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Abstract A new addition method is described in this study for calculating the partition coefficients of
peptides. LoB and lod values of peptides are calculated by summing the contributions of the compo-
nent amino acids. The final models are derived from a multivariate linear regression analysis of 219
peptides with known experimentaltda Thestandard errors in a leave-one-out cross-validation are
0.23 and 0.24 log units for the IB@nd lod values, respectively. The predictive ability of the model

is tested by an extra set of ten peptides, and the self-consistency of the model is further demonstrated by
a new validation procedure called the evolution test. The parameters obtained in regression could be
used as hydrophobicity scales for amino acids. The application of such hydrophobicity scales has also
been discussed.

Keywords Partition coefficient, Peptide, Addition method, Fragment metho®, logD, Evolution test

ties of peptides is undoubtedly meaningful for drug design
and discovery. Furthermore, establishing a set of hydro-
i ) ) . phobicity scales for amino acids will aid studies of three-
Since the pioneering work of Hansch and Fujita [1], the logagimensional protein structure and may provide insights into
rithm of |-octanol/water partition coefficient (IByhas been processes such as protein folding and binding [10,11].
successfully introduced into quantitative structure-activity' geyeral hydrophobicity scales have been proposed for
relationship (QSAR) studies. It is widely used as a paramaming acids or peptides [12,13]. Steinmetz employed com-
eter to measure hydrophobicity in studying many biochemiparative molecular field analysis (COMFA). [14] to analyze
cal, pharmacological, and environmental processes [2]. Thighe octanol-water distribution coefficient of free and blocked
has prompted extensive work on predictingHeglues based  amino acids [15]. Buchwald and Bordor used a size-based
solely on chemical structure [3-8]. , model to predict the octanol-water partition of non-
Although they work well for common organic com- zjitterionic peptides and other organic compounds [16].
pounds, most of the current methods fail to calculate log sgtomatsu-Niwa and Ogino analyzed the experimentally
values of peptides accurately. Peptides and their analogs agtermined lo§ values of free and blocked di- and
often regarded as a very important class of potential therayipeptides statistically to derive hydrophobicity parameters
peutic reagents [9]. Modeling the hydrophobicity proper-for amino acids [17]. Maybe the most convincing approach
put forward so far is from Akamatsu et al. [18-21]. They
have carefully measured the partition coefficients of a wide
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Figure 1 Correlation between the experimental and calcurigure 2 Correlation between the experimental and calcu-
lated lodP values of 219 peptides given by the residue adtiited lod values of 216 peptides given by the residue addi-
tion model tion model

variety of peptides under controlled experimental conditiori8esidue addition model
After studying these data with linear regression analysis, they
have obtained different regression models for different kindée assume that the partition coefficient of a peptide can be
of peptides. Various parameters are used in their models @adculated by summing the contribution of each component
structural effectsB-turn formation corrections, N- and C-amino acid (we will refer to “component amino acid” as “resi-
terminal effects, ety A good correlation was observed beeue” in the following text). Based on the regression analysis
tween the experimental and calculatedFaglues. of the training set, we have obtained an equation for calcu-

In this paper, we describe new addition methods for chiting logP values of peptides:
culating lod® and lod® values of peptides. Using the sam
data set as Akamatsu, we have derived much simpler regjé)gp = z aan +bB, +ul, (1)
sion models, which give comparable results. Furthermore, 1
we have demonstrated that Rgnd lo® values of peptides ~ Here, a, is the occurrence of thah kind of residueR?,
can be calculated reliably either by the amino acid addititsnthe lod® contribution of thenth kind of residue; and and
or fragment addition method. The hydrophobicity parametersire indicator variables to account for different forms of
we have obtained are applicable to QSAR and protein m@eéptides. When the sample compound is a blocked peptide,
eling studies. is set to 1 andi is set to O; while if the sample compound is
an unblocked peptidé,is set to 0 and is set to 1B, andU,
are the corrections for |&gvalues of blocked and unblocked
- peptides, respectively. The regression analysis yielded:
Method and computation results 219, r = 0.978, s = 0.21, and F = 189.8. The correlation be-

tween the observed and calculatedloglues, given by equa-

- tion 1, is illustrated in Figure 1. The slope and intercept of

Training set the fitted line are 0.96 and —0.04, respectively. The regres-
: . ...sion analysis results, i.R, B,andU, are listed in Table 1.

