

Geometry optimization of the alanine water dimer

Technical details of the QM calculations

Final structure after

QM geometry optimization

Geometry optimization of ViewerPro - [compl] alanine in the <u>File Edit View Tools Modify Window</u> presence of the H (H) fixed MM atoms of water

Cartesian coordinates of the alanine only

Additional commands of the QM calculations

MM atoms are represented by point charges and vdW spheres

vdW spheres of the QM atoms

Final QM/MM geometry (red) of alanine, compared with full QM geometry of the dimer (blue)

Energy components in the QM/MM calculations

Final total energy of QM alanine, calculated in the presence of MM

Dipole moment of QM alanine with the presence of MM water molecule

Experimental structure of the PCAF protein with a ligand

The ligand of the PCAF protein

PDB file of the ligand, should have the residue name: QMM

The ligand with hydrogen atoms

Antechamber program creating the preparations file of the ligand

The preparation file, generated by the "antechamber" program

Merging the pdb structure of the ligand with the pdb structure of the protein

The "tleap" program reading the preparation file

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
     Quick Connect Profiles
nph.pdb
         prt.in
                       prt.pbs prt.xyz qchem2pdb.inp
[mfrein@bono nph]$ tleap
-I: Adding /util/amber/amber9/dat/leap/prep to search path.
-I: Adding /util/amber/amber9/dat/leap/lib to search path.
-I: Adding /util/amber/amber9/dat/leap/parm to search path.
-I: Adding /util/amber/amber9/dat/leap/cmd to search path.
Welcome to LEaP!
Sourcing leapro: /util/amber/amber9/dat/leap/cmd/leapro
Log file: ./leap.log
Loading parameters: /util/amber/amber9/dat/leap/parm/parm99.dat
Reading title:
PARM99 for DNA,RNA,AA, organic molecules, TIP3P wat. Polariz.& LP i
Loading library: /util/amber/amber9/dat/leap/lib/all nucleic94.lib
Loading library: /util/amber/amber9/dat/leap/lib/all amino94.lib
Loading library: /util/amber/amber9/dat/leap/lib/all aminoct94.lib
Loading library: /util/amber/amber9/dat/leap/lib/all aminont94.lib
Loadind library: /util/amber/amber9/dat/leap/lib/ions94.lib
Loading Library: /util/amber/amber9/dat/leap/lib/solvents.lib
 loadAmberPrep nph.in
```

The "tleap" program reading the PDB file of the protein and the ligand

The "tleap" program adding Chlorine anions for neutralization

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
     Quick Connect Profiles
  total atoms in file: 1011
  Leap added 989 missing atoms according to residue templa
      2 Heavy
      987 H / lone pairs
> addIons P C1- 0
5 Cl- ions required to neutralize.
Adding 5 counter ions to "P" using 1A grid
Grid extends from solute vdw + 2.47 to 8.47
                1.00 Angstrom.
Resolution:
grid build: 0 sec
 (no solvent present)
Calculating grid charges
charges: 5 sec
Placed C1- in P at (2.81, -10.01, 9.40).
Placed C1- in P at (6.81, 16.99, 3.40).
Placed C1- in P at (9.81, -15.01, 8.40).
Placed C1- in P at (8.81, -3.01, -13.60).
Placed C1- in P at (21.81, -0.01, 7.40).
Done adding ions.
```

The "tleap" program saving the PDB file, the topology file and the coordinates file

Quiting the "tleap" program

```
1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
 🖫 🥔 🐧 📕 🎉 🕒 🖺 🔒 🕒 🖊 🕍 🗳 🙋 🉌
 🗾 Quick Connect 🛚 📄 Profiles
 <OMM 833>: C12 CE1
                      CD
                           CE<sub>2</sub>
 <OMM 833>:
            CD
                 CR1
                     CEl
                           HE1
 <OMM 833>:
            CE1 CZ
                      CR1
                           HR1
            CR1 CR2 CZ
                           ΗZ
 <QMM 833>:
 <QMM 833>:
            CZ
                 CE2 CR2 HR2
 <QMM 833>: CD
                 CR2 CE2 H24
 total 403 improper torsions applied
 6 improper torsions in old prep form
Building H-Bond parameters.
Not Marking per-residue atom chain types.
Marking per-residue atom chain types.
  (Residues lacking connect0/connect1 -
   these don't have chain types marked:
                total affected
        res
        CLYS
        NGLY
 (no restraints)
```

