Chapter 15. Acids and Bases

What we will learn:

- Bronsted acids and bases
- Acid-base properties of water
- pH a measure of acidity
- Strength of acids and bases
- Weak acids (bases) and acid (base) ionization constant
- Diprotic and polypropic acids
- Molecular structure and strength of acids
- Acid-base properties of slats
- Acid-base properties of oxides and hydroxides
- Lewis acids and bases

Bronsted Acids and Bases

An acid is a substance capable of donating a proton, a base is a substance capable of accepting a proton

Concept of a conjugative acid-base pair

$$HCI(aq) + H_2O(l) \rightarrow H_3O^{+}(aq) + CI^{-}(aq)$$

$$CH_{3}COOH(aq) + H_{2}O(l) \rightarrow CH_{3}COO^{-}(aq) + H_{3}O^{+}(aq)$$

$$NH_{3}(aq) + H_{2}O(l) \rightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$$

The conjugate acid is a species that results from the addition of a proton to a Bronsted base

Problem

Identify the conjugate acid-base pairs in the reaction between ammonia and hydrofloruoric acid in water solution

```
NH_{3}(aq) + HF(aq) \rightarrow NH_{4}^{+}(aq) + F^{-}(aq)
```

 NH_3 has one less H atom and one less positive charge than NH_4^+ . F⁻ has one less H atom and one more negative charge than HF. Therefore the conjugate acid-base pairs are

```
NH_4^+ (acid) and NH_3^- (base)
HF (acid) and F<sup>-</sup> (base)
```

Acid-base properties of water

 $H_{2}O(I) \rightarrow H^{+}(aq) + OH^{-}(aq)$

$$H_2O(l) + H_2O(l) \rightarrow H_3O^+(aq) + OH^-(aq)$$

lon product of water

Because only a very small fraction of water are ionized, the concentration of water [H₂O] remains almost unchanged

$$K_c = [H_3O^+] [OH^-]$$

 $K_c = [H^+][OH^-]$

lon product constant

$$K_{w} = [H_{3}O^{+}][OH^{-}] = [H^{+}][OH^{-}]$$

The product of the molar concentration of H⁺ and OH⁻ at a particular temperature

$$K_w = (1.0 \times 10^{-7})(1.0 \times 10^{-7})$$

= 1.0 × 10⁻¹⁴
 $K_w = [H^+][OH^-]$
= 1.0 × 10⁻¹⁴

Problem

The concentration of OH^- ions in a certain household ammonia cleaning solution is 0.0025 *M*. Calculate the concentration of H^+

Solution

$$[H^+] = K_w / [OH^-]$$

= (1.0 x 10⁻¹⁴) / 0.0025 = 4.0 x 10⁻¹² M

pH - a measure of acidity

The pH of a solution is the negative logarithm (common) of the hydrogen ion concentration (in mol/L)

$$pH = -log [H_{3}O^{+}]$$
$$pH = -log [H^{+}]$$

Acidic solutions	$[H^+] > 1.0 \times 10^{-7} M,$	pH < 7
Basic solutions	[H⁺] < 1.0 x 10⁻7 M,	pH > 7
Neutral solutions	[H⁺] = 1.0 x 10 ⁻⁷ M,	рH = 7

$$[H_{3}O^{+}] = 10^{-pH}$$

 $[H^{+}] = 10^{-pH}$

 $[H^{+}][OH^{-}] = K_{w} = 1.0 \times 10^{-14}$ -(log[H^{+}] + log[OH^{-}]) = -log(1.0 \times 10^{-14}) -log[H^{+}] - log[OH^{-}] = 14.0 pH + pOH = 14.0

Problem

The concentration of H⁺ ions in a bottle of table wine was $3.2 \times 10^{-4} M$ right after the cork was removed. Only half of the wine was consumed. The other half after it had been standing open to the air for a month, was found to have a hydrogen concentration equal to $1.0 \times 10^{-3} M$. Calculate the pH of the wine on these two occasions.

