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An algorithm is presented to maintain rigid structures in Verlet based Cartesian molecular dynamics
(MD) simulations. After each unconstrained MD step, the coordinates of selected particles are cor-
rected to maintain rigid structures through an iterative procedure of rotation matrix computation. This
algorithm, named as SHAPE and implemented in CHARMM program suite, avoids the calculations
of Lagrange multipliers, so that the complexity of computation does not increase with the number
of particles in a rigid structure. The implementation of this algorithm does not require significant
modification of propagation integrator, and can be plugged into any Cartesian based MD integration
scheme. A unique feature of the SHAPE method is that it is interchangeable with SHAKE for any ob-
ject that can be constrained as a rigid structure using multiple SHAKE constraints. Unlike SHAKE,
the SHAPE method can be applied to large linear (with three or more centers) and planar (with
four or more centers) rigid bodies. Numerical tests with four model systems including two proteins
demonstrate that the accuracy and reliability of the SHAPE method are comparable to the SHAKE
method, but with much more applicability and efficiency. [http://dx.doi.org/10.1063/1.4756796]

I. INTRODUCTION

Rigid body molecular dynamics is of increasing impor-
tance in computational chemistry and physics.1–4 Many rigid
body dynamics methods have been developed.5–11 Generally,
there are three categories of rigid body dynamics methods
(Fig. 1). In the first category, the non-constrained dynam-
ics integration is applied in each step before applying con-
strained corrections. Two widely applied methods, SHAKE5

and RATTLE,6 belong to this category. In the second cate-
gory, the rigid body constraint forces are calculated to prop-
agate each particle in rigid bodies.7 In the third category, the
rigid body motion is divided into the translation of center of
mass and rotation about the center of mass. The translation
and rotation motions of rigid body are propagated based on
the force on the center of mass and torque about the center of
mass.12

Each of the reported rigid body algorithms has some
undesirable features, limitations, or restrictions. In many ap-
plications, certain parts of systems need to maintain a rigid
structure, and should be treated as a single rigid body. For
a nonlinear rigid structure containing M particles, 3M − 6
Lagrange equations are typically solved to implement rigid
structure constraints. Therefore, this rigid structure constraint
problem is not convenient with methods described above for
large M. In this work, we present an efficient algorithm,
named as SHAPE, for simulation of rigid structures composed
by an arbitrary number of particles. This rigid structure inte-
gration method is fully consistent and interchangeable with
the SHAKE method.5 It can also be combined with SHAKE
in such a way rigid body constraints are solved consistently
with SHAKE for atoms that involved in more than one type
of constraints. For constant pressure simulation, this method
can use the same virial correction scheme as in SHAKE.13

II. THEORY

Let us assume that M atoms compose a rigid structure in
an N atoms system. During each MD step, the coordinates of
whole system with N atoms are integrated according to the
equation of motion. The coordinates of the M atoms are then
corrected to maintain the rigid structure.

For an MD integration at time t with !t as step size and
without any constraint, the coordinates of the M atoms change
from ri(t) to rnon

i (t + !t). Either with or without the rigid
structure constraint, the structure’s momentum and angular
momentum from t to t + !t should be the same, which lays
the theoretical ground for maintaining rigid structures.

The centers of mass (COM) for two sets of coordinates
are

rCOM (t) =

M∑

i=1

miri(t)

M∑

i=1

mi

, (1)

rnon
COM (t + !t) =

M∑

i=1

mirnon
i (t + !t)

M∑

i=1

mi

, (2)

where mi is the mass of atom i. The rigid structure motion
of M atoms can be separated into translational and rotational
parts. The translational motion is represented by COM of
these M atoms. The more difficult part is the rotational mo-
tion, which can be treated in body-fixed local coordinate with
its origin at the COM of the M atoms and XYZ orientation
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FIG. 1. Three propagation schemes for rigid structures in dynamics. In
SHAKE and SHAPE schemes, the unconstrained positions of individual par-
ticles are iteratively corrected to reach a rigid structure. In constrained dy-
namics, the constrained forces, c, are calculated to maintain a rigid structure.
Alternatively, the Cartesian coordinates of a rigid body can be represented
by position and rotation variables, which can be used to propagate the rigid
structure to the next time step.

