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Introduction

Since the pioneering work of Hansch and Fujita [1], the loga-
rithm of l-octanol/water partition coefficient (logP) has been
successfully introduced into quantitative structure-activity
relationship (QSAR) studies. It is widely used as a param-
eter to measure hydrophobicity in studying many biochemi-
cal, pharmacological, and environmental processes [2]. This
has prompted extensive work on predicting logP values based
solely on chemical structure [3-8].

Although they work well for common organic com-
pounds, most of the current methods fail to calculate logP
values of peptides accurately. Peptides and their analogs are
often regarded as a very important class of potential thera-
peutic reagents [9]. Modeling the hydrophobicity proper-

ties of peptides is undoubtedly meaningful for drug design
and discovery. Furthermore, establishing a set of hydro-
phobicity scales for amino acids will aid studies of three-
dimensional protein structure and may provide insights into
processes such as protein folding and binding [10,11].

Several hydrophobicity scales have been proposed for
amino acids or peptides [12,13]. Steinmetz employed com-
parative molecular field analysis (CoMFA). [14] to analyze
the octanol-water distribution coefficient of free and blocked
amino acids [15]. Buchwald and Bordor used a size-based
model to predict the octanol-water partition of non-
zwitterionic peptides and other organic compounds [16].
Sotomatsu-Niwa and Ogino analyzed the experimentally
determined logP values of free and blocked di- and
tripeptides statistically to derive hydrophobicity parameters
for amino acids [17]. Maybe the most convincing approach
put forward so far is from Akamatsu et al. [18-21]. They
have carefully measured the partition coefficients of a wide
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variety of peptides under controlled experimental conditions.
After studying these data with linear regression analysis, they
have obtained different regression models for different kinds
of peptides. Various parameters are used in their models (i.e.
structural effects, β-turn formation corrections, N- and C-
terminal effects, etc.). A good correlation was observed be-
tween the experimental and calculated logP values.

In this paper, we describe new addition methods for cal-
culating logP and logD values of peptides. Using the same
data set as Akamatsu, we have derived much simpler regres-
sion models, which give comparable results. Furthermore,
we have demonstrated that logP and logD values of peptides
can be calculated reliably either by the amino acid addition
or fragment addition method. The hydrophobicity parameters
we have obtained are applicable to QSAR and protein mod-
eling studies.

Method and computation results

Training set

We use 219 peptides with known 1-octanol/water partition
coefficients as our training set (see Supplementary Material).
These peptides range from di- to pentapeptides, including N-
acetyl-peptide amides (usually referred as “blocked” peptides)
and peptides with free N- and C-terminus (usually referred
as “unblocked” or “free” peptides). The experimentally de-
termined partition coefficients, logP, and distribution coeffi-
cients, logD, of these peptides are all taken from the litera-
ture [16-21]. Most of the data come from Akamatsu’s work.

Residue addition model

We assume that the partition coefficient of a peptide can be
calculated by summing the contribution of each component
amino acid (we will refer to “component amino acid” as “resi-
due” in the following text). Based on the regression analysis
of the training set, we have obtained an equation for calcu-
lating logP values of peptides:
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Here, an is the occurrence of the nth kind of residue; RP
n

is the logP contribution of the nth kind of residue; and b and
u are indicator variables to account for different forms of
peptides. When the sample compound is a blocked peptide, b
is set to 1 and u is set to 0; while if the sample compound is
an unblocked peptide, b is set to 0 and u is set to 1. Bp and UP
are the corrections for logP values of blocked and unblocked
peptides, respectively. The regression analysis yielded: n =
219, r = 0.978, s = 0.21, and F = 189.8. The correlation be-
tween the observed and calculated logP values, given by equa-
tion 1, is illustrated in Figure 1. The slope and intercept of
the fitted line are 0.96 and –0.04, respectively. The regres-
sion analysis results, i.e. R, B, and U, are listed in Table 1.

We have also obtained a similar equation for calculating
logD values of peptides:
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The meaning of the parameters in this equation is similar
to the corresponding variable in equation 1. However, in equa-
tion 2, RD

n, BD, and UD are concerned with logD values rather
than logP values. The regression results of this equation are
n = 216, r = 0.974, s = 0.21, F = 155.8. The correlation be-
tween the observed and calculated logD values given by equa-

Figure 1 Correlation between the experimental and calcu-
lated logP values of 219 peptides given by the residue addi-
tion model

Figure 2 Correlation between the experimental and calcu-
lated logD values of 216 peptides given by the residue addi-
tion model
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tion 2 is illustrated in Figure 2. The slope and intercept of the
fitted line are 1.00 and 0.00, respectively. The regression
analysis results, i.e. R, B, and U, are also listed in Table 1.