Solution

$$pH = -log[H^+]$$

 $= -\log(3.2 \times 10^{-4}) = 3.49$

Strength of acids and bases

Strong acids are strong electrolytes, and they are assumed to ionize completely in water

$$\begin{aligned} HCl(aq) + H_2O(l) &\rightarrow H_3O^+(aq) + Cl^-(aq) \\ HNO_3(aq) + H_2O(l) &\rightarrow H_3O^+(aq) + NO_3^-(aq) \\ HClO_4(aq) + H_2O(l) &\rightarrow H_3O^+(aq) + ClO_4^-(aq) \end{aligned}$$

$$H_2SO_4(aq) + H_2O(l) \rightarrow H_3O^+(aq) + HSO_4^-(aq)$$

Weak acids

The acids which ionize only to a limited extend in water

 $CH_{3}COOH(aq) + H_{2}O(l) \rightarrow H_{3}O^{+}(aq) + CH_{3}COO^{-}(aq)$

Strong bases

The bases which are strong electrolytes that ionize completely in water

```
NaOH(aq) \rightarrow Na^{+}(aq) + OH^{-}(aq)
```

```
KOH(aq) \rightarrow K^{+}(aq) + OH^{-}(aq)
```

```
Ba(OH)_{2}(aq) \rightarrow Ba^{+}(aq) + 2OH^{-}(aq)
```

Weak bases

The bases which are weak electrolytes

 $NH_{3}(aq) \rightarrow NH_{4}^{+}(aq) + OH^{-}(aq)$

Summary

- If an acid is strong, its conjugate base has no measurable strength
- H₃O⁺ is the strongest acid that can exist in water solution. Thus HCl which is stronger acid than H₂O reacts with water completly to form H₃O⁺ and Cl⁻

$$HCl(aq) + H_2O(l) \rightarrow H_3O^{+}(aq) + Cl^{-}(aq)$$

Acids weaker than H_2O react with water to some extent, producing H_3O^+ and their conjugate bases

 $HF(aq) + H_2O(l) \rightarrow H_3O^+(aq) + F^-(aq)$

• The OH⁻ ion is the strongest base that can exist in water solution

Weak acids and acid ionization constants

The acid ionization constant K_a is the equilibrium constant for the ionization of the acid

$$HA(aq) + H_2O(l) \rightarrow H_3O^{+}(aq) + A^{-}(aq)$$

 $HA(aq) \rightarrow H^{+}(aq) + A^{-}(aq)$

- $K_{a}^{'} = [H_{3}O^{+}][A^{-}]/[HA]$
- $K_a = [H^+] [A^-] / [HA]$

Problem

Calculate the pH of 0.50 *M* HF solution at 25C

Solution

 $HF(aq) \Leftrightarrow H^{+}(aq) + F^{-}(aq)$ $K_{s} = [H^{+}][F^{-}]/[HF]$ $K_a = 7.1 \times 10^{-4}$ $HF \Leftrightarrow H^+ +$ ___F Initial (M) 0.50 0.00 0.00 Change (M) -X Х Х Equilibrium (M) 0.50-x Х Х

$$K_{a} = (x) (x) / (0.50-x) = 7.1 \times 1$$
$$x^{2} + 7.1 \times 10^{-4} x - 3.6 \times 10^{-4} = 0$$
$$ax^{2} + bx + c = 0$$
$$-b \pm \sqrt{b^{2} - 4ac}$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 5.6 \times 10^{-3} M$$
 or $-6.4 \times 10^{-3} M$

$$[HF] = 0.050 - 5.6 \times 10^{-3} M = 0.044 M$$

0-4

 $[H^+]$ = 5.6 x 10⁻³ M

 $[F^{-}] = 5.6 \times 10^{-3} M$

pH = $-\log(5.6 \times 10^{-3}) = 2.25$

Percent ionization

 $P = [H^+]/[HA] \times 100\%$

Problem

Calculate percent ionization of 0.036 *M* HNO₂, having $[H^+] = 3.8 \times 10^{-3} M$