the same as the global coordinate. In other words, the body-
fixed local coordinate for the rigid body is constructed by
transforming the origin of global Cartesian coordinate to the
COM without any rotation. Therefore, the coordinates of the
M atoms at time t and t + !t in body-fixed local coordinate
can be calculated with Eqs. (3) and (4), respectively,

rb
i (t) = ri(t) − rCOM (t), (3)

rnon, b
i (t + !t) = rnon

i (t + !t) − rnon
COM (t + !t). (4)

The angular momentum Lnon of the M atoms at time
t + !t/2 without rigid body constraints is

Lnon

(
t + !t

2

)

=
M∑

i=1

rnon, b
i

(
t + !t

2

)
× pnon, b

i

(
t + !t

2

)

=
M∑

i=1

rnon, b
i

(
t + !t

2

)
×

(
miv

non, b
i

(
t + !t

2

))

=
M∑

i=1

rnon, b
i

(
t + !t

2

)
×

(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

,

(5)

where pb
i is the momentum, and vb

i is the velocity for atom i
in body-fixed local coordinate at time t + !t/2. The velocities
in body-fixed local coordinate are finite difference of coordi-
nates calculated from Eqs. (3) and (4).

The rigid body motion of M atoms is achieved by cor-
recting the coordinates of the M atoms at time t + !t from
rnon, b
i (t + !t), to maintain the rigid structure, and to have

the angular momentum same to Lnon(t + !t/2). The coordi-
nate correction is calculated in the body-fixed local coordinate
through an iterative process described as the following.

Assume that the moment of inertia I, a 3 × 3 matrix, is
for M atoms in body-fixed local coordinates rb

i (t):

I =

⎡

⎢⎣
Ixx Ixy Iyz

Iyx Iyy Iyz

Izx Izy Izz

⎤

⎥⎦ . (6)

The angular momentum of rigid structure composed of
the M atoms can be calculated from I and angular velocity
vector ωrig(t + !t/2) as

Lrig

(
t + !t

2

)
= I · ωrig

(
t + !t

2

)
. (7)

ω is a three components vector, ω = (ωx, ωy, ωz). Based on
the equality of angular momentum, we have

Lnon

(
t + !t

2

)
= Lrig

(
t + !t

2

)
. (8)

Plug Eqs. (5) and (7) to Eq. (8), we have

I · ωrig,(1)
(

t + !t

2

)
=

M∑

i=1

rnon, b
i

(
t + !t

2

)

×
(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

,

(9)

where the superscript (1) indicates the first estimation.
Rearrangement of Eq. (9) with inverse of I gives us ωrig,(1)

(t + !t/2) as

ωrig,(1)
(

t + !t

2

)
= I−1 ·

M∑

i=1

rnon, b
i

(
t + !t

2

)

×
(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

. (10)

Once vector ω is obtained, a skew-symmetric matrix ω̂ is con-
structed as

ω̂ =

⎡

⎢⎣
0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

⎤

⎥⎦ . (11)

The angle θ undertaken by the rigid body in time interval !t is
∥ω∥!t. The corresponding skew-symmetric matrix θ̂ is ω̂!t .
The rotation matrix corresponding to the angle θ can be ex-
pressed as matrix exponential

R = eθ̂ . (12)

Following the Rodrigues’ formula,14 the matrix exponential
is given by

eθ̂ = 1 + θ̂

∥θ∥ sin (∥θ∥) + θ̂2

∥θ∥2 (1 − cos (∥θ∥)) , (13)

where 1 is the identity matrix, ∥θ∥ is the Euclidean norm of
vector θ , and also is the rotational angle undertaken by the
rigid structure. Equation (13) faces the problem of numerical
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instability when ∥θ∥ is small. In such situation, the Taylor
expansion is applied to construct rotation matrix

eθ̂ = 1 +
(

1 −
∥θ∥2

3!
+

∥θ∥4

5!
− · · ·

)

θ̂

+
(

1
2!

−
∥θ∥2

4!
+

∥θ∥4

6!
· ··

)

θ̂2. (14)

After obtaining rotation matrix R, the body-fixed local coor-
dinate of the M atoms after the current MD step are updated
through rotational operation on the coordinates in body-fixed
local coordinate at time t

rrig, b(n)
i (t + !t) = R(n) · rb

i (t), (15)

where the superscript (n) specifies the number of iteration.
For the first iteration, n = 1. It should be noted that the coor-
dinates rrig, b(n)

i (t + !t) is in the body-fixed local coordinates
for rigid structure at time t + !t, and rb

i (t) is in the body-fixed
local coordinates at time t. Therefore, the rotational operation
R(n) was applied on M atoms around the center of mass.

