Chapter 15. Acids and Bases

What we will learn:

- Bronsted acids and bases
- Acid-base properties of water
- pH a measure of acidity
- Strength of acids and bases
- Weak acids (bases) and acid (base) ionization constant
- Diprotic and polypropic acids
- Molecular structure and strength of acids
- Acid-base properties of slats
- Acid-base properties of oxides and hydroxides
- Lewis acids and bases

Bronsted Acids and Bases

An acid is a substance capable of donating a proton, a base is a substance capable of accepting a proton

Concept of a conjugative acid-base pair

$$
HCl(aq) + H2O(l) \rightarrow H3O+(aq) + Cl+(aq)
$$

$$
CH_3COOH(aq) + H_2O(l) \rightarrow CH_3COO(aq) + H_3O^+(aq)
$$

$$
NH3(aq) + H2O(l) \rightarrow NH4+(aq) + OH2(aq)
$$

The conjugate acid is a species that results from the addition of a proton to a Bronsted base

Problem

Identify the conjugate acid-base pairs in the reaction between ammonia and hydrofloruoric acid in water solution

```
NH<sub>3</sub>(aq) + HF(aq) → NH<sub>4</sub><sup>+</sup>(aq) + F-(aq)
```
NH₃ has one less H atom and one less positive charge than NH₄⁺. F⁻ has one less H atom and one more negative charge than HF. Therefore the conjugate acid-base pairs are

```
\mathsf{NH}_{\mathsf{4}^+} (acid) and \mathsf{NH}_{\mathsf{3}^-} (base)
HF (acid) and F- (base)
```
Acid-base properties of water

 $H_2O(l) \rightarrow H^+(aq) + OH^-(aq)$

$$
H2O(l) + H2O(l) \rightarrow H3O+(aq) + OH-(aq)
$$

Ion product of water

Because only a very small fraction of water are ionized, the concentration of water [H $_{\rm 2}$ O] remains almost unchanged

$$
K_c = [H_3O^*][OH]
$$

$$
K_c = [H^*][OH]
$$

Ion product constant

$$
K_{w} = [H_{3}O^{+}][OH^{1}] = [H^{+}][OH^{1}]
$$

The product of the molar concentration of H+ and OH- at a particular temperature

$$
K_{w} = (1.0 \times 10^{-7})(1.0 \times 10^{-7})
$$

= 1.0 x 10⁻¹⁴

$$
K_{w} = [H^+] [OH]
$$

= 1.0 x 10⁻¹⁴

Problem

The concentration of OH ions in a certain household ammonia cleaning solution is 0.0025 M. Calculate the concentration of H⁺

Solution

$$
[H^+] = K_w / [OH]
$$

= (1.0 x 10⁻¹⁴) / 0.0025 = 4.0 x 10⁻¹² M

pH - a measure of acidity

The pH of a solution is the negative logarithm (common) of the hydrogen ion concentration (in mol/L)

$$
pH = -log [H3O+]
$$

$$
pH = -log [H+]
$$

$$
[H_3O^+] = 10^{-pH}
$$

$$
[H^+] = 10^{-pH}
$$

[H+] [OH-] = K w = 1.0 x 10-14 -(log[H+] + log[OH-]) = -log(1.0 x 10-14) -log[H+] - log[OH-] = 14.0 pH + pOH = 14.0

Problem

The concentration of H⁺ ions in a bottle of table wine was 3.2 x 10⁻⁴ M right after the cork was removed. Only half of the wine was consumed. The other half after it had been standing open to the air for a month, was found to have a hydrogen concentration equal to 1.0 x 10-3 *M*. Calculate the pH of the wine on these two occasions.

Solution

$$
pH = -log[H^+]
$$

 $=$ $-log(3.2 \times 10^{-4})$ $=$ 3.49

Strength of acids and bases

Strong acids are strong electrolytes, and they are assumed to ionize completely in water

$$
HCl(aq) + H2O(l) \rightarrow H3O+(aq) + Cl+(aq)
$$

$$
HNO3(aq) + H2O(l) \rightarrow H3O+(aq) + NO3(aq)
$$

$$
HClO_{4}(aq) + H_{2}O(l) \rightarrow H_{3}O^{+}(aq) + ClO_{4}^{-}(aq)
$$

$$
H2SO4(aq) + H2O(l) \rightarrow H3O+(aq) + HSO4(aq)
$$

Weak acids

The acids which ionize only to a limited extend in water

 $CH_3COOH(aq) + H_2O(l) \rightarrow H_3O^+(aq) + CH_3COO^-(aq)$

Strong bases

The bases which are strong electrolytes that ionize completely in water

```
NaOH(aq) → Na<sup>+</sup>(aq) + OH<sup>-</sup>(aq)
```

```
KOH(aq) → K<sup>+</sup>(aq) + OH<sup>-</sup>(aq)
```

```
Ba(OH)<sub>2</sub>(aq) → Ba+(aq) + 2OH<sup>-</sup>(aq)
```
Weak bases