 $P = 3.8 \times 10^{-3} M / 0.036 M \times 100\%$

P = 11%

Weak basis and base ionization constants

The base ionization constant K_{b} is the equilibrium constant for the ionization of the base

 $B(aq) + H_2O(l) \implies BH^+(aq) + OH^-(aq)$

$$K_b = \frac{[BH^+][OH^-]}{[B]}$$

Example

$$NH_{3}(aq) + H_{2}O(l) \iff NH_{4}^{+}(aq) + OH^{-}(aq)$$
$$K_{b} = \frac{\left[NH_{4}^{+}\right]\left[OH^{-}\right]}{\left[NH_{3}\right]}$$
$$K_{b} = 1.8 \times 10^{-5}$$

Problem

What is the pH of a 0.40 *M* ammonia solution ?

$$K_{b} = [NH_{4}^{+}][OH^{-}]/[NH_{3}]$$

$$K_{b} = 1.8 \times 10^{-5}$$

	$NH_3 + H_2O \Leftrightarrow$	NH_4^+ +	OH
Initial (M)	0.40	0	0
Change (M)	-X	Х	Х

Equilibrium (*M*) 0.40 - x x x

$$K_{a} = (x)(x) / (0.40 - x) = 1.8 \times 10^{-5}$$
$$x^{2} + 1.8 \times 10^{-5} x - 0.72 \times 10^{-5} = 0$$
$$ax^{2} + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$x = 2.7 \times 10^{-3} M$$

- $[OH^{-}] = 2.7 \times 10^{-3} M$
- $pOH = -log(2.7 \times 10^{-3}) = 2.57$
- pH = 14.0 2.57 = 11.43

Relationship between ionization constants of acids and bases

Example

$$CH_{3}COOH(aq) \implies H^{+}(aq) + CH_{3}COO^{-}(aq)$$

$$K_a = [H^+] [CH_3COO^-] / [CH_3COOH]$$

 $CH_{3}COO^{-}(aq) + H_{2}O(l) \qquad \leftrightarrows \quad CH_{3}COOH(aq) + OH^{-}(aq)$

$$K_{b} = [OH^{-}] [CH_{3}COOH] / [CH_{3}COO^{-}]$$

$$K_a K_b = [H^+][OH^-]$$

 $= K_{w}$

GCh15-19

Diprotic and polyprotic acids

An acid which releases more than one proton during its dissociation

Example

- $H_2CO_3(aq) \quad \leftrightarrows \quad H^+(aq) + HCO_3^-(aq)$
- $HCO_3^{-}(aq) \quad \leftrightarrows \quad H^+(aq) + CO_3^{2-}(aq)$

 $K_{a1} = [H^+] [HCO_3^-] / [H_2CO_3]$ $K_{a2} = [H^+] [CO_3^{2-}] / [HCO_3^-]$

Problem

Calculate the concentration of all the species after dissociation of oxalic acid $(H_2C_2O_4)$ in a 0.10 *M* solution

Oxalic acid dissociates in two steps

 $H_{2}C_{2}O_{4}(aq) \Leftrightarrow H^{+}(aq) + HC_{2}O_{4}^{-}(aq) \qquad K_{a}^{-} = 6.5 \times 10^{-2} \text{ M}$ $HC_{2}O_{4}^{-} \Leftrightarrow H^{+} + C_{2}O_{4}^{-2} \qquad K_{a}^{-} = 6.1 \times 10^{-5} \text{ M}$ Step 1 $H_{2}C_{2}O_{4} \Leftrightarrow H^{+} + HC_{2}O_{4}^{-}$ Initial (M) $0.10 \qquad 0 \qquad 0$ Change (M) $-x \qquad +x \qquad +x$ Equilibrium (M) $0.10 - x \qquad x \qquad x$