From the updated coordinates, the angular momentum in
the iteration, Lrig,(n), is calculated as

Lrig, (n)
(

t + !t

2

)

=
M∑

i=1

rrig, b,(n)
i

(
t + !t

2

)
×

(
mi ṙ

rig, b,(n)
i

(
t + !t

2

))

=
M∑

i=1

rrig, b,(n)
i

(
t + !t

2

)
×

(

mi

rrig, b,(n)
i (t + !t) − rb

i (t)
!t

)

,

(16)

where ṙrig, b,(n)
i is the velocity of atom i calculated from the

updated coordinate in body-fixed local coordinate during the
iteration.

If Lrig,(n)(t + !t/2) differs from Lnon(t + !t/2) by amount
less than a predefined tolerance, the procedure is consid-
ered converged. Otherwise, angular velocity vector ωrig,(n)

(t + !t/2) is updated to the next iteration.
Since the coordinates at time t + !t/2 are not readily

available from the simulation, it can be approximated using
the square root of rotation matrix, R(n),

rrig, b,(n)
i

(
t + !t

2

)
= (R(n))

1
2 rb

i (t). (17)

Consequently, the angular momentum for both non-rigid
and rigid structure can be computed as the following two
equations:

Lnon

(
t + !t

2

)

=
M∑

i=1

rnon, b
i

(
t + !t

2

)
×

(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

≈
M∑

i=1

(R(n))
1
2 · rnon, b

i (t) ×
(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

≈ (R(n))
1
2 ·

M∑

i=1

rnon, b
i (t) ×

(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

= (R(n))
1
2 · L′ non (18)

Lrig,(n)
(

t + !t

2

)

=
M∑

i=1

rrig,(n), b
i

(
t + !t

2

)
×

(
mi ṙ

rig,(n), b
i

(
t + !t

2

))

=
M∑

i=1

(R(n))
1
2 · rrig,(n), b

i (t)×
(

mi

rrig,(n), b
i (t + !t) − rb

i (t)
!t

)

≈ (R(n))
1
2 ·

M∑

i=1

rrig,(n), b
i (t)×

(

mi

rrig,(n), b
i (t + !t) − rb

i (t)
!t

)

= (R(n))
1
2 · L′ rig,(n) (19)

The updated angular velocity vector ωrig,(n+1)(t + !t/2)
is expected to satisfy

I · ωrig,(n+1)
(

t + !t

2

)
= Lnon

(
t + !t

2

)
. (20)

Combining Eqs. (20) and (7), we have

I · ωrig,(n+1)
(

t + !t

2

)

= I · ωrig,(n)
(

t + !t

2

)

+Lnon

(
t + !t

2

)
− Lrig,(n)

(
t + !t

2

)
. (21)

Multiply both sides of Eq. (21) by the inverse of moment
of inertia, I−1, and plug Eqs. (18) and (19) into Eq. (21) with
rearrangement we have

ωrig,(n+1)
(

t + !t

2

)
= ωrig,(n)

(
t + !t

2

)

+I−1 · (R(n))
1
2 ·

(
L′ non − L′ rig,(n)

)
.

(22)

Since R(n) is close to the identity matrix for small time step
!t, we can write

R(n) = 1 + δR, (23)

where δR = R(n) − 1 is small. Hence

(R(n))
1
2 = 1 + δR

2
+ O

(
(δR)2)

= 1 + R(n) − 1

2
+ O

(
(δR)2)

= 1 + R(n)

2
+ O

(
(δR)2) . (24)
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By neglecting the quadratic term, we have approximation of
square root of matrix R(n) as

(R(n))
1
2 ≈ 1

2
(1 + R(n)). (25)

Plug Eq. (25) into Eq. (22), we have updating scheme for an-
gular velocity as

ωrig,(n+1)
(

t+ !t

2

)
=ωrig,(n)

(
t + !t

2

)

+ I−1 · (1 + R(n))
2

· (L′ non−L′ rig,(n)),

(26)

where ωrig,(n+1) is the updated angular velocity vector for the
(n + 1)th iteration.

