3LYP/6-31+G* 3 60.0 50.0 40.0 Energy (kcal/mo) 8 30.0 10 11 20.0 12 13 10.0 14 15 0.0 16 17 -10.0 18 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 19 Reaction Coordinate R_{N-C} - R_{C-O} - R_{TS} (Angstrom)

Definition of pKa

Reactants in the deprotonation reaction of

aspartic acid with water

Products in the deprotonation reaction of aspartic acid with water

Geometry optimization with constrained distances and angles

Potential energy surface of the deprotonation reaction

Separate calculations for all molecules used in the reaction

Calculations of the anion in the singlet electronic state

Aspartic Acid

Deprotonation energy:

E = 173 kcal/mol

Cysteine

Deprotonation energy:

E = 181 kcal/mol

Glutamic Acid

Deprotonation energy:

E = 199 kcal/mol

Histidine (δ)

Deprotonation energy:

E = 181 kcal/mol

Histidine (ϵ)

Deprotonation energy:

E = 175 kcal/mol

Threonine

Deprotonation energy:

E = 196 kcal/mol

Triptophan

Deprotonation energy:

E = 180 kcal/mol

Tyrosine

Deprotonation energy:

E = 178 kcal/mol

Stabilization of neutral aspartic 🡺 ViewerPro - [asp-wat.pdb] acid and water by 騎 File Edit <u>V</u>iew <u>T</u>ools <u>M</u>odify <u>W</u>indow two water н 🕢 molecules 1.78 2.01 **%** Ø_T 1.91 **/**= 痐

Stabilization of ionic aspartic acid and water by two water molecules

Optimal geometry of hydronium ion

Optimal geometry of a dimer of hydronium ion and a water molecule

Geometry optimization with a constrained distance and angles

Potential energy surface of the deprotonation reaction of hydronium ion

Deprotonation energy of hydronium ion calculated in a presence of a water molecule

Schrodinger equation

$$H\Psi = E\Psi$$

The reaction cycle of bacteriorhodopsin Asp96H Asp85 Asp96 **★ Asp85H** proton flux

The active site of bacteriorhodopsin

The trans conformer

of retinal

E = 570 nm (17500 cm-1)

A small computational model of retinal

Geometry optimization of retinal with a constrined dihedral angle

Calculations of five excited electronic states of retinal model using TD-DFT

The bigger model of

retinal

The full model of

retinal

The results of the calculations

Energies of the ground electronic state, the first excited singlet and triple