The dissociation constant K_a is defined as

$$K_{a'} = [H^+] [HC_2O_4^-] / [H_2C_2O_4]$$

Therefore

$$K_a' = (x) (x) / (0.10 - x)$$

 $x^2 + 6.5 x 10^{-2}x - 6.5 x 10^{-3} = 0$
 $x = 0.054 M$

The concentrations after the first step

$$[H^+] = 0.054 M$$

$$[HC_2O_4^-] = 0.054 M$$

$$[H_2C_2O_4] = (0.10 - 0.054) M = 0.046 M$$

Step 2 (we start from the final concentrations of the first step)

$$HC_{2}O_{4}^{-} \leftrightarrows H^{+} + C_{2}O_{4}^{2-}$$
Initial (*M*) 0.054 0.054 0
Change (*M*) -y +y +y
Equilibrium (*M*) 0.054 - y 0.054 +y y

$$K_{a}^{"} = [H^{+}][C_{2}O_{4}^{2-}]/[HC_{2}O_{4}^{-}]$$
6.1 x 10⁻⁵ = (0.054 + y) y /(0.054 - y)
y = 6.1 x 10⁻⁵ *M*
[H_{2}C_{2}O_{4}] = 0.046 *M*
[HC_{2}O_{4}^{-}] = (0.054 - 6.1 x 10^{-5}) = 0.054 *M*
[H^{+}] = (0.054 + 6.1 x 10^{-5}) = 0.054 *M*
[C_{2}O_{4}^{2-}] = 6.1 x 10^{-5} *M*
[OH_{1}] = 1.0 x 10^{-14}/0.054 = 1.9 x 10^{-13} *M*

Molecular structure and the strength of acids

 $HX(aq) \Leftrightarrow H^+(aq) + X^-(aq)$

1. Bond enthalpy (bigger enthalpy = weaker acid)

Bond	Enthalpy (kJ/mol)	Strength
H-F	568.2	weak
H-CI	431.9	strong
H-Br	366.1	strong
H-I	298.3	strong

2. Polarity of the bond (bigger polarity = stronger acid)

$$H^{\delta+}-X^{\delta-}$$

Hydrohalic acids

A series of acids formed by halogen atoms (F, Cl, Br, I)

Strength

HF << HCl < HBr < HI

Oxoacids

A series of acids containing H, O and one other element Z

HNO_2	
HNO ₃	
H ₂ CO ₃	

- = nitrous acid
- = nitric acid
- = carbonic acid
- = sulfuric acid
- = phosphoric acid

Polarity of the O-H bond

$$> Z - O^{\delta -} - H^{\delta +}$$

1. Oxoacids with different central atom

Bigger electronegativity of the central Z atom = stronger acid

 $HCIO_3 > HBrO_3$

2. Oxoacids with the same central atom

Bigger oxidation number = stronger acid

 $HCIO_4 > HCIO_3 > HCIO_2 > HCIO$

Properties of salts

A salt is an ionic compound formed by a reaction between an acid and a base

Hydrolisis

A reaction between a salt with water

Salts that produce neutral solutions

(cation from a strong base) K^+ , Na^+ , ... (anion from a strong acid) NO_3^{-2} , SO_4^{-2} , ...

 $NaNO_{3}(aq) \implies Na^{+}(aq) + NO_{3}^{-}(aq)$

Salts that produce basic solutions

(cation from a strong base) K^+ , Na^+ , ... (anion from a weak acid) CH_3COO^- , CO_3^{2-} , ...

 $CH_3COONa(s) \implies Na^+(aq) + CH_3COO^-(aq)$

 $CH_{3}COO^{-}(aq) + H_{2}O(l) \qquad \leftrightarrows CH_{3}COOH(aq) + OH^{-}(aq)$

$$K_{b} = [CH_{3}COOH][OH^{-}]/[CH_{3}COO^{-}]$$

= 5.6 x 10⁻¹⁰

Percent of hydrolysis

% Hydrolysis = $[CH_3COO^-]_{hydrolized} / [CH_3COO^-]_{initial} \times 100\%$

Problem

Calculate the pH of a 0.15 *M* solution of sodium acetate (CH_3COONa). What is percent of hydrolysis ?