Using the updated angular velocity vector ωrig,(n+1), the
procedure starting from Eq. (10) is repeated until the angu-
lar momentum Lrig,(n)(t + !t/2) converges to Lnon(t + !t/2).
Typically, three iterations (n = 3) are sufficient to converge
to a double precision accuracy. This iterative approach is far
more computationally efficient than any analytic approach.

After convergence, the coordinates in global reference for
rigid body M atoms are calculated as

rrig, (n)
i (t + !t) = rrig, b(n)

i (t + !t) + rnon
COM (t + !t). (27)

The final coordinates rrig, (n)
i (t + !t) are the rigid struc-

ture coordinates for the desired MD trajectory.
The procedure described above iteratively solves Eq. (8),

or more explicitly, the following equation:

M∑

i=1

rb
i

(
t + !t

2

)
×

(

mi

rnon, b
i (t + !t) − rb

i (t)
!t

)

=
M∑

i=1

rb
i

(
t + !t

2

)
×

(

mi

rrig, b
i (t + !t) − rb

i (t)
!t

)

, (28)

where rnon, b
i (t + !t) and rrig, b

i (t + !t) are the body-fixed lo-
cal coordinates without and with rigid body constraints at time
t + !t, respectively.

One important aspect of this rigid body integration
method is that different rigid bodies may share one common
atomic center. A rigid body may also share atoms that are
involved in SHAKE constraints. This is possible because, as
with SHAKE, applying the constraint to partial forces in mul-
tiple steps yields the same solution as applying the full force
once, to within numerical precision. When a given atom is in-
volved in two or more SHAKE constraints, the constraints are
iterated in a cyclic fashion until convergence. The same ap-
proach works for SHAPE, and if an atom is involved in multi-
ple SHAPE constraints, these must also be applied in a cyclic
fashion until convergence. As with SHAKE, each application
of the constraint conserves angular and linear momentum in a
holonomic fashion. An NVE simulation converged with this
approach would also approximately conserve energy. An ef-
ficient implementation of this approach would converge both
SHAKE and SHAPE constraints simultaneously within the
same outer iteration loop. A prospective use for this would be
in making peptide bonds rigid and planar in a protein. In such

application, each Cα would be involved in two constraints that
would need to be solved to consistency. A test case of such
simulation is presented in this paper.

When using this method on a large-scale parallel machine
where different atom centers are integrated on different pro-
cessors, large rigid bodies may span across more than one pro-
cessor. It is necessary to communicate components of rnon

COM

and Lnon at the beginning of the cycle and distribute the R ma-
trix at the end. It is never necessary to distribute coordinates,
since each processor can apply the final R matrix to atoms in
each rigid body it contains. Thus the method can be efficiently
applied even if whole proteins are made rigid.

The SHAPE rigid structure algorithm is implemented in
CHARMM15 program suite within the SHAPE module. The
key subroutine of this algorithm is included in the supplemen-
tary material.16

The SHAPE method is based on the conservation of lin-
ear and angular momentum. The use of body-fixed local co-
ordinate system guarantees the conservation of linear mo-
mentum after rigid body correction of each MD step. There-
fore, the major error of SHAPE rigid body integration method
comes from the angular momentum calculation. Through an
iterative approach, a matrix is determined for rigid structure
rotation to conserve the angular momentum obtained through
non-rigid body integration. When using the leapfrog integra-
tion scheme, once a convergence is reached, we have

Lrig

(
t + !t

2

)
= Lnon

(
t + !t

2

)
. (29)

Therefore, the accuracy of integration is determined by the
angular momentum.

