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1 Introduction

“It is amazing what you can accomplish if you do not care who gets the

credit.” — Harry S. Truman, the 33rd U.S. President

“In the real world, it matters who gets credit...That all goes into the bank

account of how much value you bring to the organization and plays into promo-

tion decisions, raises, and assignments.” — Karen Dillon, the former editor of the

Harvard Business Review and the author of HBR Guide to Office Politics

In many teamwork environments, agents contribute to joint success both directly and

indirectly through their positive spillovers to others. In law enforcement, better intelligence

gathering by a partner agency can enhance the surveillance efforts of another in tracking

criminals. In scientific collaborations, researchers regularly learn from each other’s efforts.1

In artistic production, a movie star’s performance can receive a boost from the co-stars.2

An implicit consensus in all these settings is that fostering positive spillovers always
improves team incentives and efficiency. The substantial emphasis on more information

sharing among law enforcement agencies since 9/11 is a case in point. In a Rand Corporation

report, Hollywood and Winkelman (2015) document the substantial progress in improving

the information-sharing ability of key law enforcement systems and review approaches to

“overcoming the remaining barriers.” The National Strategy for Information Sharing and

Safeguarding (NSISS), signed by the Obama administration in 2012, encourages all federal

and local agencies “to foster a culture that recognizes the importance of fusing information

regarding all crimes with national security implications.”

This paper argues that the consensus for increasing spillovers in teamwork is not entirely

warranted because of two salient features in environments similar to those mentioned above.

First, ex-post individual recognition for collective success is the primary source of reward,

such as promotions, raises, and public funds, among other scarce resources (see the opening

quotes). As a result, when one team member gets more credit for success, others get less.3

Second, by its very nature, teamwork obscures individual contribution. In law enforcement,

1For example, Azoulay et al. (2010) find that the premature death of academic superstars reduces the pro-
ductivity of their co-authors.

2Rossman et al. (2010) discuss the case of Robert Forster, a mostly obscure character actor nominated in 1998
for the Best Supporting Actor Oscar in the movie Jackie Brown, written and directed by Quentin Tarantino. His
co-stars included prior nominees Samuel L. Jackson and Robert de Niro. Forster’s career immediately “regressed
to the mean” after Jackie Brown, demonstrating how much his nomination benefitted from Tarantino, Jackson,
and De Niro.

3Perhaps because of its scarcity, claiming undue credit for success is not uncommon in the workplace (Gallo,
2015) and science (www.oxford-royale.com/articles/9-scientists-didnt-get-credit-deserved).
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each partner agency likely seeks the bulk of the credit for a critical arrest. However, the

law enforcement hierarchy only observes the arrest, not the individual efforts that led to it.

Scientists greatly value the peer recognition of their roles in co-authored publications, but

peers typically do not witness which researcher contributed the most. And, screenwriters

working jointly on the script for a hit TV drama compete for plaudits, but the audience only

sees the final script.

When team members seek ex-post recognition for their contributions to success, positive

spillovers between them have nontrivial implications for ex-ante incentives. On the one hand,

a higher spillover rate increases the chances of team success and motivates all members. On

the other hand, increased spillovers dilute some agents’ ex-post credit and de-motivate them.

To understand this tradeoff and its implications for organizational design, we present a

simple static model in which two agents with heterogeneous abilities expend unobservable

efforts toward achieving a predetermined goal. A higher ability corresponds to a lower

marginal cost of effort. Here, we interpret ability broadly as one’s capacity to contribute.

For example, an otherwise talented individual or well-run government agency may lack the

time or resources to work on another project due to current precommitments. Importantly,

abilities are common knowledge. Hence, we consider settings where the major difficulty for

the outside parties is not assessing agents’ potential to contribute to future projects but their

actual contributions to the current.

We assume that the team’s probability of success equals the agents’ total effective con-

tributions. As in the early literature on research joint ventures (e.g., D’Aspremont and

Jacquemin, 1986; Kamien et al., 1992), an agent’s effective contribution to team success is

the sum of their effort and the boost from the teammate’s due to the spillover (the research

joint ventures literature similarly defines a firm’s effective R&D investment). The spillover

rate between agents can depend on the task at hand, working conditions, and collaboration

tools provided by the organization.4 The success generates one unit of output. Unlike most

of the teamwork literature discussed below, we do not impose an exogenous sharing rule

for this output. Instead, we envision that upon observing the success, such as an arrest,

but not the efforts that led to it, the outside parties (the public) allocate credit according to

their perceived relative effective contribution. Later, we will argue that this credit attribution

rule can be micro-founded and welfare dominates the alternative based on relative effort. In

our credit attribution equilibrium, the team’s effort profile and the credit allocation must be

4The organization may have team members working in the same office or provide them with col-
laboration tools like Dropbox and Zoom. As hybrid-remote work becomes more common and cloud-
based software improves, employers are expected to invest more in collaboration technologies (see
https://www.officernd.com/blog/collaboration-technologies).
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consistent.

As a benchmark, we first consider a social planner who maximizes the expected output

net of total effort costs, which is equivalent to the agents’ joint welfare in our setting. The

planner can commit to credit allocation ex-ante to induce effort. Unsurprisingly, it is so-

cially optimal for the agents to share the credit proportional to their abilities and increase

their efforts with the spillover rate. Moreover, while exerting more effort, the high-ability

agent always receives a higher utility than the low-ability teammate. With equilibrium credit

allocation, these conclusions are largely overturned, depending on the degree of spillovers.

In the unique credit-attribution equilibrium, the low-ability agent’s effort is, again, in-

creasing, but the high-ability’s effort is U-shaped in the spillover rate. To understand, con-

sider the extreme case where the spillover between the agents is negligible, so the ex-post

credit is determined solely by their relative efforts. Then, using his cost advantage, the high-

ability agent is expected to take over the joint task and receive the entire credit from success

in equilibrium, which is clearly inefficient given the convex cost of effort. A slight increase

from this negligible spillover rate de-motivates the high-ability agent as it redistributes some

credit to the low-ability. In contrast, a slight increase from an already high spillover rate

would encourage the high-ability agent because his focus would be on team success instead

of credit sharing, which would remain roughly at half. The analysis of this equilibrium

delivers the following results.

(i) Efficiency of less than perfect spillovers. Compared to the social optimum, we find

that for spillover rates below a threshold, the high-ability agent is over-credited ex-post

and, in turn, over-motivated for success, while the opposite holds for the low-ability agent.

Above the same threshold, the roles are reversed: the low-ability agent is over-rewarded

and overworked for success. These findings challenge the conventional wisdom: even if

it were costless to facilitate positive spillovers between agents through closer interaction,

information sharing protocols, and job design, the organization would refrain from doing so

and choose an intermediate spillover rate to elicit the optimal effort. The imperfect spillover

rate corrects incentives distorted by ex-post credit concerns.

(ii) Optimal ability composition. In some environments, however, the degree of spillovers

can be difficult to alter due to the nature of the task. In such environments, the organization

may still reduce or even eliminate inefficiencies arising from agents’ ex-post credit concerns

through optimal team composition. We show that such optimal teams can be designed, pro-

vided that spillovers are not too pronounced. In particular, teams designed for tasks with

higher spillover rates should be less heterogeneous, given that credit shares are expected to

be closer.
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(iii) Private incentives to collaborate. Our simple framework also yields insights into

agents’ private incentives to collaborate. In academia, a researcher often has the flexibility

to work on a new idea solo or invite another researcher to work jointly. In law enforcement,

an agency, such as the Department of Homeland Security, can claim jurisdiction over a case

and exclude a sister agency, say the FBI, from participating in a team effort. This type of

exclusion, called a turf war, seems more likely when the agency with jurisdiction is concerned

with sharing credit with others. Perhaps surprisingly, we find that high-ability agents are

more likely to invite collaborators when they can choose to work solo. Specifically, when

the ability differential is sufficiently large, the high-ability agent favors teamwork regardless

of the spillover rate. In contrast, more concerned about ex-post credit, the low-ability agent

opts for teamwork only when the spillover rate is sufficiently high so that success is all but

guaranteed. We also find that when agents can choose from a diverse pool of potential

collaborators, ex-post credit concerns may lead to not picking the best among them. We

discuss the implications of these results further in Section 6.