The bases which are weak electrolytes

*NH*₃(aq) → *NH*₄⁺(aq) + OH⁻(aq)

Summary

- If an acid is strong, its conjugate base has no measurable strength
- H_3O^+ is the strongest acid that can exist in water solution. Thus HCl which is stronger acid than ${\sf H}_{\tiny 2}$ O reacts with water completly to form ${\sf H}_{\tiny 3}$ O $^{\scriptscriptstyle +}$ and Cl $^{\scriptscriptstyle +}$

 HC (Qq) + $H_2O(l)$ \rightarrow $H_3O^+(aq)$ + $Cl^-(aq)$

Acids weaker than $\mathsf{H}_2\mathsf{O}$ react with water to some extent, producing H_3O^* and their conjugate bases

 $HF(aq) + H_2O(l) \to H_3O^+(aq) + F^-(aq)$

• The OH ion is the strongest base that can exist in water solution

Weak acids and acid ionization constants

The acid ionization constant K_a is the equilibrium constant for the ionization *of the acid*

 $HA(aq) + H_2O(l) \rightarrow H_3O^+(aq) + A^-(aq)$

HA(aq) → *H*⁺(aq) + *A*⁻(aq)

- *K a ' = [H3 O+] [A-] / [HA]*
- *K a = [H+] [A-] / [HA]*

Problem

Calculate the pH of 0.50 *M* HF solution at 25C

Solution

HF(aq) \leq *H*+(aq) + *F*-(aq) *K a = [H+] [F-] / [HF]* K_a = 7.1 x 10⁻⁴ HF \implies H^* + F^- Initial (*M*) 0.50 0.00 0.00 Change (*M*) -x x x x Equilibrium (*M*) 0.50-x x x

$$
K_a = (x) (x) / (0.50-x) = 7.1 \times 10^{-4}
$$

$$
x^2 + 7.1 \times 10^{-4}x - 3.6 \times 10^{-4} = 0
$$

$$
ax^2 + bx + c = 0
$$

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2}
$$

$$
=\frac{1}{2a}
$$

$$
x = 5.6 \times 10^{-3} M
$$
 or $-6.4 \times 10^{-3} M$

[HF] =
$$
0.050 - 5.6 \times 10^{-3} M
$$
 = $0.044 M$

 $[H^+]$ = 5.6 x 10⁻³ *M*

 $[F]$ $=$ 5.6 x 10⁻³ M

pH = $-log(5.6 \times 10^{-3}) = 2.25$

Percent ionization

P = [H+] / [HA] x 100%

Problem

Calculate percent ionization of 0.036 M HNO₂, having [H⁺] = 3.8 x 10⁻³ M

 $P = 3.8 \times 10^{-3} M / 0.036 M \times 100\%$

 $P = 11\%$

Weak basis and base ionization constants

The base ionization constant $K_{\scriptscriptstyle b}$ is the equilibrium constant for the ionization *of the base*

B(aq) + H2 O(l) D *BH+(aq) + OH- (aq)*

$$
K_b = \frac{[BH^+][OH^-]}{[B]}
$$

Example

$$
NH_{3}(aq) + H_{2}O(l) \Leftrightarrow NH_{4}^{+}(aq) + OH^{+}(aq)
$$

$$
K_{b} = \frac{[NH_{4}^{+}][OH^{-}]}{[NH_{3}]}
$$

$$
K_{b} = 1.8 \times 10^{-5}
$$

Problem

What is the pH of a 0.40 *M* ammonia solution ?

$$
K_b = [NH_a^+][OH]/[NH_a]
$$

$$
K_b
$$
 = 1.8 x 10⁻⁵

Equilibrium (M) 0.40 - x x x x

$$
K_a = (x)(x) / (0.40 - x) = 1.8 \times 10^{-5}
$$

$$
x^2 + 1.8 \times 10^{-5}x - 0.72 \times 10^{-5} = 0
$$

$$
ax^2 + bx + c = 0
$$

$$
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
$$

$$
x = 2.7 \times 10^{-3} M
$$

- [OH-] = 2.7 x 10-3 *M*
- pOH = $-log(2.7 \times 10^{-3})$ = 2.57
- pH = 14.0 2.57 = 11.43