Running the "perl" script generating the input file for the QM/MM calculations

The input file for the QM/MM calculations

The PBS script for the QM/MM calculations

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
  File Edit View Window Help
     🚔 🔃 🔎 🎉 🖺 🖺 🦰 | 🚜 | 🗯 🗯 | 🦠 | 🧼 🥀 🖓
 Quick Connect Profiles
#!/bin/tcsh
#PBS -S /bin/tcsh
₩PBS -1 nodes=4:ppn=2
#PB% -1 walltime=01:00:00
#PBS -a debua
#PBS -VX
#PBS -o prt.log
#PBS -N prt
#PBS -j oe
set JOB = "prt"
cd $PBS 0 WORKDIR
source $MODULESHOME/init/tcsh
module purge
module load modules
module load gchem
seteny ONEEXE -DONEEXE
setenv QCSCRATCH /scratch
setenv QCLOCALSCR $PBSTMPDIR
cat $PBS NODEFILE | awk '{printf "%s.ccr.buffalo.edu\n", $1}' > tmp. $$
setenv PBS NODEFILE tmp.$$
setenv P4 RSHCOMMAND /usr/bin/rsh
set NPROCS = 'cat $PBS NODEFILE | wc -1'
qchem -pbs -np $NPROCS $JOB.in $JOB.out
                                                            1,1
```

Final results of the QM/MM calculations

The optimal calculated geometry of the ligand (blue) compared with the initial experimental geometry of the ligand (green)

Total energy of the ligand in the protein (left) and in the gas phase (right)

Atomic charges of the ligand in the protein (left) and in the gas phase (right)

Dipole moment of the ligand in the protein (left) and in the gas phase (right)

Molecular oscillation calculations of the ligand inside the protein

Final results of the oscillation hessian calculations

High frequency oscillations of the ligand in the protein (left) and in the gas phase (right)

Experimental structure of the mannitol enzyme

The active site of the enzyme, which is connected by two chemical bonds with the protein backbone

Two chemical bonds have been cut, and free chemical valences of the active site have been filled out by hydrogens

Heavy atoms from both sides of the backbone have been removed

The active site of the enzyme has been temporary separated from the protein structure

The "antechamber" program has been used to generate the preparation file of the active site

Missing parameters of the active site have been included in the parameter file

The new pdb structure of the active site has been merged with the protein

structure

🕮 2:u2.ccr.buffalo.edu - U2 - SSH Secure Shell							
<u>F</u> ile <u>E</u>	dit <u>V</u> ie	ew <u>W</u>	<u>/</u> indov	,	<u>H</u> elp		
Quick Connect 📄 Profiles							
ATOM	66	CG2	VAL	A	382	112.510 6.877 -16.248	
ATOM	67	N	ALA	A	383	111.745 2.288 -16.184	
ATOM	68	CA	ALA	A	383	111.135 1.040 -15.738	
ATOM	69	CB	ALA	A	383	111.354 -0.043 -16.783	
TER	70	A	ALA		383		
ATOM	71	0	QMM	С	1	109.869 -2.599 -13.011	
ATOM	72	С	QMM	С	1	110.642 -2.124 -12.178	
ATOM	73	HC	QMM	С	1	110.834 -2.630 -11.337	
ATOM	74	CA	QMM	С	1	111.310 -0.773 -12.414	
ATOM	75	N	QMM	С	1	110.907 -0.240 -13.709	
ATOM	76	HTl	QMM	С	1	109.914 -0.124 -13.728	
ATOM	77	HT2	QMM	С	1	111.182 -0.874 -14.431	

The main backbone of the protein has been divided into three chains

The "tleap" program has been used to generate the topology and PDB file of the enzyme with the modified active site

First the parameter and the preparation files of the active site have been loaded

After loading the PDB file of the system, the program generated additional atoms

The "desc" command has been used for description of the ALA residue