Related Literature. Our paper relates to the extensive literature in which a principal ex-

ante contracts with multiple agents subject to moral hazard. Seminal works are by Alchian

and Demsetz (1972), Lazear and Rosen (1981), and Holmström (1982). Notable recent con-

tributions include Segal (2003), Winter (2004), Georgiadis (2015), Halac, Lipnowski, and

Rappoport (2021), and Camboni and Porcellacchia (2024). We refer the reader to Fleckinger

et al. (2024) for a comprehensive review of this literature. Our paper differs in that the

principal cannot commit to rewards for success, as they are equilibrium objects in the form

of ex-post credit.

There has been limited theoretical work on credit attribution. Previous studies in eco-

nomics, such as Engers et al. (1999) and Ray r© Robson (2018) have concentrated on author-

ship order as a signal of relative contributions. However, authorship order is an imperfect

measure of relative contributions, which may explain why it is not the norm for allocating

scientific credit across disciplines; see Kim and Kim (2015) for a review. In our model with

pure moral hazard, the public deduce relative contributions based on the agents’ known abil-

ities and degree of spillovers. Hence, it is also different from Onuchic and Ray (2023) and

Yildirim (2024), where, given the current output, the market infers team members’ unknown

abilities to predict their contributions to future projects rather than the current project, as in

this study.

In this regard, the closest paper is our previous work. Like here, Ozerturk and Yildirim

(2021) examine team incentives with equilibrium credit as rewards, but they assume away

any spillover between team members. Therefore, that paper cannot address the equilibrium
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inefficiencies due to spillovers and their optimal organizational choice, which is central to

this investigation.

In terms of equilibrium output sharing, our paper relates to several studies on team

contests where the winning team is assumed to divide part of the prize equally (egalitarian)

among its members while the rest is distributed proportionally to ex-post individual efforts

(merit-based). See, for example, Nitzan (1991), Davis and Reilly (1999), Baik and Lee (2007),

and the survey by Fu and Wu (2019). In our setting, the spillover between team members

results in a similar decomposition for output sharing, but the public who divides the team

output never observes individual efforts. As such, output sharing is an equilibrium object.

Our paper also complements those that emphasize the role of team composition in allevi-

ating the free-rider problem; see, for instance, Franco et al. (2011), Kaya and Vereshchagina

(2022), Bel et al. (2015), Bonatti and Rantakari (2016), Glover and Kim (2021), and Yildirim

(2023). In our linear production model, the free-rider problem is absent when output shares

are exogenously given. It is present when these shares are in the form of equilibrium public

credit, a feature not considered in these papers.5

The paper is organized as follows. Section 2 sets up the model. Section 3 presents an

optimal credit benchmark. Section 4 characterizes the team equilibrium. Section 5 explores

the agents’ private incentives to collaborate. Section 6 discusses our results and concludes.

The Appendix contains the proofs and the technical details omitted from the main text.

2 The model

Our setup introduces positive spillovers to Ozerturk and Yildirim’s (2021) static bench-

mark. Two risk-neutral agents i ∈ {1, 2} simultaneously exert one-time efforts to achieve a

predetermined objective. Let xi ≥ 0 denote agent i’s effort level, which is unobservable to

others. To obtain closed-form solutions for clean comparative statics, the individual effort

costs are assumed to have the quadratic form:6

ci(xi) =
x2

i
2ai

.

The parameter ai > 0 captures agent i’s “ability” to contribute to team success since a higher

ai implies a lower marginal cost for the same effort level. We assume that ai is publicly

5Finally, our paper relates to the vast empirical work documenting positive spillovers in teamwork; see, for
instance, Mas and Moretti (2009), Azoulay et al. (2010), Chan et al. (2014), Arcidiacono et al. (2017) and Jarosch
et al. (2021).

6As illustrated in Appendix B, we have numerically verified that our main result, Corollary 1, holds more
generally for the iso-elastic cost: ci(xi) = xk

i /(kai) where k > 1.
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known, perhaps due to the agent’s track record or other precommitments, ruling out any

reputational concerns. As mentioned above, we acknowledge the importance of building a

reputation for future projects but focus here on complementary settings where agents are

mainly concerned with receiving credit for current success. Without loss of generality, we

let a1 > a2 and refer to agent 1 as the high ability.

The agents contribute to team success not only directly but also indirectly through the

positive impact of their efforts on their teammates. For an effort pair (xi, xj), with j 6= i, the

effective contribution of agent i to team’s success is given by

yi = xi + βxj, (1)

where β ∈ (0, 1] is the common spillover rate between the agents. As we revisit in our

analysis, β may be specific to the task at hand or the outcome of organizational design

depending on the environment.

The specification in (1) follows the research joint venture literature (e.g., d’Aspremont

and Jacquemin, 1986; Kamien et al., 1992). As in there, β represents the extent to which

agents learn or take inspiration from each other’s efforts. For example, the amount of action-

able evidence xi that law enforcement agency i produces in tracking a criminal network gets

a boost βxj from the efforts of their partner agency j. We assume the team’s probability of

success is the sum of effective contributions in (1):

y1 + y2 = (1 + β)X, (2)

where X = x1 + x2 denotes the total effort.7 The linear production in (2) is meant to intro-

duce no free-riding incentive other than through sharing of the team output. The success

generates one unit of output for the team, while the failure generates zero. To ensure that the

success probability in (2) is interior in the analysis for any β ∈ (0, 1], we impose throughout

a1 + a2 ≤ 1/2.

In our setting, consistent with the examples of collaboration in law enforcement and the

scientific community, agents receive no monetary incentives ex-ante. Instead, each gets re-

warded ex-post based on his perceived responsibility or credit for team success. We assume

that the public attributes credit to agent i proportional to his effective contribution:

qi =
yi

y1 + y2
. (3)

7See Bonatti and Hörner (2011) for a similar additive probability of team success.
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Since efforts are unobservable to others, including the public, we require that the effort

profile and the credit allocation be consistent in (Nash) equilibrium. Three features of (3)

deserve further comments.

(i) Scarcity of credit. The credit attribution rule in (3) implies that q1 + q2 = 1. Thus,

the total credit for collective success is scarce. This feature is consistent with our motivat-

ing examples where credit is competitively distributed among team members to determine

promotions, salary increases, or government funding, among other scarce resources. As

Robbins (2019) points out "Recognition is about what people have already done and it is

scarce. There’s a limited amount of recognition to go around — everyone can’t get a bonus

or be mentioned by name in a memo — and it can be stressful when many people are vying

for a finite amount of praise."

(ii) Micro-foundation. Eq.(3) can be formalized as in Ozerturk and Yildirim (2021). In

their dynamic setting, the effective contribution yi would capture agent i’s exponential rate

of achieving success (or breakthrough) and, in turn, qi would refer to the public’s Bayesian

belief that it is agent i who is responsible for success.