Lrig

(
t + !t

2

)

= Lrig(t) + 1
2
τ!t + O(!t2)

=
∑

i

rb
i (t) × mivb

i (t) + !t

2

∑

i

rb
i (t) × fi(t) + O(!t2)

=
∑

i

rb
i (t) ×

(
mivb

i (t) + !t

2
· fi(t)

)
+ O(!t2)

=
∑

i

rb
i (t) × mivb

i

(
t + !t

2

)
+ O(!t2)

=
∑

i

rb
i (t) × mi

rrig, b
i (t + !t) − rb

i (t)
2

+ O
(
!t2)

= L′ rig

(
t + !t

2

)
+ O(!t2), (30)

where τ is the torque on the rigid structure. The angular ve-
locity at time t + !t is

ωrig

(
t + !t

2

)
= I−1 Lrig

(
t + !t

2

)

= I−1 L′ rig

(
t + !t

2

)
+ O(!t2)

= ω′ rig
(

t + !t

2

)
+ O(!t2), (31)
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FIG. 2. Model systems, the rigid bodies are shown in ball and stick mode: (a) 126 water molecules box, the rigid water molecule is labeled; (b) Trp-case
protein, two separate rigid bodies are labeled; (c) matrix metalloproteinase 2 with substrate, the single rigid body is enlarged in inset; (d) nine-residue β-hairpin
peptide, peptide bonds as treated as individual rigid structures, Cα carbons shared by adjacent rigid structures are shown in black. The solvent molecules are not
shown in (b), (c), or (d).

where ω′rig(t + !t/2) is the computed angular velocity in the
simulation. Consequently, the rotational angle at time t + !t
is

θ = ωrig

(
t + !t

2

)
!t

=
(

ω′ rig
(

t + !t

2

)
+ O(!t2)

)
!t

= ω′ rig
(

t + !t

2

)
!t + O(!t3)

= θ ′ rig + O(!t3), (32)

where θ ′rig is the computed rotation angle in the simulation.
Finally, the coordinates at time t + !t is

rrig, b(t + !t)= R · rb(t)=eθ̂rb(t) = eθ̂ ′ rig

rb(t) + O(!t3).

(33)

TABLE I. Total energies (in kcal/mol) and standard deviation of model systems from simulations using different time steps.

Time step (fs)

1.0 1.5 2.0

Model systems Total energy Standard deviation Total energy Standard deviation Total energy Standard deviation

a (SHAPE) − 665.49 0.017 − 661.78 0.104 − 661.44 0.86
a (SHAKE) − 665.49 0.017 − 661.72 0.092 − 651.14 0.58
a (no constraint) − 664.12 0.016 − 660.22 0.081 − 651.05 0.61
b (SHAPE) − 7681.02 0.051 − 7631.59 0.26 − 7505.21 6.6
b (no constraint) − 7783.08 0.040 − 7733.09 0.22 − 7607.02 3.8
c (SHAPE) − 111 021.16 2.8 − 110 294.37 17.0 − 108 361.57 192.8
c (no constraint) − 111 078.77 2.9 − 110 341.24 20.2 − 108 436.01 165.6



134110-6 Tao, Wu, and Brooks J. Chem. Phys. 137, 134110 (2012)

Therefore, for a single time step this algorithm has the third
order of accuracy. Over a given time period, t, the number of
the steps is in the order of !t −1. Therefore, the global error
of the algorithm is in the order of O(!t 2).

III. NUMERICAL TESTS

Four model systems were applied as test cases for this
rigid structure algorithm with the fourth system described
at the end of this section. The model system a is a water
box with 126 TIP3P water molecules (Fig. 2(a)).17 Only
one water molecule in the water box was treated as a rigid
structure using SHAPE method. As a comparison, SHAKE
for holonomic constraint was also applied to implement rigid
structure for the same water molecule, which is treated by
SHAPE. Simulation for the same water box without any
constraints was also carried out for benchmark purpose. The
model system b is a Trp-cage protein (PDB code: 1L2Y) in
a box of 1169 water molecules (Fig. 2(b)). The side chain
of residue Trp6 and the whole residue of Pro20 were treated
as separate rigid structures. The model system c is protein
matrix metalloproteinase 2 (MMP2) with its substrate in a
box of 12 636 water molecules (Fig. 2(c)).18 The active site,
including side chains of residues His288, His 292, His298,
and Glu289, the thiirane ring, methylene, and sulfone groups
in substrate, and zinc ion, are combined as a single rigid
structure. The time step of 1 fs was used for all there systems.