```
🕮 2:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
           Quick Connect  Profiles
      750 H / lone pairs
> desc P.383
RESIDUE name: CALA
RESIDUE sequence number: 383
RESIDUE PDB sequence number: 9
Type: protein
Connection atoms:
Connect atom 0: A<N 1>
Improper torsions:
Contents:
A<0XT 11>
A<0 10>
A<C 9>
A<HB3 8>
A<HB2 7>
```

The "remove" command has been used to delete atoms between the protein and the active site

In the similar way, protein atoms from the other side of the active site have been removed

The PDB file, the topology file and the coordinates file have been saved

The input file for minimization of all hydrogens

```
2:u2.ccr.buffalo.edu - u2 - SSH Secure Shell

File Edit View Window Help

Quick Connect Profiles

2000 steps of minimization
acntrl
imin=1, ntmin=2, drms=0.01,
ntb=0, cut=12,
ntc=1, ntf=1,
ntpr=100,
maxcyc=2000,
ntr=1,
restraint_wt=500.0,
restraint_wt=500.0,
restraintmask='(!@H=)',
```

The pbs script for minimization

```
🕮 2:u2.ccr.buffalo.edu - u2 - SSH Secure Shell
  File Edit View Window Help
 🖫 🎒 🐧 🔎 🏂 🖺 🖺 🕒 👭 🛍 🛍 🗳 🦠
 📝 Quick Connect 🛚 📄 Profiles
#PBS -S /bin/tcsh
#PBS -1 walltime=01:00:00
#PBS -1 nodes=2:GM:ppn=2
#PBS -q debug
#PBS -m e
#PBS −j oe
#PBS -o enz-min.out
source &MODULESHOME/init/tcsh
module load amber/8
# Set number of processors to number requested from PBS
# (requires nodes=1:ppn=N syntax)
set NP = 'cat $PBS NODEFILE | wc -1'
cd $PBS 0 WORKDIR
$DO PARALLEL $AMBERHOME/exe/sander -0 -i min.in -o prt.min.out -c prt.xyz
-ref prt.xyz -p prt.top -r prt.min.xyz
```

Generating the pdb file from the minimized protein coordinates

The "qmm_setup" perl script has been used to create the q-chem input file for the QM/MM calculations

```
🕮 2:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View
               Window Help
                   🏹 Quick Connect 📄 Profiles
            l mfrein furlani
                              1040 Apr 11 16:15 NEWPDB.PDB
            l mfrein furlani
                                40 Apr 11 16:21 gmm.par
           1 mfrein furlani 61538 Apr 11 16:32 enz-ini.pdb
           1 mfrein furlani 1537 Apr 11 16:33 qmm.in
           l mfrein furlani
                             1040 Apr 11 16:33 gmm.pdb
           l mfrein furlani 14080 Apr 11 16:52 gmmm setup.pl
           1 mfrein furlani 87922 Apr 11 16:52 prt.in
           l mfrein furlani 99645 Apr 11 17:38 prt.pdb
           l mfrein furlani 579922 Apr 11 17:40 prt.top
            Amfrein furlani 54284 Apr 11 17:40 prt.xyz
           l Afrein furlani
                             17654 Apr 11 17:40 leap.log
[mfrein@bono enzyme]$ ls
1VRV.pdb
                          ANTECHAMBER BOND TYPE.ACO
                                                     enz-ini.pdb
                                                     leap.log
ANTECHAMBER AC.AC
                          ANTECHAMBER PREP.AC
ANTECHAMBER AC.ACO
                          ANTECHAMBER PREP.ACO
                                                     NEWPOB. PDB
ANTECHAMBER AMIBCC.AC
                          ATOMTYPE, INF
                                                     PREP. INF
ANTECHAMBER AMIBCC PRE.AC
                          divcon.in
                                                     prt.in
ANTECHAMBER BOND TYPE.AC A divcon.out
                                                     prt.pdb
[mfrein@bono enzyme]$ ./qmmm setup.pl
```

The q-chem input file for the QM/MM calculations

The charge of the molecule should be changed