(iii) Alternative rules. Eq.(3) posits that agent i receives credit based on his effective

contribution, including the spillover βxj from the teammate. Alternatively, the public could

assign credit proportionally to agent i’s total contribution, xi + βxi, to the probability of

success. Then, (3) would be modified as:

qi =
(1 + β)xi

(1 + β)X
=

xi

X
. (4)

Hence, eq.(4) is equivalent to an attribution rule purely based on relative effort, independent

of the spillover rate. However, as we show below, (4) would be welfare dominated by (3):

it would over-motivate the high-ability agent and under-motivate the low-ability. Consistent

with the specification in (3), Arcidiacono et. al (2017) document evidence that a worker’s

compensation is largely dependent on own performance, but not on their positive impact on

teammates’ performances.8

To gain some initial insight into the role of spillover rate in credit allocation, note that (3)

can be decomposed as

qi =
β

1 + β︸ ︷︷ ︸
fixed base credit

+
1− β

1 + β

( xi

X

)
︸ ︷︷ ︸

merit-based credit

. (5)

8Arcidiacono et al. (2017) use data from the National Basketball Association (NBA), where individual per-
formances are observable. They explain the lack of compensation for the positive impact on teammates’ perfor-
mance by the difficulties of measuring such heterogeneous effects. With unobservable individual performances,
such measurement challenges would be all the more relevant.
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Hence, the public views the positive spillover as giving each agent a fixed base credit and

allocating the rest proportional to their efforts. As β increases toward 1, the fixed credit

portion increases toward 1/2, resulting in less merit-based credit attribution. As mentioned

in the Introduction, a similar output-sharing rule is widely used in contest theory; see Fu

and Wu (2019) for a review.

3 Benchmark: optimal credit

Before studying the credit attribution equilibrium, we present an optimal benchmark.

Suppose a (social) planner overseeing the agents can act as a Stackelberg leader and com-

mit ex-ante to a credit or reward scheme (q1, q2) ∈ [0, 1]2 such that q1 + q2 = 1. While

intended as a benchmark, such ex-ante commitment over a credit allocation may be realis-

tic in some settings. For example, some scientific disciplines allocate authorship credit for

multi-authored publications according to a harmonic progression formula (Hagen, 2010). In

law enforcement, deciding beforehand which partner agency in a task force announces a

significant breakthrough to the press can be seen as allocating credit ex-ante.

Having observed the credit scheme, the agents simultaneously make their one-shot effort

choices. Expecting to receive qi with the probability (1 + β) X, agent i best responds to his

teammate’s conjectured effort xj:

max
xi

ui = (1 + β) Xqi − ci(xi). (6)

The unique solution to (6) is:

xi = (1 + β)qiai, (ICi)

which is increasing in the spillover rate, credit for success, and the ability level, as expected.

Notice that given the credit scheme, agent i’s effort is independent of j’s. That is, there is

no free-riding incentive between the agents. While specific to linear production, this feature

will help us isolate the externality through equilibrium credit allocation. The planner cares

about the expected team output net of the total cost of achieving it. Formally, the planner

solves

max
q1,q2,x1,x2

w = (1 + β) X− c1(x1)− c2(x2) (OC)

subject to q1 + q2 = 1, and (ICi) for i = 1, 2.

Note that w = u1 + u2, so (OC) is equivalent to the planner maximizing utilitarian welfare.

Let qo
i and xo

i denote the optimal or efficient solution, and uo
i the resulting utility for agent i.
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Lemma 1 The solution to (OC) is given by qo
i = ai

a1+a2
and xo

i = (1 + β)
a2

i
a1+a2

. In particular, the
high-ability agent works harder (xo

1 > xo
2), receives more credit (qo

1 > qo
2) and obtains a higher utility

(uo
1 > uo

2) than his low-ability teammate for all β.

The properties of this benchmark solution are all as expected. The planner allocates

credit proportional to the agents’ abilities. Intuitively, the (ICi) implies that the planner can

elicit greater effort per unit credit, xi/qi, from the high-ability agent. Therefore, she asks this

agent to work harder in return for a greater credit and utility. Finally, since a higher spillover

rate increases the likelihood of success, given a credit allocation, both agents work harder as

the spillover rate β increases.

Remark 1 The optimal solution in Lemma 1 does not depend on the specific form of ex-post credit
attribution rule, since the planner can commit ex-ante to a credit scheme (q1, q2) ∈ [0, 1]2.

Remark 2 With additional social goals, the planner may value success more than the unit output
it generates, say at 1 + s where s ≥ 0. For instance, the FBI may care more about the future
deterrent effect of an arrest by a task force. However, extending the benchmark in this direction would
add no new insights, as shown in Appendix C. In fact, by creating another channel for equilibrium
underinvestment, it would cloud our results below, which is why we set s = 0 in the model.

4 Equilibrium credit attribution

We now analyze the setting where the planner lacks commitment to a credit scheme

ex-ante. Instead, the public allocates credit to agent i proportional to his perceived effective

contribution to success, as described in (3). Since the agents’ efforts are unobservable, even

ex-post, the public assigns credit based on their conjectured levels. Let x∗i and q∗i denote

agent i’s effort and credit in equilibrium. They must satisfy (5) and (ICi):

q∗i =
β

1 + β
+

1− β

1 + β

(
x∗i
X∗

)
and (7)

x∗i = (1 + β)q∗i ai for i = 1, 2.

Unlike the above benchmark, agent i now best responds to his perceived credit, q∗i , which

needs to be correct in equilibrium. Substituting for q∗i in x∗i , (7) reveals

x∗i =
X∗βai

X∗ − ai + βai
, (8)
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which, given x∗1 + x∗2 = X∗, leads to the following fixed-point condition for X∗:

X∗βa1

X∗ − a1 + βa1
+

X∗βa2

X∗ − a2 + βa2
= X∗. (9)

Eq.(9) yields a unique closed-form solution that we present in Appendix A. Here, we

report the main properties of the credit attribution equilibrium.

Proposition 1 (characterization) In the unique credit attribution equilibrium, the high-ability
agent works harder (x∗1 > x∗2) and thus receives more credit from success (q∗1 > q∗2) for all β. How-
ever, the high-ability agent receives higher utility (u∗1 > u∗2) only for β < 1

2 , and lower utility for
β > 1

2 . Furthermore,

(a) x∗1 is strictly convex in β, attaining its minimum at βmin = 1
2

√
1− a2

a1
, with limβ→0 x∗1 =

limβ→1 x∗1 = a1, which is agent 1’s stand-alone effort.

(b) x∗2 is strictly increasing and concave in β, with limβ→0 x∗2 = 0 and limβ→1 x∗2 = a2, which is
agent 2’s stand-alone effort.

(c) q∗1 is strictly decreasing while q∗2 is strictly increasing in β.

(d) x∗1 + x∗2 is strictly increasing in β, but at a lower rate than xo
1 + xo

2.

As in the benchmark, the high-ability agent works harder in equilibrium. However,

unlike in the benchmark, part (a) indicates that the high-ability’s equilibrium effort is U-

shaped in the spillover rate β, as illustrated in Figure 1(a) below. The high-ability effort x∗1
is decreasing in an initial interval (0, βmin), which expands with the ability gap. Since the

optimal effort, xo
1, is monotone increasing in β, the non-monotonicity in x∗1 is driven by the

equilibrium credit attribution.