We use 219 peptides with known 1-octanol/water partition \ye paye also obtained a similar equation for calculating
coefficients as our training set (see Supplementary Materigly, 5 \ ajues of peptides:
These peptides range from di- to pentapeptides, including N-

acetyl-peptide amides (usually referred as “blocked” peptiddg)e D = z aanD +bB, +ulU, @)
and peptides with free N- and C-terminus (usually referred m
as “unblocked” or “free” petides). The xperimentally de-  The meaning of the parameters in this equation is similar

termined partition coefficients, 1&g and distribution coeffi- tq the corresponding variable in equation 1. However, in equa-

cients, lo@, of these peptides are all taken from the litergipn 2,R°_ By, andU, are concerned with I@values rather

ture [16-21]. Most of the data come from Akamatsu’s Worlhan o values. The regression results of this equation are
n=216,r =0.974, s = 0.21, F = 155.8. The correlation be-
tween the observed and calculateddoglues given by equa-
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Table 1 Hydrophobicity con-

tributions of 21 natural Amino acid logP Contribution [a] logD Contribution
amino acids Ala -0.27 (+/-0.06) -0.27 (+-0.07)
Arg 0.79 (+-0.21) 165 (+-0.22)

Asn -0.98 (+/-0.22) -0.98 (+/-0.22)

Asp -0.28 (+/-0.21) 2.06 (+-0.22)

Cys 0.83 (+/-0.33) 0.82 (+/-0.34)

Gin -1.00 (+/-0.21) -1.00 (+/-0.22)

Glu -0.34 (+-0.21) 219 (+/-0.22)

Gly -0.22 (+/-0.06) -0.22 (+/-0.06)

His -0.31 (+/-0.19) L0.44 (+/-0.20)

lle 0.70 (+/-0.06) 0.69 (+/-0.06)

Leu 0.80 (+/-0.06) 0.80 (+/-0.06)

Lys 0.17 (+/-0.19) 227 (+/-0.20)

Met 0.51 (+-0.14) 0.51 (+/-0.14)

Phe 1.16 (+/-0.06) 1.16 (+/-0.06)

Pro 0.15 (+/-0.13) 0.15 (+/-0.13)

Ser -0.45 (+/-0.15) -0.45 (+/-0.15)

Thr -0.26 (+/-0.14) -0.26 (+/-0.14)

Trp 1.46 (+/-0.11) 146 (+-0.11)

. Tyr 0.55 (+/-0.09 0.55 (+/-0.09

[a] The values in brackets are, 0.32 E+/-o.oag 0.32 §+/-0.06§
95% confidence mterval. -0.29 (+/-0.21) -2.17 (+/-0.27)
[b]For - N-acetyl-peptide gjoopeq [p] 119 (+-0.12) 118 (+/-0.12)
amides Unblocked [c] 325 (+/-0.15) -3.25 (+/-0.15)

[c] For free peptides

tion 2 is illustrated in Figure 2. The slope and intercept of tregression analysis of the training set by using equation 3
fitted line are 1.00 and 0.00, respectively. The regressiginlded n = 216, r = 0.967, s = 0.24, and F = 150.8. The
analysis results, i.dR, B,andU, are also listed in Table 1. correlation between the observed and calculateld i@jues

To test the predictive ability of the above two regressigiven by equation 3 is illustrated in Figure 3. The slope and
models, we have used equations 1 and 2 to perform ledmgercept of the fitted line in Figure 3 are 0.90 and -0.10,
one-out cross-validation on the training set. The results obspectively. The parameters derived for each fragment are
tained are q=0.974, s=0.23 for equation 1, and g=0.988ted in Table 2.
s=0.24 for equation 2, respectively.