```
🕮 1:u2.ccr.buffalo.edu - u2 - SSH Secure Shell
     Edit <u>V</u>iew <u>W</u>indow
                      <u>H</u>elp
                🗾 🖺 🖺 🦰 🚜 🙇 🎾 🦠 🤣 🉌
 Quick Connect
               Profiles
 $molecule
 -2 1
     109.856
              -2.587 -13.004
              -2.114 -12.227
     110.693
     111.500
              -2.677 -11.798
     111.304
              -0.771 -12.416
     110.896
              -0.243 -13.677
     109.885
              -0.266 -13.784
     111.273
              -0.728 -14.484
     112.391
             -0.872 -12.414
     110.919
             0.170 -11.321
     111.083
             1.192 -11.672
     111.632
              -0.028 -10.517
     109.596
              -0.018 -10.915
     109.457
             0.699 -9.458
     108.061
               0.628 -9.012
     110.354
              -0.046 -8.537
     109.899
               2.086 -9.662
 $end
```

The calculations with the fixed position of two atoms of the ligand

The geometry optimization in cartesian coordinates

The calculated optimal geometry and the initial experimental geometry (green) of the ligand in the protein

The fixed atoms used in the caclulations

Experimental structure of the renin protein

The active site of the renin protein

The protonation reaction of the renin ligand

The pdb file of the renin ligand

Generating the preparation file for the ligand

The parameter file of the ligand

The pdb file of the substrat of the reaction

Generating the preparation file for the substrat

The parameter file of the substrat

Merging the ligand pdb file with the protein structure

Merging the substrat pdb file with the protein structure

The initial pdb file of the protein with the ligand and the substrat

Loading the parameter file of the ligand in the "tleap" program

Loading the parameter file of the substrat in the "tleap" program

Loading the preparation file of the ligand in the "tleap" program

Loading the preparation file of the substrat in the "tleap" program

Loading the pdb file of the protein, the ligand and the substrat in the "tleap" program

Removing atoms of the protein which are too close to the ligand

```
🕮 ubunix.buffalo.edu - ubunix - SSH Secure Shell
  File Edit View Window Help
               🏂 🖺 🖫 🖀 🖊 🖊 🔊 🗳 🦠
 Quick Connect Profiles
A<C 13>
A<HD22 12>
A<HD21 11>
A<ND2 10>
A<0D1 9>
A<CG 8>
A<HB3 7>
A<HB2 6>
```

Adding sodium cations (Na+) to neutralize the protein system

```
🕮 ubunix.buffalo.edu - ubunix - SSH Secure Shell
  File Edit View Window Help
               🗾 🖺 🖺 🦰 M 🙇 🛍 🦠 🤣 🦎
 Quick Connect  Profiles
> addIons P Na+ 0
9 Na+ ions required to neutralize.
Adding 9 counter ions to "P" using 1A grid
Grid extends from solute vdw + 1.87 to 7.87
Resolution:
                 1.00 Angstrom.
grid build: 0 sec
 (no solvent present)
Calculating grid charges
charges: 31 sec
Placed Na+ in P at (-20.85, 35.79, -8.31).
Placed Na+ in P at (11.15, 31.79, -4.31).
Placed Na+ in P at (16.15, 50.79, 12.69).
Placed Na+ in P at (8.15, 19.79, 11.69).
Placed Na+ in P at (41.15, 30.79, -2.31).
Placed Na+ in P at (36.15, 33.79, 9.69).
Placed Na+ in P at (-2.85, 32.79, -21.31).
Placed Na+ in P at (27.15, 21.79, 19.69).
Placed Na+ in P at (-4.85, 22.79, 0.69).
```

Saving the pdb file of the protein system