To understand the intuition, observe from (7) that the spillover rate β affects an agent’s

effort decision through two channels. The first channel works through the team’s success

probability. For a fixed credit allocation (q∗1 , q∗2), an increase in β motivates both agents

as they anticipate the team to succeed with a higher probability. This channel is also the

only one in the benchmark. The second channel arises due to credit attribution. Given

an effort pair (x∗1 , x∗2), an increase in β redistributes the total credit of one in favor of the

low-ability agent. Put differently, since x∗1 > x∗2 , the low-ability agent benefits more from an

increased spillover rate. Thus, the second channel negatively impacts the high-ability agent’s

incentives.
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For a sufficiently small β, the negative effect due to credit attribution dominates for the

high-ability agent. At negligible values of β, credit allocation is entirely driven by the agents’

perceived relative efforts. This purely merit-based credit allocation motivates the high-ability

agent more than his low-ability teammate. Indeed, as Figure 1(a) illustrates, x∗1 ≈ a1 and

x∗2 ≈ 0, implying q∗1 ≈ 1 for β ≈ 0. As β increases from these low levels, credit allocation

becomes less merit-based, causing the high-ability agent to decrease his effort and the low-

ability agent to increase it. Once β exceeds a threshold, βmin, the positive effect of the first

channel dominates for the high-ability agent. He turns his attention from credit allocation,

which is sufficiently similar due to spillover, to the team’s success.

As part (b) shows, the low-ability agent’s effort monotonically increases in β since both

effects described above are positive for this agent. A higher β improves the team’s success

probability and re-allocates credit in favor of the low-ability agent. The same reasoning also

explains part (c). The low-ability agent’s credit share increases; thus, the high-ability’s share

decreases in β (see Figure 1(b)). Finally, part (d) shows that, despite the initial decrease in

the high-ability agent’s effort, the team’s total equilibrium effort increases with β but does

so more slowly than the optimal benchmark, again due to credit sharing concerns.
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Figure 1: The left panel illustrates the equilibrium efforts whereas the right panel illustrates 
equilibrium credit shares as a function of spillover rate  for the ability pair (a1,a2)= (0.14, 0.08).

While not our primary focus, another observation highlighting the role of ex-post credit

attribution is the equilibrium utility comparison between the two agents. Proposition 1
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reveals, as expected that the high-ability agent always works harder and receives more credit

in equilibrium. However, he may be strictly worse off than his low-ability teammate for a

sufficiently high spillover rate, β > 0.5.9 To gain intuition, let us use (3) to observe that (1 +

β)X∗q∗i = x∗i + βx∗j . In other words, each agent expects to receive his effective contribution

in equilibrium via credit attribution. Thus, agent i’s equilibrium utility can be written as

u∗i = x∗i + βx∗j −
x∗2i
2ai

. (10)

Given the equilibrium condition x∗i = (1 + β)q∗i ai, the expression for q∗i in (5) and u∗i in (10),

we can write the equilibrium utility differential between agents as10

u∗1 − u∗2 = (1− β)(x∗1 − x∗2)︸ ︷︷ ︸
difference in effective contributions

−
(

x∗1 − x∗2
2

)
︸ ︷︷ ︸

difference in effort cost

. (11)

Since x∗1 > x∗2 , each term in (11) is nonnegative. The first term represents the fact that the

high-ability agent expects a greater reward for team success. The second term in (11) shows

that he also expects to incur a greater cost of effort. When the spillover rate is sufficiently

high, β > .5, the cost effect prevails for the high-ability agent, since then credit attribution is

much less merit-based. In contrast, for β < .5, the high-ability agent expects sufficient credit

to compensate for his effort cost.

We next compare the credit attribution equilibrium with the optimal or efficient credit

benchmark. Specifically, we ask: does the public attribute too much or too little credit to an

agent in equilibrium? Do agents exert too much or too little effort? The comparison below

answers these questions, paving the way for our efficiency result next.

Proposition 2 (equilibrium vs. optimal credit) Let β∗ = 1
1+ a1

a2
+

a2
a1

∈ (0, 1/3). Then, the credit

attribution equilibrium compares with the optimal credit benchmark as follows.

(a) For β < β∗, the high-ability works too much (x∗1 > xo
1) and is over credited for team’s success

(q∗1 > qo
1) while the opposite holds for the low-ability.

(b) For β > β∗, the high-ability works too little (x∗1 < xo
1) and is under credited (q∗1 < qo

1) for
team’s success while the opposite holds for the low-ability.

(c) The team expends too much effort (X∗ > Xo) for β < β∗, and too little (X∗ < Xo) for β > β∗.

9This utility reversal with respect to β is consistent with Ozerturk and Yildirim (2021) and Yildirim (2023) for
the extreme values β→ 0 and β = 1, respectively.

10To derive the expression in (11), we make use of the fact that, given the quadratic cost function, the equilib-
rium cost differential between agents becomes c1(x∗1)− c1(x∗1) =

(
x∗1 − x∗2

)
/2.
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The inefficiencies that Proposition 2 identifies arise from the fact that by allocating credit

ex-post, the public does not internalize its incentive effects. Compared to the planner, the

public over-motivates the high-ability agent through excessive credit when the spillover rate

is sufficiently low, and thus, credit attribution is sufficiently merit-based. For the same

reason, for sufficiently low β, the low-ability agent is under-motivated by expecting too little

recognition from joint success. Figure 2 illustrates these observations.
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Figure 2: The left panel illustrates the equilibrium credit shares versus the optimal benchmark 
credits whereas the right panel illustrates equilibrium efforts versus the optimal benchmark 
efforts as a function of spillover rate  for the ability pair (a1,a2)= (0.14, 0.08)

 ∗  ∗

More formally, consider a spillover rate β close to zero. In this case, as Proposition 1

shows, the high-ability agent expends almost all the effort and receives close to full credit

in equilibrium. Given the convex effort cost, this is excessive from an efficiency viewpoint.

At the other extreme, when β is close to one, the relative effort plays a minimal role in the

equilibrium credit, leading to almost equal credit shares from success. As a result, the high-

ability agent underinvests in success while the low-ability overinvests. Indeed, by continuity,

this result holds for sufficiently high spillover rates.

Proposition 2 raises an important organizational design question: unable to commit to

a credit allocation ex ante, can the social planner induce the efficient effort profile by con-

trolling the spillover rate in the team? The following result, a byproduct of Proposition 2,

answers this question.
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Corollary 1 (efficient spillover)

(a) Given the team’s ability profile (a1, a2), the spillover rate β∗ ∈ (0, 1/3) defined in Proposition
2 implements the efficient effort profile: x∗i = xo

i for all i, where β∗ is decreasing in the relative
ability a1

a2
∈ [1, ∞). Moreover, there is no payoff reversal at β∗.

(b) Conversely, given the spillover rate β ≤ 1
3 , the team with the relative ability

a1

a2
=

(
1
β − 1

)
+

√(
1
β − 1

)2
− 4

2

exerts the socially optimal effort. For β > 1
3 , no such team can be designed, and the high-ability

is bound to be under credited for the success.

Part (a) of Corollary 1 is the main result of this paper. While the increased spillover

always motivates the low-ability agent, it may de-motivate the high-ability by making the

public’s credit attribution less merit-based. To alleviate the high-ability agent’s concern

about recognition for joint success, the planner prefers an imperfect spillover rate. However,

the planner would not eliminate spillovers and make the credit attribution purely merit-

based since that would over-motivate the high-ability and under-motivate the low-ability

agent.11 The efficiency of an intermediate spillover rate contrasts with the benchmark in

which an organization that could pre-commit to a credit allocation would promote perfect

spillover, β = 1; see Lemma 1. Part (a) also demonstrates that credit attribution is sufficiently

merit-based under the efficient spillover rate to ensure that the high-ability agent is not worse

off than his low-ability teammate.

Proposition 2 offers a critical insight into the efficiency implications of effort spillovers

between team members in environments with weak ex-ante monetary incentives. When in-

dividual team members seek ex-post recognition for their contributions to joint success, an

organization could abstain from facilitating perfect effort spillover between them. In partic-

ular, even if it were costless, the organization might not invest in sophisticated collaboration

tools, such as Dropbox and Zoom, or facilitate close working conditions to induce socially

optimal efforts.