Test set
Fragment addition model
We used ten tetra- and pentapeptides as a test set (see Ta-
The fragment addition method has been widely used in dak 3). The gperimental lo® values of these peptides are
culating lod® values for common organic compoundgken from the literature [24]. We calculated theDoglues
[6,7,22,23]. Wedissected the structures of the amino acifisr these peptides with the residue addition model, i.e. equa-
into 18 elementary chemical fragments (see Table 2). Eittien 2. The predictive correlation coefficient (r) is 0.929, and
blocked or unblocked peptides can be represented as thetesstandard deviation (s) is 0.47 lagjits. The correldon
sembly of these fragments. On the assumption that tiie Idgetween the observed and calculatedleglues of the test
value of a peptide can be calculated by summing the conset is illustrated in Figure 4.
bution of each component fragment, we have obtained theThe aqueous buffer used in the Dbgneasurement ex-
following equation by the multivariate regression analysis périment for the test set (i.e. Hank's balanced salt solution
the training set: modified to contain 25 mM glucose and 10 mM HEPES, pH
7.35, 37°C)[24], is not the same as that used for the training
logD = z a,F, +ul, (3) set(i.e. 0.1M aqueous sodium phosphate plus phosphoric acid
n pH 7, ionic strength 0.1, 25°Q20]. This is probably the
Here,F is the lo® contribution of thenth kind of frag- reason why the standard deviation in calculating the test set
ment;a, is the occurrence of theh kind of fragment; and s a little larger than the one in calculating the training set.
is an indicator variable. If the sample compound is an Wlowever, considering that the average error in partition ex-
blocked peptidey is set to 1; otherwise it is set to 0, is periments is about 0.4 log units, the deviation of 0.47 log
the correction for loD values of unblocked péides. The units is still acceptable. This shows that our model is robust
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Table 2 Hydrophobicity contributions of 18 fragments

Fragments Contribution Confidence
interval[a]
[ -CH, 0.051 (+/-)0.140
2 -CH,- 0.388 (+/-)0.064
g
= |
E -
S /PCI\ 0.577 (+/-)0.188
-OH (in Ser) -0.498 (+/-)0.192
-OH (in Thr) -0.565 (+/-)0.214
3 2 1 0 1 ] 3 -OH (in Tyr) -0.604 (+/-)0.097
Observed logD i YH
Figure 3 Correlation between the experimental and calcu- o) -2.344 (+/-)0.214
lated lod> values of 216 peptides given by the fragment ad-
dition model NH,
N\ -1.244 (+/-)0.103
(0]
5 -NH, -3.306 (+/-)0.283
-S- -0.007 (+/-)0.204
| (4 -SH 0.759 (+/-)0.360
fa .
&
= U7
g . © 1.087 (+/-)0.141
ERR
= n
O . V.
o A(N\/j -0.506 (+/-)0.236
'3 T T T T T T T 4 T T T T T
4 i -2 -1 0 1 2 %
Observed logD 1.401 (+/-)0.160
Figure 4 The correlation between the experimental and cal-
culated lo@ values of 10 peptides in the test set N
N %\N -2.456 (+/-)0.306
for predicting partition coefficients of peptides smaller than
hexapeptides. 0]
A(N\ -0.323 (+/-)0.168
The program
(0]
Based on the final model, we have written a computer pro- N -0.227 (+/-)0.069
gram, PLOGP, which can calculate bgnd lod values of
a given peptide and the MLP of protein with known 3D struc- |
ture. This program is written in C language. Its source code N
and a detailed description are available in the Supplement@ry \ -0.986 (+/-)0.250
Material.
Unblocked[b] -3.235 (+/-)0.167

[a] The confidence level is 95%.

[b] For free peptides.
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Table 3 Test set 5

] gl Ty T ;
Ac-Tyr-Pro-lle-Asp-Val-N -1.85 -1.52 z g - Hydrophohic
Ac-Tyr-Pro-Gly-Asp-Val-N -3.71 -2.44 % 0 S
Ac-Tyr-Pro-lle-Asn-Val-N -0.42 -0.44 B ST E T Neotral
Ac-Tyr-Pro-Gly-Asn-Val-N  -2.06 -1.36 £ 1 —
Ac-Tyr-Pro-lle-lle-Val-N 1.13 1.23 g Hydrophilic ST
Ac-Tyr-Pro-Gly-lle-Val-N -0.20 0.31 ]
Ac-Phe-Pro-lle-lle-Val-N 1.61 1.84 éﬁ 3
Ac-Phe-Pro-Gly-lle-Val-N 1.96 0.92
Ac-Phe-Pro-lle-lle-N 1.17 1.52
Ac-Phe-Pro-Gly-lle-N 2.00 0.60 i

G O R N S S e

[a] Observed lo@ value, cited from Ref. [24]. Residue
[b] Calculated lod value, given by equation 2.