```
🕮 ubunix.buffalo.edu - ubunix - SSH Secure Shell
 File Edit View Window Help
                🌌 | 🖺 🖺 🦳 | 🚜 | 🙇 🛍 | 🦠 | 🧼 庵?
 Quick Connect Profiles
Adding 9 counter ions to "P" using 1A grid
Grid extends from solute vdw + 1.87 to 7.87
Resolution:
                 1.00 Angstrom.
grid build: 0 sec
 (no solvent present)
Calculating grid charges
charges: 31 sec
Placed Na+ in P at (-20.85, 35.79, -8.31).
VPlaced Na+ in P at (11.15, 31.79, -4.31).
Alaced Na+ in P at (16.15, 50.79, 12.69).
Placed Na+ in P at (8.15, 19.79, 11.69).
Placed Na+ in P at (41.15, 30.79, -2.31).
Placed Na+ in P at (36.15, 33.79, 9.69).
Place Na+ in P at (-2.85, 32.79, -21.31).
Placed Na+ in P at (27.15, 21.79, 19.69).
Placed Na+ in P at (-4.85, 22.79, 0.69).
Done adding ions.
> savePdb P prt.pdb
```

Saving the topology and the coordinates files

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
 🖫 🥔 🐧 📕 🏂 🖺 🖺 🦰 🖊 🗯 🛍 🎾 🦠 🤣 🉌
 Quick Connect  Profiles
 (no solvent present)
Calculating grid charges
charges: 23 sec
Placed Na+ in P at (-20.85, 35.79, -8.31).
Placed Na+ in P at (11.15, 31.79, -4.31).
Placed Na+ in P at (16.15, 50.79, 12.69).
Placed Na+ in P at (8.15, 19.79, 11.69).
Placed Na+ in P at (41.15, 30.79, -2.31).
Placed Na+ in P at (36.15, 33.79, 9.69).
Naced Na+ in P at (-2.85, 32.79, -21.31).
Placed Na+ in P at (27.15, 21.79, 19.69).
Placed Na+ in P at (-4.85, 22.79, 0.69).
Done adding ions.
> savePdb P prt.pdb
Writing pdb file: prt.pdb
 Converting N-terminal residue name to PDB format: NGLY
 Converting C-germinal residue name to PDB format: CARG
 saveAmberParm P prt.top prt.xyz
```

The input file for the minimization of the protein system

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
    Quick Connect  Profiles
2000 steps of minimization
 acntrl
   imin=1, ntmin=2, drms=0.01,
   ntb=0, cut=12,
   ntc=1, ntf=1,
   ntpr=100,
   maxcyc=2000,
   ntr=1,
   restraint_wt=500.0,
   restraintmask='(!@H=)',
```

The pbs script for the minimization

```
🕮 1:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
  File Edit View Window Help
     🚔 🔃 🚚 🎉 🖺 🖺 🦰 | 🙌 | 🎒 🗯 | 🧇 🉌
 🗾 Quick Connect 🛮 🧰 Profiles
#PBS -1 nodes=2:GM:ppn=2
#PBS -q debug
#PBS -m e
#PBS -j oe
#PBS -o prt-min.out
source $MODULESHOME/init/tcsh
module load amber/8
#\Set number of processors to number requested from PBS
  (requires nodes=1:ppn=N syntax)
set NP = 'cat $PBS NODEFILE | wc -1'
cd $PBS_O_WORKDIR
DO PARALLEL $AMBERHOME/exe/sander -0 -i min.in -o prt.min.out
-c prt.xyz -ref prt.xyz -p prt.top -r prt.min.xyz
```

Generating the pdb file of the minimized protein structure

Creating the q-chem input file for the QM/MM calculations

The script assumes that the topology file has a name "prt.top", the pdb file has a name "prt.pdb", and the QM molecules have residue names with the "QM" keyword

The input file of the q-chem program, the charge of the molecule is "+1"

There are two reaction coordinates:

N-H distance O-H distance

The calculations for the reactants valley

N-H distance constrained

The calculations for the products valley

O-H distance constrained

The energy of the QM systems as the function of the reaction coordinate in the protein

The energy of the QM systems as the function of the reaction coordinate in the gas phase

The final results of the reaction profile calculations in the protein and in the gas phase

Experimental structure of the yellow protein

The active site of the yellow protein

The pdb file of the ligand

Creating the preparation file of the ligand, using the "antechmaber" program

Creating the parameter file of the ligand

Merging the pdb structure of the ligand with the structure of the protein

Running the "tleap" program, loading the parameter file of the ligand

Loading the preparation file of the ligand

Loading the pdb file of the protein and the ligand

Removing protein atoms which are too close to the ligand

Saving the pdb, the topology and the coordinates files of the protein system

Creating the input file for the minimization