In solution CH_3COONa dissocites completely into Na^+ and CH_3COO^- . The CH_3COO^- ion is the conjugate base of the weak CH_3COOH acid, therefore it will react to some extent with water, producing CH_3COOH and OH^- .

Step 1 (a complete dissociation of the CH₃COONa salt)

$CH_{3}COONa(aq) \Leftrightarrow Na^{+}(aq) + CH_{3}COO^{-}(aq)$					
Initial (<i>M</i>) Change (<i>M</i>)	<i>CH₃COONa</i> 0.15 -0.15	ţ	<i>Na</i> ⁺ 0.0 +0.15	+	CH ₃ COO ⁻ 0.0 +0.15
Final (M)	0		0.15		0.15

Step 2 (the acetate ion will react with water)

We are starting from final concentrations of the first step, and we ignore the ionization of water

CH ₃ COC	D ⁻ (aq) + H ₂ O(l)	ב CH	₃ COOH(aq) + OH	ŀ(aq)
Initial (<i>M</i>) Change (<i>M</i>)	<i>СН₃СОО⁻</i> 0.15 -х	4	СН ₃ СООН 0.0 +х	+ OH ⁻ 0.0 +x
Final (<i>M</i>)	0.15 - x		X	X
K _b =	[CH ₃ COOH] [C	DH ⁻] / [CH₃C	00]	
5.6 x 10	$x^{2} = x^{2} / (0)$).15 - x)		
x =	9.2 x 10⁻ ⁶ <i>M</i>			
[OH-]	= 9.2 x 10 ⁻⁶	М	pOH = 5.0	04

$$pH = 14.0 - 5.04$$

= 8.96

% Hydrolysis =
$$[CH_3COO^-]_{hydrolized} / [CH_3COO^-]_{initial} \times 100\%$$

- $[CH_{3}COO^{-}]_{initial} = 0.15 M$
- $[CH_{3}COO^{-}]_{hydrolized} = x = 9.2 \times 10^{-6} M$
- % Hydrolysis = $(9.2 \times 10^{-6}) / 0.15 \times 100\%$
 - = 0.0061%

Salts that produce acids solutions

 $\begin{array}{ll} (\text{cation from a weak base}) & \text{NH}_4^+, \ ... \\ (\text{anion from a strong acid}) & \text{CI}^-, \ F^-, \ ... \end{array}$

Step 1

 $NH_4Cl(aq) \implies NH_4^+(aq) + Cl^-(aq)$

Step 2

$$NH_{4}^{+}(aq) + H_{2}O(l) \qquad \leftrightarrows \qquad NH_{3}(aq) + H_{3}O^{+}(aq)$$
$$NH_{4}^{+}(aq) \qquad \leftrightarrows \qquad NH_{3}(aq) + H^{+}(aq)$$

Equilibrium constant of the second step

 $K_a = [NH_3][H^+]/[NH_4^+]$

The dissociation constants of the acid-base pair are related

$$K_a K_b = K_w$$

The dissociation constant of the base is

$$K_{b} = 1.8 \times 10^{-5}$$

Therefore

$$K_a = K_w / K_b = (1.0 \times 10^{-14}) / (1.8 \times 10^{-5})$$

= 5.6 × 10⁻¹⁰

Because H⁺ ions are produced, the pH of the solution decreases

Salts in which both the cation and anion hydrolyze

 $K_{b} > K_{a}$ the solution is basis

(anion will hydrolize rather than cation, generating more OH-)

K_b < K_a *the solution is acidic* (cation will hydrolize rather than anion, generating more H⁺)

 $K_{b} \sim K_{a}$ the solution is neutral

Lewis acids and bases

A Lewis acid accepts a pair of electrons

A Lewis base donates a pair of electrons

Example

Base	Acid		
H⁺ +	()OH⁻	\rightarrow	$H_{2}O$
<i>H</i> ⁺ +	()NH ₃	\rightarrow	NH_4^+
<i>BF</i> ₃ +	()NH ₃	\rightarrow	$BF_{3}NH_{3}$
CO ₂ +	()H ₂ O	\rightarrow	H_2CO_3