For system a, the NVE simulation using SHAPE method
provided results that are essentially interchangeable to that
using SHAKE method in terms of total energy of the whole
systems and standard deviation along the 1 ns trajectory
(Table I). The total energies presented in Table I include high
frequency correction based on the expectation value of the
symplectic shadow Hamiltonian.15, 19 Both simulations using
SHAPE and SHAKE methods approximately conserve the to-
tal energies at the level of accuracy very close to the simula-
tion without any constraints (Table I). The RMSD of whole
water box between two trajectories are calculated for the first
1000 steps (Fig. 3). The whole water box is very close to each
other between two trajectories, demonstrating the same level
of reliability for SHAPE algorithm as to the SHAKE method.
The average and standard deviation of RMSD for the rigid wa-
ter molecule of 1 ns trajectories using SHAPE method show

FIG. 3. The RMSD of whole water box of system a between two trajecto-
ries comparing SHAKE to SHAPE to implement rigid water constraints are
plotted for the first 1000 MD steps. The unit of RMSD value is in Å.

even higher accuracy than the results of 1 ns trajectory using
SHAKE method (Table II).

For system b, the dynamics using SHAPE method for two
separate rigid bodies demonstrated the same level of conser-
vation of total energy throughout the 1 ns trajectory as to the
free MD simulation without any constraints (Table I). Both
rigid structures maintain high accuracy during the simulation
(Table II). In the system c, the rigid structure is composed of
43 atoms from 6 residues including substrate and zinc ion.
The dynamics using SHAPE method for the defined rigid
structure demonstrated the same level of conservation of total
energy throughout the 1 ns trajectory as to the free MD simu-
lation without any constraints (Table I). The rigid structure in
this large protein system maintains the same level of accuracy
(Table II) as to the systems a and b. For both systems b and
c, it is not practical to implement rigid structure constraints
using SHAKE.

To investigate the effect of time step on the SHAPE
method, all the simulations presented above were repeated us-
ing both 1.5 and 2.0 fs as time step, respectively. It should be
noted that these time steps are not suitable for the simulation
setup in this study, and were employed only for the test and
demonstration purposes. For system a, the simulation using
SHAPE showed very similar accuracy in the conservation of
total energies to the one using SHAKE when applying 1.5 fs
as time step (Table I), and only slightly worse when apply-
ing 2.0 fs as time step (Table I). The SHAPE method main-
tained the rigid structure of the water molecule with slightly

TABLE II. RMSD (Å) of rigid bodies in model systems from simulations using different time steps.a

Time step (fs)

1.0 1.5 2.0

Model systems Average Standard deviation Average Standard deviation Average Standard deviation

a (SHAPE) 2.3 × 10−7 2.2 × 10−7 1.1 × 10−6 9.6 × 10−7 1.0 × 10−6 7.5 × 10−7

a (SHAKE) 4.2 × 10−7 3.6 × 10−7 7.7 × 10−7 7.2 × 10−7 1.3 × 10−6 9.4 × 10−7

b Trp6 side chainb (SHAPE) 2.3 × 10−7 9.2 × 10−8 3.1 × 10−7 1.2 × 10−7 5.1 × 10−7 2.8 × 10−7

b Pro12b (SHAPE) 2.8 × 10−7 5.5 × 10−8 3.0 × 10−7 4.8 × 10−8 6.9 × 10−7 3.4 × 10−7

c (SHAPE) 6.7 × 10−7 5.8 × 10−8 6.6 × 10−7 6.2 × 10−8 6.9 × 10−7 6.2 × 10−8

aOnly the rigid parts are used to calculate RMSD. The RMSD of rigid body in each frame from MD trajectories is calculated with reference to the first frame.
bIn system b, the RMSDs of two separate rigid bodies are calculated separately.
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TABLE III. A nine-residue β-hairpin peptide as model system d for outer loop of SHAPE algorithm.

Energy fluctuationa Energy drift Average iteration Maximum iteration
Methods (kcal/mol) (kcal/mol ps)b steps steps

SHAPEc,d 0.10 0.0034 18.1e 27e

SHAKEf,d 0.08 0.0028 13.3 20
SHAPE non-sharingg,d 0.06 0.0020 1e 1e

aStandard deviation of total energy with high frequency correction.
bOverall energy drift is measured by the least squares slope of energy change with respect to time.
cFor SHAPE method, all eight peptide bonds are treated as individual planar rigid structures which share one Cα carbon with
adjacent structures.
dAll simulations are 100 ps with 1 fs time step. The convergence tolerance for outer loop of SHAPE is 10−7, which is also applied
for SHAKE for fair comparison.
eIteration steps for SHAPE are outer loop iterations. When there is no sharing atom among rigid structures in SHAPE, only one
outer loop iteration is necessary.
fFor SHAKE method, the main chain chemical bonds in nine residues are constrained. But peptide planes are not treated as
individual rigid structures.
gIn this simulation using SHAPE method, each Cα carbon belongs to previous peptide plane only. No atoms are shared by different
rigid planar structures.