```
3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell

File Edit View Window Help

Quick Connect Profiles

Quick Connect Profiles

Quick Connect Profiles

Contrl

imin=1, ntmin=2, drms=0.01,
ntb=0, cut=12,
ntc=1, ntf=1,
ntpr=100,
maxcyc=2000,
ntr=1,
restraint_wt=500.0,
restraint_wt=500.0,
restraintmask='(!@H=)',
```

Creating the pbs script for the minimization

```
🕮 3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
               📕 🖺 🖺 🦰 M 🛍 🛍 🐃 🧇 🦠
 Quick Connect  Profiles
#PBS -1 nodes=2:GM:ppn=2
#PBS -q debug
#PBS -m e
₩PBS -j oe
#PB% -o prt-min.out
source $MODULESHOME/init/tcsh
module load amber/8
# Set number of processors to number requested from PBS
# (requires nodes=1:ppn=N syntax)
set NP = 'cat $PBS NODEFILE | wc -1'
cd $PBS 0 WORKDIR
DO PARALLEL $AMBERHOME/exe/sander -0 -i min.in -o prt.min.out
-c prt.xyz -ref prt.xyz -p prt.top -r prt.min.xyz
```

Converting the minimized coordinates into the pdb format

```
🎮 3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
     Edit View Window Help
                📕 🖺 🖺 🦰 M 🛍 🛍 🐃 🧇 🦠
 📝 Quick Connect 🛮 🧰 Profiles
cd $PBS O WORKDIR
$DO PARALLEL $AMBERHOME/exe/sander -0 -i min.in -o prt.min.out
-c prt.xyz -ref prt.xyz -p prt.top -r prt.min.xyz
\mfrein@bono yellow]$ ls
10NV.pdb
                                        prt.min.xyz
                           divcon.out
ANTECHAMBER AC.AC
                           leap.log
                                        prt.pdb
ANTECHAMBER AC.ACO
                           mdinfo
                                        prt.top
ANTECHAMBER AMIBCC.AC
                           min.in
                                        prt.xyz
ANTECHAMBER AMIBCC PRE.AC
                           NEWPDB.PDB
                                        qmm.in
ANTECHAMBER BOND TYPE.AC
                           PREP.INF
                                        qmm.par
ANTECHAMBER BOND TYPE.ACO
                           prt-ini.pdb gmm.pdb
ANTECHAMBER PREP.AC
                           prt-min.out qmm.top
ANTECHAMBER PREP.ACO
                           prt.min.out qmm.xyz
                           prt-min.pbs yel-ini.pdb
ATOMTYPE.INF
divcon.in
                           prt.min.pdb
[mfrein@bono yellow]$ ambpdb -p prt.top < prt.min.xyz > prt.pdb
```

Generating the q-chem input file for the QM/MM calculations