In some contexts, the spillover rate may be fixed and beyond the planner’s control due

to the nature of the project or the working environment. Part (b) of Corollary 1 states that

an organization may still overcome inefficiencies by carefully selecting the team members.

11By Proposition 1, the equilibrium efforts are x∗1 → a1 and x∗2 → 0 for β→ 0.
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However, such optimal teams are only possible if the spillover rate is low enough, so credit-

sharing is not a significant concern for high-ability team members. Furthermore, the ability

gap in an optimally composed team should decrease with the spillover rate, given that the

credit allocation becomes less merit-based and thus more similar between the agents.

Remark 3 Under the alternative credit attribution rule in (4), no spillover rate can ensure effi-
ciency.12 To see this, we replace qi with qi in (7) and verify that the unique equilibrium has the effort
profile x∗1 = (1 + β)a1 and x∗2 = 0, implying q∗1 = 1. Thus, using Lemma 1, x∗1 > xo

1 and x∗2 < xo
2

for any β. Intuitively, being purely merit-based, credit based on relative effort induces the low-ability
agent to expect no recognition and thus exert no effort, which is clearly inefficient for the team given
the convex cost. Hence, this rule is welfare-dominated by (3) under which β∗ guarantees efficiency.

The following section explores the agents’ private incentives to work together and whether

the optimal spillover rate β∗ would induce voluntary teamwork.

5 Private incentives for teamwork

In the baseline model, we have assumed that the two agents are working together as a

team from the outset, perhaps because their supervisor or organization assigned them to the

same task. However, there are situations where agents can choose to form a team or work

independently. For instance, a law enforcement agency may claim jurisdiction and choose

to work a case alone, or invite a sister agency to collaborate for better results. Similarly,

a researcher may have an innovative idea and choose to develop it solo or ask another

researcher to join the effort and work as a team. This section examines endogenous team

formation in environments where the credit shares for team members are determined ex-

post in an attribution equilibrium. In particular, we investigate whether higher spillover

rates facilitate collaboration when commitment to ex-ante reward schemes is limited.

We now assume that one of the agents owns the project in question, perhaps because it

falls under their jurisdiction or they came up with the idea first. This agent may propose

to the other agent to form a team or choose to work alone. If the other agent accepts the

offer, the game proceeds as our credit attribution framework outlines.13 If the other agent

declines, he receives no payoff, whereas the agent who owns the project works alone and

receives the full credit if successful. We continue to assume that abilities a1 and a2 are fixed

and publicly known.

12Recall from Remark 1 that the efficiency benchmark does not depend on the specific credit attribution rule.
13Hence, we assume the public cannot distinguish who has initiated a team project.
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Formally, suppose agent i owns the project and chooses to work solo. This implies that

agent i forgoes positive spillovers and succeeds only with probability xi. Therefore, agent i
chooses xi to maximize the solo expected payoff:

ui = xi −
x2

i
2ai

,

which yields the optimal effort and utility as xsolo
i = ai and usolo

i = ai/2.

Agent i’s equilibrium utility with teamwork is given by (10). Accordingly, agent i suc-

cessfully teams up if

u∗i ≥ usolo
i and u∗j ≥ 0.

Clearly, u∗j ≥ 0 always holds because an agent can choose to exert no effort.

To determine agent i’s incentive to invite j for collaboration, we first consider the case

where it is the low-ability agent (i = 2) who owns the project. Recall from Proposition 1 that

limβ→0 x∗2 = 0, limβ→1 x∗2 = a2, and limβ→1 x∗1 = a1. Combining these with (10), we find

limβ→0 u∗2 = 0 < usolo
2 = a2

2 and limβ→1 u∗2 = a2
2 + a1 > usolo

2 .

Furthermore, Appendix A shows that u∗2 is strictly increasing in the spillover rate β. There-

fore, there exists a unique β∗2 ∈ (0, 1) such that the low-ability agent prefers to work solo for

β < β∗2 and as a team for β ≥ β∗2. That is, the low-ability agent prefers to ask the high-ability

to join the project only when the spillover rate is sufficiently high. This is intuitive. When

the agents are unlikely to improve each other’s effective contributions with collaboration,

the low-ability agent worries that the public would attribute credit mostly to the high-ability

partner, who is expected to work harder and contribute more to their joint success. This

can be formally seen in (11), where the difference in effective contributions is found to be

(1− β)(x∗1 − x∗2), which is strictly decreasing in β.14

Consider now the case when the high-ability agent owns the project. Since limβ→0 x∗1 =

limβ→1 x∗1 = a1 and limβ→1 x∗2 = a2 by Proposition 1, it follows from (10) that

limβ→0 u∗1 = usolo
1 = a1

2 and limβ→1 u∗1 = a1
2 + a2 > usolo

1 .

As shown in Appendix A, u∗1 is monotone increasing in β when a1 ≥ 3a2. This obser-

vation implies that when the ability gap between the two agents is sufficiently large, the

high-ability agent does not worry about receiving enough credit; thus, he prefers to team

up and does so regardless of the spillover rate. Perhaps surprisingly, the high-ability agent

14In the proof of Proposition 1, we show that x∗1 − x∗2 is strictly decreasing in β.
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proposes teamwork even when the spillover rate is relatively high, i.e., β > 1/3. We know

from Propositions 1 and 2 that the high-ability agent expects to be under-credited for suc-

cess and even fare worse than his low-ability teammate when β > 1/2. He nevertheless

proceeds with teamwork because a significant spillover rate would substantially motivate

the low-ability agent.

Suppose the ability gap is relatively small and satisfies a1 < 3a2. In this case, the high-

ability agent chooses to work solo if the spillover rate is sufficiently low, so he is unlikely to

receive a boost from his teammate’s effort. Although the public would assign significantly

more credit to the high-ability agent in this case, it would not compensate for the cost of

effort. However, if the spillover rate is sufficiently large, the high-ability agent prefers to

team up. As explained in Proposition 1, a higher spillover rate turns the high-ability agent’s

attention from credit attribution to the project’s success since the effective contributions of

both agents toward success are now comparable. These observations are summarized below.

Proposition 3 (voluntary teams) Suppose one agent owns the project and can exclude the other
from it.

(a) The low-ability agent teams up if and only if the spillover rate is sufficiently high.

(b) If the ability differential is large, the high-ability agent teams up for any spillover rate. Other-
wise, he teams up only when the spillover rate is sufficiently high so that his focus shifts from
taking credit to ensuring the project’s success.

Proposition 3 suggests that the higher-ability agent is more likely to invite a collaborator

because he is less concerned about ex-post credit attribution by the public. This lesser con-

cern for credit sharing especially facilitates team formation by the high-ability agent when

the ability differential between agents is sufficiently high. When the abilities are closer, and

hence credit attribution becomes more of an issue for the high-ability agent, a sufficiently

high spillover rate can ensure teaming up by making the project’s success more likely.

As in the baseline model, the above analysis assumes that the abilities of the two agents

are fixed. In certain settings, however, the agent who owns the project may be flexible

in choosing a collaborator from a diverse pool of candidates. Although selecting a highly

skilled collaborator would increase the likelihood of success and decrease the workload of

the project owner, it would also mean sharing the credit for the success. As the following

result illustrates, the project owner may not pick the best teammate available due to credit

sharing concerns unless the spillover rate is sufficiently high.
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Proposition 4 (choosing the teammate) Suppose agent i owns the project and chooses a teammate
from the ability pool a−i ∈ [0, a]. Let a∗−i denote his optimal choice that maximizes his equilibrium
utility in (10).