Figure 5 The subdivision of 21 natural amino acids accord-
ing to their lod® contribution

of hydrophobicity properties upon the whole molecule. For
example, Lys is considered to be very hydrophilic (its contri-
bution to the lo® value is —2.27 according to the residue
addition model). By using the fragment addition model, it
can be seen very clearly that the significantly negativ® log

While reproducing the experimental R@nd lod values ‘é%'“; Oihﬁﬁsiscggﬁnﬂlaf'g'ryéiﬁm the aminagp (see Ta-

satisfactorily, the residue addition model is rather simple an Using the hydrophobicity contribution of each fragment,

straightforward. By using this model, the regression analy .3 can calculate the Molecular Lipophilicity Potential (MLP)

of the tra_ining set gives an “eigenvalue™ fqr e?‘Ch kind or peptides or even protein molecules. The MLP can pro-
amino acid. This value represents the contribution of a sp

o . . " L fde a 3D profile to illustrate the spatial distribution of
cific amino acid to the partition coefficient and therefore can drophobicity properties around a molecule and is widely

be regarded as its hydrophobicity scale. According to th : .
hydrophobicity scales, we can roughly divide the 21 kinds‘%l Fl’leviltoe (gts'glz e??gnrg?ilsgilrjlltair gr%%ﬁggthaepﬂgiﬂﬁz i;l' he
amino acids into five groups (see Figure 5). It is not Surprlféually calculated as:
ing that those amino acids with aromatic side chains, e.g. '
Trp and Phe, are “very hydrophobic”, while those amino ac- h,
ids with ionizable side chains, e.g. Asp, Glu, Orn, Lys, and; = Z
Arg, are “very hydrophilic”. However, it is noticeable that 7
Ala, Gly, and Pro are not as hydrophobic as they are usually
considered to be (these amino acid residues are t)/IOiC%\H’}éreHi is the hydrophobic potential at tité grid point,h,
treated as hydrophobic residues in approaches such as jgrghe hydrophobicity contribution of theéh fragment in the
tein structure modeling). Furthermore, Thr and Ser are olylecule, andr, is the distance between thith grid point
slightly hydrophilic in spite of the existence of a hydrox¥nd the geometric center of tkiia fragment in the molecule
group in the side chain of each amino acid. All of these ami@dminimum cutoff distance of 5 A is imposed to avoid artifi-
acids have relatively short side chains that cannot extend iltgly large values oH.).
the solvent. Perhaps that is why the hydrophobicity proper-As an example, we have calculated the MLP profile of the
ties of these amino acids differ from the conventional CORtV-1 protease enzyme (PDB entry 1aaq), and show its MLP
cept. contour lines at level 1.2 in red (Figusg The HIV-1 pro-
tease enzyme has five rigid domains: two flap domains, two
core domains and one terminal domain [25]. As indicated by
Fragment addition model red contour lines at a high MLP level (1.2), the space be-
tween the two core domains is the largest hydrophobic area
Compared to the residue addition model, the fragment adgdithe whole molecule. Perhaps this means that hydrophobicity
tion model provides further information on the distributioplays an important role in the stability of the dimer.

Discussion

Residue addition model

(4)

L+,
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Evolution test senting the predictive ability of the regression model. To mini-
mize the coincidence in such analysis, the whole process,

The two models we have described above, both the resifiue selection, regression, and prediction), was repeated 20

addition model and the fragment addition model, are emphimes and the averagelues ofq .4, 4, S ,qands were

cal methods. They are derived from the regression analysisorded. Then the evolution procedure moved to the next

of a training set. Therefore, the final model is inevitably detep by increasing the size of the subset to 70 and performing

pendent on the training set. It is commonly believed that alhthe analysis, @in. Then the size of the subset increased

ideal training set should contain adequate samples to gtar90, 110, ..., until the size of the training set itself was

antee the reliability of the final regression model. Howevegached. Figure 7a shows the trendsjahdq ., through-

no consensus on the actual size of an ideal training set dwtsthe entire procedure, and Figure 7b shows the trersls of

been reached so far. If a training set contains N samples amds ., respectively.