```
🕮 3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
  File Edit View Window Help
                🏂 | 🖺 🖷 📄 | 🚜 | 🙇 🗯 | 🦠 | 🤣 🥀?
 Quick Connect  Profiles
10DV.pdb
                           divcon.out
                                        prt.min.xyz
ANTECHAMBER AC.AC
                                        prt.pdb
                           leap.log
ANTECHAMBER AC.ACO
                           mdinfo
                                        prt.top
ANTECHAMBER AMIBCC.AC
                           min.in
                                        prt.xyz
ANTECHAMBER AMIBCC PRE.AC
                           NEWPDB.PDB
                                        qmm.in
ANTECHAMBER BOND TYPE.AC
                           PREP.INF
                                        qmm.par
ANTECHAMBER BOND TYPE.ACO prt-ini.pdb qmm.pdb
ANTECHAMBER PREP.AC
                           prt-min.out qmm.top
ANYECHAMBER PREP.ACO
                           prt.min.out
                                        qmm.xyz
ATOMXYPE.INF
                           prt-min.pbs
                                        yel-ini.pdb
divconin
                           prt.min.pdb
[mfrein@Nono yellow]$ pwd
/san/projectsl/mfrein/amber/teaching/yellow
[mfrein@bono wellow]$ cd /san/projectsl/mfrein/q-chem/teaching/ye
11ow
[mfrein@bono yellow]$ ls
        prt.log prt.pbs prt.top
                                        gmmm setup.pl
prt.in prt.out prt.rdb
                         qchem2pdb.pl tddft
[mfrein@bono yellow]$ ./qmmm setup.pl
```

Geometry optimization of the ligand inside the protein

The calculated optimal geometry of the ligand inside the protein

TDDFT calculations in the protein, based on the optimal geometry of the ligand in the protein

The excitation energy of the first excited singlet electronic state

```
🕮 3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
 🖫 | 🥌 🐧 | 🗩 😕 | 🛍 🗈 🕒 | 👫 | 🙇 🛍 🗳 🥀 🤄
 Quick Connect Profiles
            TDDFT Excitation Energies
 Excited state 1: excitation energy (eV) = 2.0273
   Total energy for state 1: -612.988431875110
   Multiplicity: Triplet
   Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
   Strength: 0.0000
   X: D( 36) --> V( 1) amplitude = -0.2146
   X: D(39) --> V(1) amplitude = 0.9742
 Excated state 2: excitation energy (eV) = 3.1289
   Total energy for state 2: -612.947947904404
   Multiplicity: Triplet
   Trans. Mom.: 0.0000 X 0.0000 Y 0.0000 Z
   Strength : 0.0000
   X: D(38) --> V(1) amplitude = 0.9634
 Excited state 3: excitation energy (eV) =
   Total energy for state 3: -612.934700508301
   Multiplicity: Singlet
   Trans. Mom.: -0.0358 X -0.3380 Y -0.1460 Z
```

Geometry optimization of the ligand in the gas phase

The calculated optimal geometry of the ligand in the gas phase

TDDFT calculations of the ligand in the gas phase, for the optimal geometry of the ligand in the gas phase

The excitation energy of the first excited singlet electronic state of the ligand

```
🎮 3:u2.ccr.buffalo.edu - U2 - SSH Secure Shell
 File Edit View Window Help
 🖫 | 🞒 🔃 🔎 🏂 | 🖺 🖺 🤚 🦰 | 🚜 | 🗯 🛍 | 🦠 | 🧼 🉌 🥂 ?
 Quick Connect Profiles
            TDDFT Excitation Energies
 Excited state 1: excitation energy (eV) =
   Total energy for state 1:
                                -498.130817792483
   Multiplicity: Triplet
   Trans. Mom.: 0.0000 X
                           0.0000 Y 0.0000 Z
    Strength: 0.0000
   X: D( 36) --> V( 1) amplitude = -0.2579
   X: D(39) --> V(1) amplitude = 0.9554
                2: excitation energy (eV) = 2.8546
    Total energy for state 2: -498.108990939551
   Multiplicity: Triplet
                          0.0000 Y 0.0000 Z
    Trans. Mom.: 0.0000 X
    Strength : 0.0000
   X: D(38) --> V(1) amplitude = 0.9593
   X: D(38) --> V(4) amplitude = -0.2406
                3: excitation energy (eV) =
 Excited state
    Total energy for state
                                -498.093025919498
   Multiplicity: Singlet
    Trans. Mom.: 0.0328 X 0.0582 Y 0.0555 Z
```

The comparison the calculated excitation energies of the ligand with the experiemntal UV spectrum

$$\Delta E(cal.) = -23 \text{ nm}$$

 $\Delta E(exp.) = -14 \text{ nm}$