• If the spillover rate is sufficiently low, β < 1
5 , there exist ability levels 0 < Ai(β) < ai < Bi(β)

such that

a∗−i =


Ai(β) if Ai(β) < a < Bi(β)

a otherwise,

where Ai(β) =
5−7β−

√
(1−β)(1−5β)

2(2−β)
ai.

• If β ≥ 1
5 , then a∗−i = a.

Proposition 4 says that agent i does not select the best teammate in the pool if the spillover

rate is low, i.e., β < 1/5, and the ability pool is moderate. Indeed, he selects a less able

teammate.15 Only when the ability gap or the spillover rate is substantial, β ≥ 1/5, agent

i chooses a more able partner. To gain intuition, let the agent who owns the project have

ability ai = .1 and access to a candidate pool a−i ∈ [0, .21]. Furthermore, suppose the

spillover rate is β = .15. Then, agent i optimally recruits a less able teammate with a∗−i = .07

(an explicit formula for a∗−i is given in the proof of Proposition 4). In equilibrium, the team

succeeds with probability .12, yielding agent i the credit q∗i = .70 in exchange for the effort

x∗i = .08. If, instead, agent i were to recruit the best partner in the pool, namely, a−i = .21,

that would significantly increase team success probability to .23 and reduce his effort to

x∗i = .03. However, teaming up with the ablest partner would also reduce agent i’s credit

from joint success to q∗i = .22.

While offering valuable insights into the agents’ private incentives for teamwork, Propo-

sitions 3 and 4 also raise another important organizational design question: does the or-

ganization need to adjust its optimal spillover rate, β∗, found in Proposition 2 to induce

teamwork voluntarily? This question is especially pertinent because when setting its β, the

organization may not even know which agent – the high or low ability – will have a project.

The following result states that the answer is “no.”

Corollary 2 The optimal spillover rate β∗ identified in Proposition 2 strictly incentivizes both agents
to collaborate.

15Note that Ai(0) = ai, so agent i selects an identical teammate in the absence of spillovers. This special case
is consistent with Proposition 6 in Ozerturk and Yildirim (2021) since our static setup also means sufficiently
impatient agents.
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Intuitively, β∗ optimizes team effort by sufficiently mitigating credit-sharing concerns. In

the process, it also facilitates significant spillovers between agents, making teamwork more

attractive than working solo.

6 Conclusion

This paper offers a novel perspective on how positive spillovers among team members

can affect their incentives when their main reward is public recognition or credit for their

contributions to joint success. Our main result shows that compared to the optimal ex-ante

credit benchmark, spillover rates below a certain threshold over credit and over-motivate

higher-ability agents, whereas, above the same threshold, the lower-ability agents receive

too much credit and are over-motivated (Proposition 2). Hence, the spillover rate that elicits

the optimal effort is intermediate (Corollary 1).

Our main result challenges the commonly-held belief in organizational design that fos-

tering positive spillovers always improves team efficiency. It might be beneficial for an

organization or a team designer to maintain certain barriers to spillovers, even if removing

them were costless. Otherwise, exacerbating their credit concerns, the designer might de-

motivate higher-ability team members while over-motivating the lower-ability ones under

perfect spillovers. Such credit-sharing concerns are particularly relevant in law enforcement

and similar governmental agencies, where receiving ex-post credit for a successful outcome

is the key incentive. Therefore, contrary to the recent big push for sharing information

and expertise between agencies to facilitate spillovers, some lack of transparency might be

efficient.

An extension of our baseline analysis, which takes the team as given from the outset,

reveals further the implications of positive spillovers for private incentives to collaborate.

These incentives are, again, relevant in governmental agencies as, by claiming jurisdiction, it

is common for an agency to exclude another from joint work, a practice commonly known as

a turf war. Here, the low-ability agent, when owning the project, requires a sufficient degree

of spillovers to invite collaboration over working solo. In contrast, the high-ability agent

prefers teamwork even without spillovers when the ability gap is sufficiently pronounced

(Proposition 3). Hence, we find that the high-ability agent is more eager to collaborate.

We also find that the optimal spillover rate that induces efficient effort in a given team

provides both types of agents with sufficient incentives to form one. Therefore, optimally

limiting spillovers, the government can prevent turf wars while ensuring ex-post efficient

effort incentives when team members seek ex-post credit for their contributions to success
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(Corollary 2).

In closing, we note two possible extensions for future work. The first delves into the

potentially costly aspect of positive spillovers: agents will likely benefit from each other’s

efforts to the extent they pay attention. This consideration suggests they must multitask be-

tween working on the project and learning from their peers. Relatedly, the second extension

may allow the agents to decide on the degree of positive spillover to their peers; they choose

how much to interact and share information with them at the outset (see Rotemberg 1994

for a related setting). In each case, it would be interesting to see if credit-sharing concerns

further limit positive spillovers and leave the organization a more active role in fostering

them.
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Appendix A: Proofs

Proof of Lemma 1. Recall from (ICi) that agent i’s optimal effort given the credit qi is

xi = (1 + β)qiai. (A-1)

Substituting for xi in (OC), the planner’s program reduces to

max
q1,q2

(1 + β)2 (q1a1 + q2a2)−
[(1 + β)q1a1]

2

2a1
− [(1 + β)q2a2]2

2a2

subject to q1 + q2 = 1.

Plugging q2 = 1− q1 into the objective, the program further reduces to

max
q1

(1 + β)2

2
[
(2− q1)q1a1 + (1− q2

1)a2
]

.

From here, the optimal credit is immediate:

qo
i =

ai

a1 + a2
. (A-2)

Inserting this into (ICi), we obtain optimal individual efforts

xo
i = (1 + β)

(
a2

i
a1 + a2

)
(A-3)

and, in turn, the optimal total effort

Xo = (1 + β)

(
a2

1 + a2
2

a1 + a2

)
. (A-4)

Notice that the optimal probability of team’s success (1 + β)Xo < 1 for all β ∈ [0, 1], given

our assumption that a1 + a2 < 1/2.

Furthermore, we compute the utilities in this benchmark as

uo
i = (1 + β) Xoqo

i −
(
xo

i
)2

2ai
=

(1 + β)2

(a1 + a2)
2

[(
a2

1 + a2
2
)

ai −
a3

i
2

]
> 0.

Comparison of utilities yields

uo
1 − uo

2 = (1 + β)2 (a1 − a2)
(
a2

1 − a1a2 + a2
2
)

2 (a1 + a2)
2 > 0 for a1 > a2.
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Proof of Proposition 1. Solving for X∗ from (9), we find the unique total effort:

X∗ =
1
2

(
a1 + a2 +

√
(a1 − a2)

2 + 4β2a1a2

)
. (A-5)

It is readily verified that the equilibrium probability of team’s success (1 + β)X∗ < 1, given

a1 + a2 < 1/2. Plugging (A-5) into (8), the individual efforts are given by

x∗1 =
a1

2 (a1 − a2)

(
a1 − a2 − 2βa2 +

√
(a1 − a2)

2 + 4β2a1a2

)
(A-6)

and

x∗2 =
a2

2(a1 − a2)

(
a1 − a2 + 2βa1 −

√
(a1 − a2)

2 + 4β2a1a2

)
, (A-7)

where a1 − a2 > 0 by assumption.

Straightforward algebra reveals that

∂(x∗1 − x∗2)
∂β

=
2a1a2

(a1 − a2)

(
(a1 + a2) β√

(a1 − a2)2 + 4β2a1a2
− 1

)
.

Clearly,
∂

∂β

[
∂(x∗1 − x∗2)

∂β

]
> 0.

Hence, ∂(x∗1−x∗2)
∂β achieves its maximum value at β = 1, which is simply

∂(x∗1 − x∗2)
∂β

∣∣∣∣
β=1

= 0,

implying that ∂(x∗1−x∗2)
∂β < 0 for β ∈ (0, 1). That is, the equilibrium effort difference, x∗1 − x∗2 ,

between the two agents is strictly decreasing at a decreasing rate in β ∈ (0, 1).