Relationship between ionization constants of acids and bases

Example

$$
CH_3COOH(aq)
$$
 \Rightarrow $H^+(aq) + CH_3COO(aq)$

$$
K_a = [H^*][CH_3COO]/[CH_3COOH]
$$

*CH*₃COO (aq) + *H*₂O(*l*) → C*H*₃COO*H*(aq) + OH (aq)

$$
K_b = [OH][CH_3COOH]/[CH_3COO]
$$

$$
K_{a}K_{b} = [H^+][OH]
$$

 = K w

Diprotic and polyprotic acids

An acid which releases more than one proton during its dissociation

Example

- $H_2CO_3(aq)$ \Rightarrow $H^+(aq) + HCO_3^-$
- *HCO3 - (aq)* D *H+(aq) + CO3*

(aq) $K_{a1} = [H^+] [HCO_{3}] / [H_{2}CO_{3}]$ ²⁻(aq) $K_{a2} = [H^+] [CO_3^{2}] / [HCO_3^{-}]$

Problem

Calculate the concentration of all the species after dissociation of oxalic acid (H₂C₂O₄) in a 0.10 *M* solution

Oxalic acid dissociates in two steps

 $H_2C_2O_4$ (aq) \Rightarrow $H^*(aq)$ + HC_2O_4 (aq) K_a = 6.5 x 10⁻² M HC_2O_4 $\qquad \qquad \rightarrow \qquad H^*$ $+$ $C_2O_4^{2}$ $K_a^{\prime \prime}$ = 6.1 x 10⁻⁵ *M* Step 1 $H_2 C_2 O_4$ \Rightarrow H^* + $HC_2 O_4$ **Initial (***M***)** 0.10 0 0 0 Change (M) $-x$ $+x$ $+x$ Equilibrium (M) 0.10 - x x x

The dissociation constant $\mathcal{K}_{a}^{'}$ is defined as

$$
K_a' = [H^*][HC_2O_4]/[H_2C_2O_4]
$$

Therefore

$$
K_a' = (x) (x) / (0.10 - x)
$$

\n
$$
x^2 + 6.5 x 10^{-2}x - 6.5 x 10^{-3} = 0
$$

\n
$$
x = 0.054 M
$$

The concentrations after the first step

$$
[H+] = 0.054 M
$$

\n
$$
[HC2O4]2 = 0.054 M
$$

\n
$$
[H2C2O4]2 = (0.10 - 0.054) M = 0.046 M
$$

Step 2 (we start from the final concentrations of the first step)

Hc ₂ O ₄	H ⁺	+ $C_2O_4^{2}$	
Initial (M)	0.054	0.054	0
Change (M)	-y	+y	+y
Equilibrium (M)	0.054 - y	0.054 + y	y
$K_a^* = [H^*] [C_2O_4^2] / [HC_2O_4]$			
6.1 x 10 ⁻⁵	= (0.054 + y) y / (0.054 - y)		
y = 6.1 x 10 ⁻⁵ M			
$[H_2C_2O_4]$	= 0.046 M		
$[H_2O_4]$	= (0.054 - 6.1 x 10 ⁻⁵)	= 0.054 M	
$[H^*]$	= (0.054 + 6.1 x 10 ⁻⁵)	= 0.054 M	
$[C_2O_4^2]$	= 6.1 x 10 ⁻⁵ M		
$[OH^*$	= 1.0 x 10 ⁻¹⁴ /0.054	= 1.9 x 10 ⁻¹³ M	

Molecular structure and the strength of acids

HX(aq) \leftrightarrows *H*+*(aq)* + *X*-*(aq)*

1. Bond enthalpy *(bigger enthalpy = weaker acid)*

2. Polarity of the bond *(bigger polarity = stronger acid)*

$$
H^{\delta+}-X^{\delta-}
$$

Hydrohalic acids

A series of acids formed by halogen atoms (F, Cl, Br, I)

Strength

HF << HCl < HBr < HI

Oxoacids

A series of acids containing H, O and one other element Z

 H

- = nitrous acid
- = nitric acid
- = carbonic acid
- = sulfuric acid
- = phosphoric acid