the model to be studied includes M terms, it is generally ac-

cepted that N/M should be larger than 3 or 5 at the very mini- z (log D,,., —log D, )?
mum. This is too rough of an estimate to be a convincing = /1~ 3 (5)
standard. To resolve this problem, we have put forward a Z(log D,, —log D, )

stepwise procedure, the evolution test, to investigate the re-

atonship betven he sizeof h raning st and hepregh” %9901 SCIe Tadel, e pssume 1t e precicie
tive ability of the regression model. Y y

We performed an evolution test for etjoa 2. The evo- the subset. Theesults of the evolution test on our model

lution procedure began by selecting a subset from the tr CR[n‘lrm this assumption. We also note that, when the size of

ing set. As mentioned above, the training set contains a t 0] training' set is larger thgn 100, t'he' pr'edictive ability .Of
of 219 samples. We randomly selected 50 samples from I er;ne??:ilnrtljii ?nSteitg% E)utzsél(l)ghtly. -ﬁh's.'nd'cf?tes th?t %tra'm_-
g g 0 samples is sufficient for “train

training set to form a subset. Then we performed the regres e models we have pronosed. Using an even laraer train-
sion analysis on this subset with equation 2 and therefOle : brop : 9 9
set is unnecessary.

derived a regression model. Using this model, we calculated
the lod values of the samples in the test set. We recorded
the correlation coefficienty. and the standard deviatios) (
of the regression fitting of the subset. We also recorded Gunclusion
correlation coefficientd ). and the standard deviation

(S preg- Of the calculated and observed [bgalues of sam- | thjs study, we have demonstrated that partition coefficients,
ples in the test set. Hege, .4is defined as equation 5, reprefogp and lodd, of oligo-peptides can be calculated reliably

Figure 6 MLP contours at

level 1.2 of HIV-1 protease
enzyme (PDB entry laaq).
Five domains of HIV-1 pro-

tease are indicated by green
notes. Each part of the figure
is shaded: the contour lines 4
are shaded red; the ribbon
that represents the backbone
of the protein is shaded blue;
and the ligand molecule is
shaded cyan.
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Figure 7a The correlation coefficients found for the evoluFigure 7b The standard deviations found for the evolution
tion test test

by either the residue addition model or the fragment additi®n Claassen, Vrends in Drug ResearglElsevier Science:
model. Our addition models are derived from regression analy-Amsterdam: 1990; pp 73-108.
sis of 219 peptides and validated by an extst set. We 10. Kauzman, WAdv.Protein Chem1959 14, 1-63.
have also introduced a new stepwise procedure, the evdlui-Kyte, J.; Doolittle, R.R).Mol.Biol. 1982 157, 105-132.
tion test, to test the self-consistency of the regression mod@. Fauchere, J.L.; Charton, M.; Kier, L.B.; Verloop, A.;
The hydrophobicity scales obtained by our models for 21 Pliska, V.Int.J.Pept.Protein Red.988 32, 269-278.
kinds of natural amino acids are valuable for QSAR studi&3. Abraham, D.J.; Leo, Al.Proteins Struct.Funct.Genet.
and protein structure modeling. 1987, 2, 130-152.
14.Cramer, R.D.; Patterson, D.E.; Bunce, J.D.
Supplementary material available statementThe training J.Am.Chem.S0d.988 110, 5959-5967.
set, and the source codes of PLOGP (in C), are available fitBnSteinmetz, VEE. Quant.Struct.-Act.Relatl995 14, 19-
the authors. 23.
16.Buchwald, P.; Bodor, NProteins: Struct.Funct.Genet.
1998 30, 86-99.
17. Sotomatsu-Niwa, T.; Ogino, A.Mol.Struct.(Theochem).
1997 392, 43-54.
18. AkamatsuM.; Yoshida, Y.; Nakamura.; Asao, M.;
Iwamura, H.; Fujita, TQuant.Struct.-Act.Relail989 8,
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