From here, it follows that x∗1 − x∗2 achieves its minimum value for β = 1, which is

x∗1 − x∗2 |β=1 = a1 − a2 > 0.

Hence, x∗1 > x∗2 and, in turn, q∗1 > q∗2 for all β ∈ (0, 1].

The equilibrium utility comparison directly follows from (11):

u∗1 − u∗2 =

(
1
2
− β

)
(x∗1 − x∗2) ,

which, given x∗1 > x∗2 , implies u∗1 > u∗2 for β < 1
2 , and u∗1 < u∗2 for β > 1

2 .

For parts (a) and (b), note that

lim
β→0

x∗1 = lim
β→1

x∗1 = a1.
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Furthermore, letting ∆a ≡ a1 − a2 for convenience, (A-6) implies

∂x∗1
∂β

= −2a1a2

2∆a
+

a1

2∆a

4βa1a2√
∆2

a + 4β2a1a2
(A-8)

and
∂2x∗1
∂β2

sign
=

∆2
a(

a2
1 + a2

2 − 2a1a2(1− 2β2)
)3/2 > 0. (A-9)

Equating (A-8) to zero and solving for β reveals that x∗1 reaches its minimum at βmin =
1
2

√
1− a2

a1
.

Similarly, using (A-7),

lim
β→0

x∗2 = 0 and lim
β→1

x∗2 = a2.

Furthermore,

∂x∗2
∂β

=
a1a2

∆a
− 2βa1a2

2

∆a
√

∆2
a + 4β2a1a2

> 0,

where the inequality holds because
√

∆2
a + 4β2a1a2 > 2βa2 since ∆a ≡ a1 − a2. Concavity of

x∗2 follows since
∂2x∗2
∂β2

sign
=

−∆2
a(

a2
1 + a2

2 − 2a1a2(1− 2β2)
)3/2 < 0.

To prove part (c), substitute (A-6) and (A-5) into the expression for q1 in (5) to obtain

q∗1 =
∆a − 2βa2 +

√
∆2

a + 4β2a1a2

2 (1 + β)∆a
. (A-10)

The result then follows since

∂q∗1
∂β

= −∆2
a + (a1 + a2)

√
∆2

a + 4β2a1a2 − 4βa1a2

2∆a (1 + β)2√∆2
a + 4β2a1a2

< 0

for all β ∈ (0, 1] given that (a1 + a2)
√

4β2a1a2 − 4βa1a2 > 0, and that q∗2 = 1− q∗1 .

Finally, for part (d), notice from (A-4) and (A-5) that

∂X∗

∂β
=

2βa1a2√
(a1 − a2)

2 + 4β2a1a2

<
2a1a2

a1 + a2
and

∂Xo

∂β
=

a2
1 + a2

2
a1 + a2

.

Hence, ∂Xo

∂β > ∂X∗
∂β > 0.
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Proof of Proposition 2. Given the closed-form solutions for the optimal credit bench-

mark and the credit attribution equilibrium, this proposition is immediate, with the explicit

cutoff β∗ = 1
1+ a1

a2
+

a2
a1

. It is verified that β∗ achieves its maximum value of 1
3 when a1

a2
= 1.

Proof of Corollary 1. Proposition 2 readily implies that given the ability profile, the

spillover rate β∗ implements the socially optimal effort profile (and the optimal credit). It can

be verified that β∗ is decreasing in the relative ability a1
a2
∈ [1, ∞). Moreover, since β∗ < 1/2,

we have u∗1 > u∗2 at β∗ by Proposition 1.

Conversely, fix a spillover rate β ∈ (0, 1]. Setting β∗ = β and solving for a1
a2

, we find

a1

a2
=

(
1
β − 1

)
+

√(
1
β − 1

)2
− 4

2
.

This solution is real if and only if
(

1
β − 1

)2
− 4 ≥ 0, or equivalently, β ≤ 1

3 , as claimed. For

β > 1
3 , there is no ability profile that would implement the socially optimum in the credit

attribution equilibrium. More precisely, β > β∗ in this case, which would imply too low

credit for the high-ability team member by Proposition 2.

Proof of Proposition 3. Recall from (10) that the equilibrium utility of each agent is

given by

u∗i = x∗i + βx∗j −
x∗2i
2ai

. (A-11)

To prove part (a), suppose the low-ability agent (agent 2) owns the project. Plugging the

equilibrium efforts x∗1 and x∗2 from (A-6) and (A-7) into (A-11), we find

u∗2 =
a2

2∆a
(∆a + 2βa1 − z)︸ ︷︷ ︸

x∗2

+ β
a1

2∆a
(∆a − 2βa2 + z)︸ ︷︷ ︸

x∗1

− 1
2a2

(
a2

2∆a
(∆a + 2βa1 − z)

)2

(A-12)

where ∆a ≡ a1 − a2 and z ≡
√

∆2
a + 4β2a1a2. It follows from (A-12) that

limβ→0 u∗2 = 0 < usolo
2 = a2

2 and limβ→1 u∗1 = a2
2 + a1 > usolo

2 . (A-13)

To prove the existence and uniqueness of a threshold β∗2 ∈ (0, 1) such that agent 2 prefers

to work solo for β < β∗2 and as a team for β ≥ β∗2, it suffices to show that u∗2 in (A-12) is

strictly increasing in β. Re-writing (A-12) and eliminating the terms that do not depend on

β, we obtain

∂u∗2
∂β

sign
= a1 (z + ∆a)∆a + 2βa2

4βa2
1 − 3za1 + a2

2 + za2 − a1a2︸ ︷︷ ︸
a2(z−∆a)>0


︸ ︷︷ ︸

.

f (a1,a2,β)

(A-14)
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The right hand side of (A-14) that we denote by f (a1, a2, β) has the following properties:

lim
β→0

f (a1, a2, β) = 2 (a1 − a2)
2 a1 < lim

β→1
f (a1, a2, β) = 2 (a1 − a2)

2 (a1 + 2a2) .

Furthermore, f (a1, a2, β) is convex in β and f (a1, a2, β) > 0 for all β. By the continuity of

u∗2 , this establishes the existence of a unique β∗2 ∈ (0, 1) such that u∗2 < usolo
2 for β < β∗2 and

u∗2 ≥ usolo
2 for β ≥ β∗2.

To prove part (b), suppose the high-ability agent (agent 1) owns the project. We can write

the equilibrium utility for the high-ability agent as

u∗1 =
a1

2∆a
(∆a − 2βa2 + z)︸ ︷︷ ︸

x∗1

+ β
a2

2∆a
(∆a + 2βa1 − z)︸ ︷︷ ︸

x∗2

− 1
2a1

(
a1

2∆a
(∆a − 2βa2 + z)

)2

(A-15)

and observe

limβ→0 u∗1 = usolo
1 = a1

2 and limβ→1 u∗1 = a1
2 + a2.

Re-writing (A-15), eliminating the terms that do not depend on β and differentiating with

respect to β, we find

∂u∗1
∂β

sign
=

(
2βa2

1 − za2 + a2∆a
)

∆a︸ ︷︷ ︸
>0

+ 8β2a1a2
2︸ ︷︷ ︸

>0

+ 2βza1 (a1 − 3a2) . (A-16)

The first term on the right hand side of (A-16) is positive. To establish this, we need to show

2βa2
1

a2
+ ∆a >

√
∆2

a + 4β2a1a2︸ ︷︷ ︸
z

⇒ ∆2
a +

4β2a4
1

a2
2

+
4βa2

1∆a

a2
> ∆2

a + 4β2a1a2

⇒
βa3

1

a2
2
+

a1∆a

a2
> βa2

⇒ βa3
1 + a1a2∆a > βa3

2

which is always true. It follows from (A-16) that if a1 > 3a2, then u∗1 is monotone increasing

in β for all β ∈ (0, 1). Therefore, when a1 > 3a2, the high-ability agent prefers to team up

and does so regardless of the spillover rate.