Polarity of the O-H bond

$$
> Z - O^{\delta^-} - H^{\delta^+}
$$

1. Oxoacids with different central atom

Bigger electronegativity of the central Z atom = stronger acid

 $\mathsf{HClO}_3 \mathsf{>HBrO}_3$

2. Oxoacids with the same central atom

Bigger oxidation number = stronger acid

 $HClO₄$ > $HClO₃$ > $HClO₂$ > $HClO$

Properties of salts

A salt is an ionic compound formed by a reaction between an acid and a base

Hydrolisis

A reaction between a salt with water

Salts that produce neutral solutions

(cation from a strong base) K^+ , Na⁺, ... (anion from a strong acid) NO_3^- , $SO_4^{2^-}$, ...

NaNO3 (aq) D *Na+(aq) + NO3 - (aq)*

Salts that produce basic solutions

(cation from a strong base) K^+ , Na⁺, ... (anion from a weak acid) $CH₃COO₇, CO₃², ...$

 $CH₃COONa(s)$ \Rightarrow $Na⁺(aq) + CH₃COO⁻(aq)$

 CH_3COO ⁻(aq) + $H_2O(l)$ \Rightarrow $CH_3COOH(aq) + OH^{-}(aq)$

$$
K_b = [CH_3COOH][OH]/[CH_3COO]
$$

 $= 5.6 \times 10^{-10}$

Percent of hydrolysis

% Hydrolysis = [CH3 COO-] hydrolized / [CH3 COO-] initial x 100%

Problem

Calculate the pH of a 0.15 M solution of sodium acetate (CH₃COONa). What is percent of hydrolysis ?

In solution CH₃COONa dissocites completely into Na⁺ and CH₃COO⁻. The $CH₃COO⁻$ ion is the conjugate base of the weak $CH₃COOH$ acid, therefore it will react to some extent with water, producing $\mathsf{CH}_{_{3}}\mathsf{COOH}$ and OH $^{\scriptscriptstyle +}.$

Step 1 (a complete dissociation of the $\mathrm{CH_{3}COON}$ a salt)

Step 2 (the acetate ion will react with water)

We are starting from final concentrations of the first step, and we ignore the ionization of water

$$
pH = 14.0 - 5.04
$$

= 8.96

% Hydrolysis =
$$
[CH_3COOJ_{hydrolized}/[CH_3COOJ_{initial} \times 100\%
$$

- $[CH_{3}COO_{\parallel_{\text{initial}}}$ = 0.15 *M*
- $[CH_{3}COO_{n_{hydroilized}} = x = 9.2 \times 10^{-6} M$
- % Hydrolysis = $(9.2 \times 10^{-6}) / 0.15 \times 100\%$
	- $= 0.0061\%$

Salts that produce acids solutions

(cation from a weak base) $NH_4^+, ...$ (anion from a strong acid) $Cl₁, F₂, ...$

Step 1

*NH*₄Cl(aq) $\qquad \Rightarrow$ *NH*₄⁺(aq) + Cl⁻(aq)

Step 2

$$
NH_4^+(aq) + H_2O(l) \qquad \Rightarrow \quad NH_3(aq) + H_3O^+(aq)
$$

$$
NH_4^+(aq) \qquad \Rightarrow \quad NH_3(aq) + H^+(aq)
$$

Equilibrium constant of the second step

 K_{a} = *[NH₃]* [H⁺] / [NH₄⁺]

The dissociation constants of the acid-base pair are related

$$
K_{a}K_{b} = K_{w}
$$

The dissociation constant of the base is

$$
K_b
$$
 = 1.8 x 10⁻⁵

Therefore

$$
K_a = K_w/K_b = (1.0 \times 10^{-14}) / (1.8 \times 10^{-5})
$$

= 5.6 × 10⁻¹⁰

Because H+ ions are produced, the pH of the solution decreases

Salts in which both the cation and anion hydrolyze

 $\mathsf{K}_{_{\mathrm{b}}}$ > $\mathsf{K}_{_{\mathrm{a}}}$ the solution is basis

(anion will hydrolize rather than cation, generating more OH⁻)

K_b < K_a the solution is acidic *(cation will hydrolize rather than anion, generating more H⁺)*

 $\mathsf{K}_{_{\mathrm{b}}}$ \sim $\mathsf{K}_{_{\mathrm{a}}}$ the solution is neutral

Lewis acids and bases

A Lewis acid accepts a pair of electrons

A Lewis base donates a pair of electrons

Example