larger RMSD and standard deviation when using 1.5 fs as time
step, and smaller RMSD and standard deviation when using
2.0 fs time step comparing to SHAKE method (Table II). For
systems b and c, the simulations using SHAPE showed com-
parable and slightly better accuracy in conservation of total
energies, respectively, comparing to simulations without rigid
body when using 1.5 fs time step (Table I). When using 2.0 fs
time step, the simulations using SHAPE showed marginally
worse conservation of total energies (Table I). For systems b
and c, the time step showed very little effect on maintaining
the rigid structure throughout the simulation using SHAPE
method (Table II). The time step analysis indicates that the
SHAPE method shows very little effect on the conservation
of total energies, and is robust when using different time
steps.

The model system d is a nine-residue peptide folded
as β-hairpin20 in a box of 290 water molecules to test the
outer loop of SHAPE algorithm to handle the case in which
one atom is shared by two rigid structures. All eight pep-
tide planes are treated as individual rigid structures. There-
fore, seven Cα carbons are shared by adjacent peptide bonds
as rigid structures (Fig. 2(d)). Note that SHAKE cannot im-
pose planar constraints, so in a separate simulation as com-
parison, SHAKE is applied to constrain all the main chain
chemical bonds in the nine-residue peptide without treating
peptide planes as individual rigid structures. Both simulations
are run for 100 ps with 1 fs time step. The same conver-
gence tolerance (10−7) is applied for both SHAKE and outer
loop of SHAPE algorithm. Two simulations are compared in
Table III. The fluctuation of total energy with high frequency
correction from the simulation using SHAPE algorithm is
slightly higher but still comparable to that using SHAKE al-
gorithm. The least squares slope of energy change with re-
spect to time shows that both SHAKE and SHAPE display
observable overall energy drift, with SHAKE slightly better
than SHAPE. On average, it takes five more iterations for
outer loop in SHAPE algorithm to converge than iterations of
SHAKE algorithm. In an addition SHAPE simulation, eight
peptide planes are treated as individual rigid structures, but
each Cα carbon belongs to previous peptide plane only. There-
fore, no atoms are shared by different rigid structures. This

simulation displays smaller total energy fluctuation and over-
all energy drift than both SHAPE and SHAKE simulations
above (Table III).

IV. CONCLUDING REMARKS

We presented an algorithm to implement rigid body con-
straints in MD simulations through iterative procedure of con-
structing rotation matrix for the rigid structure to preserve an-
gular momentum. This algorithm avoids computing Lagrange
multipliers of individual holonomic constraints. Therefore, an
arbitrary number of particles can be selected to form a sin-
gle rigid structure, and is more efficient than SHAKE for any
systems with more than three atoms. An arbitrary number of
such rigid structures can be implemented in simulation. The
iterative procedure is independent from and conducted after
each MD free integration step. Therefore, no significant mod-
ification of existing MD integrator is necessary to implement
this algorithm. This can be easily plugged into any simula-
tion package that already includes SHAKE. In addition, mul-
tiple rigid structures can be defined in a simulation, even those
sharing one particle with neighboring rigid structures. The
simulation of four test cases, including a pure water box and
three solvated systems, demonstrated the reliability and utility
of this algorithm.

Since this method is interchangeable with SHAKE, it suf-
fers from the same failures that SHAKE exhibits at very large
time steps or very high temperatures where the equations can-
not be solved. In this instance, non-energy conserving approx-
imations are employed while temperatures are too large, as an
alternative to program termination.

In summary, the SHAPE method introduced here con-
serves linear and angular momentum, and is the only rigid
body integration algorithm that is fully consistent and inter-
changeable with the SHAKE method. It shares with SHAKE
both its holonomic and symplectic nature, and well conserves
total energy for long simulations with minimal energy drift.
It extends the ability of SHAKE like constraints to linear sys-
tems with three or more atoms, planar systems with four or
more atoms, and to larger rigid structures where SHAKE is
intractable.
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