Now consider the case when a1 < 3a2. This implies that the last term on the right hand

side of (A-16) is negative. In particular, let a1 − 3a2 = −ε where 0 < ε < 3a2. When ε is

sufficiently small so that there is still sufficient ability gap, the two positive terms in (A-16)
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ensure that u∗1 is still monotone increasing in β for all β ∈ (0, 1]. When ε is sufficiently close

to 3a2 and hence the ability gap becomes sufficiently small, however, there exists a threshold

β∗ such that u∗1 is monotone decreasing in β for β ∈ (0, β∗) and u∗1 is monotone increasing

in β for β ∈ (β∗, 1). Since limβ→1 u∗1 = a1
2 + a2, there exists a unique threshold β∗1 ∈ (β∗, 1)

where u∗1 > a1
2 for all β ≥ β∗1 and the high-ability agent is better off teaming up.

Proof of Proposition 4. Suppose agent i owns the project. Adapting the subscripts and

plugging (A-6) and (A-7) into (A-11), we can explicitly write i’s equilibrium utility in terms

of the parameters:

u∗i = U(ai, a−i, β).

Then, agent i’s optimal choice a∗−i solves

max
a−i∈[0,a−i ]

U(ai, a−i, β).

It can be verified that Ua−i(.) = 0 has exactly two roots:

a−i =
5− 7β±

√
(1− β)(1− 5β)

2(2− β)
ai. (A-17)

Moreover, U(ai, 0, β) = ai
2 > 0 (solo payoff) and lima−i→0 Ua−i(.) = β2 > 0.

For β < 1
5 , the two roots in (A-17) are distinct, real and positive. Therefore, the smaller

root, which we denote by Ai(β), is a local utility maximizer, where it can be shown that

Ai(β) < ai. The larger root in (A-17) is a local utility minimizer and exceeds ai. Hence,

for β < 1
5 , U(.) is S-shaped in a−i (first increasing, then decreasing, and then increasing

again). Clearly, if the highest ability in the pool satisfies a > Ai(β), agent i cannot receive

lower utility than U(ai, Ai(β), β), the local maximum. To see when a−i = Ai(β) is the global

maximum, consider the indifference equation: U(ai, a−i, β) = U(ai, Ai(β), β). Let a−i = Bi(β)

be its unique solution. Since Bi(β) must be greater than the larger root in (A-17), it follows

Bi(β) > ai. Hence, if Ai(β) < a < Bi(β), then a∗−i = Ai(β). Otherwise, a∗−i = a, either

because U(ai, Ai(β), β) ≤ U(ai, a, β) for a ≥ Bi(β), or U(ai, a−i, β) is strictly increasing in a−i

for a ≤ Ai(β).

For β ≥ 1
5 , both roots in (A-17) are nonreal (or equal for β = 1). This simply means that

U(.) is strictly increasing in a−i for all a−i, implying a∗−i = a.

Proof of Corollary 2. By definition, x∗i = xo
i under teamwork for β = β∗, where xo

i and

β∗ are given by Lemma 1 and Proposition 2, respectively. Plugging these into (10) yields

u∗i =

(
1 +

(2ai + aj)a3
j

(a2
i + aiaj + a2

j )
2

)
ai

2
>

ai

2
= usolo

i ,

as claimed.
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Appendix B: Robustness to Iso-elastic Cost

As claimed in Footnote 6, consider the general iso-elastic cost:

ci(xi) =
xk

i
kai

, with k > 1. (B-1)

Then, (ICi) is modified to be

xi = [(1 + β)qiai]
1

k−1 . (ICi’)

Inserting (B-1) and replacing (ICi) with (ICi’) in (OC), we find the optimal credit profile

(qo
1, qo

2). Given this optimal credit profile, (ICi’) yields the optimal effort (xo
1, xo

2). To find the

efficient spillover rate that implements the optimal effort, we plug (qo
1, qo

2) and (xo
1, xo

2) into

(7) and solve for β∗:

qo
i =

β∗

1 + β∗
+

1− β∗

1 + β∗

(
xo

i
Xo

)
.

Using this procedure for different values of the iso-elastic cost parameter k > 1, we have

numerically computed the optimal spillover rate β∗ that a social planner would choose to

implement the efficient effort profile as an equilibrium and the equilibrium credits (q∗1 , q∗2)
attributed to the two agents. The main conclusions that emerge from this analysis are sum-

marized below.

• For values 1 < k ≤ 1.5, it is efficient to have only the high ability agent expend effort

and receive all the credit as there is not enough convexity in the cost function. In this

parameter range, it is also efficient to set the spillover rate to zero (see Figure 3).

• For k > 1.5, our main result in Corollary 1 that establishes the efficiency of an inte-

rior optimal spillover rate β∗ is verified numerically. The optimal β∗ is increasing in

the iso-elastic cost parameter k (see Figure 3(b)). The intuition is that increasing the

spillover rate becomes an incentive device when it becomes costlier for the agents to

expend effort. However, even in this case, it is optimal to limit β∗ due to credit-sharing

concerns.

• For k > 1.5, the equilibrium high-ability credit q∗1 that implements the efficient effort

profile is decreasing in k, and it approaches 1/2 as k increases (see Figure 3(b)). There

are two channels at play. First, as k increases, the high-ability agent’s ability advantage

becomes less pronounced, reducing the effort gap between agents. Furthermore, as k
increases, the optimal spillover rate β∗ increases, making credit attribution less merit-

based. Both of these effects imply q∗1 approaches 1/2.
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Figure 3: The left panel illustrates the simulation results for the optimal spillover rate β ∗ as a function of 
the iso-elastic cost parameter k>1. The right panel plots the equilibrium credit share of the high ability 
agent as a function of k>1. As in the figures in the main text,  we consider the ability pair (a1,a2)= (0.14, 
0.08).
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Appendix C: Benchmark Revisited

To verify Remark 2, suppose the planner’s value of team success is 1 + s where s ≥ 0.

Then, (OC) is modified as:

max
q1,q2,x1,x2

w = (1 + β) X(1 + s)− x2
1

2a1
− x2

2
2a2

(OC-s)

subject to q1 + q2 = 1, and (ICi) for i = 1, 2.

To avoid uninteresting corner solutions, we assume here s < a2
a1−a2

. Following the same steps

as in the proof of Lemma 1, we find

qo
i (s) =

ai

a1 + a2
+ s

ai − a−i

a1 + a2
and xo

i (s) = (1 + β)aiqo
i (s).

From here, Proposition 2 seamlessly extends with the cutoff:

β∗(s) =
(a1 + s(a1 − a2))(a2 − s(a1 − a2))(
a2

1 + a2
2

)
(1 + s)2 + a1a2 (1− 2s2)

,

where β∗(s) ∈ (0, 1), and it is strictly decreasing in s.

In particular, Xo(s) > X∗ ⇐⇒ β > β∗(s), which means underinvestment in success is

more likely with a higher s. Intuitively, as the planner values success more, i.e., a higher s,

she optimally elicits greater effort from the high-ability agent to increase the probability of

success. Since equilibrium efforts do not depend on s, this introduces an additional wedge

between the two cases. For instance, β∗( a2
a1−a2

) = 0, implying underinvestment for all β when

s is large enough.
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