To test the predictive ability of the above two regression
models, we have used equations 1 and 2 to perform leave-
one-out cross-validation on the training set. The results ob-
tained are q=0.974, s=0.23 for equation 1, and q=0.969,
s=0.24 for equation 2, respectively.

Fragment addition model

The fragment addition method has been widely used in cal-
culating logP values for common organic compounds
[6,7,22,23]. We dissected the structures of the amino acids
into 18 elementary chemical fragments (see Table 2). Either
blocked or unblocked peptides can be represented as the as-
sembly of these fragments. On the assumption that the logD
value of a peptide can be calculated by summing the contri-
bution of each component fragment, we have obtained the
following equation by the multivariate regression analysis of
the training set:

D

n

nn uUFaD += ∑log (3)

Here, Fn is the logD contribution of the nth kind of frag-
ment; an is the occurrence of the nth kind of fragment; and u
is an indicator variable. If the sample compound is an un-
blocked peptide, u is set to 1; otherwise it is set to 0. UD is
the correction for logD values of unblocked peptides. The

regression analysis of the training set by using equation 3
yielded n = 216, r = 0.967, s = 0.24, and F = 150.8. The
correlation between the observed and calculated logD values
given by equation 3 is illustrated in Figure 3. The slope and
intercept of the fitted line in Figure 3 are 0.90 and –0.10,
respectively. The parameters derived for each fragment are
listed in Table 2.

Test set

We used ten tetra- and pentapeptides as a test set (see Ta-
ble 3). The experimental logD values of these peptides are
taken from the literature [24]. We calculated the logD values
for these peptides with the residue addition model, i.e. equa-
tion 2. The predictive correlation coefficient (r) is 0.929, and
the standard deviation (s) is 0.47 log units. The correlation
between the observed and calculated logD values of the test
set is illustrated in Figure 4.

The aqueous buffer used in the logD measurement ex-
periment for the test set (i.e. Hank’s balanced salt solution
modified to contain 25 mM glucose and 10 mM HEPES, pH
7.35, 37°C)[24], is not the same as that used for the training
set (i.e. 0.1M aqueous sodium phosphate plus phosphoric acid
pH 7, ionic strength 0.1, 25°C) [20]. This is probably the
reason why the standard deviation in calculating the test set
is a little larger than the one in calculating the training set.
However, considering that the average error in partition ex-
periments is about 0.4 log units, the deviation of 0.47 log
units is still acceptable. This shows that our model is robust

Amino acid logP Contribution [a] logD Contribution

Ala -0.27 (+/-0.06) -0.27 (+/-0.07)
Arg -0.79 (+/-0.21) -1.65 (+/-0.22)
Asn -0.98 (+/-0.22) -0.98 (+/-0.22)
Asp -0.28 (+/-0.21) -2.06 (+/-0.22)
Cys 0.83 (+/-0.33) 0.82 (+/-0.34)
Gln -1.00 (+/-0.21) -1.00 (+/-0.22)
Glu -0.34 (+/-0.21) -2.19 (+/-0.22)
Gly -0.22 (+/-0.06) -0.22 (+/-0.06)
His -0.31 (+/-0.19) -0.44 (+/-0.20)
Ile 0.70 (+/-0.06) 0.69 (+/-0.06)
Leu 0.80 (+/-0.06) 0.80 (+/-0.06)
Lys 0.17 (+/-0.19) -2.27 (+/-0.20)
Met 0.51 (+/-0.14) 0.51 (+/-0.14)
Phe 1.16 (+/-0.06) 1.16 (+/-0.06)
Pro 0.15 (+/-0.13) 0.15 (+/-0.13)
Ser -0.45 (+/-0.15) -0.45 (+/-0.15)
Thr -0.26 (+/-0.14) -0.26 (+/-0.14)
Trp 1.46 (+/-0.11) 1.46 (+/-0.11)
Tyr 0.55 (+/-0.09) 0.55 (+/-0.09)
Val 0.32 (+/-0.06) 0.32 (+/-0.06)
Orn -0.29 (+/-0.21) -2.17 (+/-0.27)
Blocked [b] -1.19 (+/-0.12) -1.18 (+/-0.12)
Unblocked [c] -3.25 (+/-0.15) -3.25 (+/-0.15)

Table 1 Hydrophobicity con-
tributions of 21 natural
amino acids

[a] The values in brackets are
95% confidence interval
[b] For N-acetyl-peptide
amides
[c] For free peptides
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for predicting partition coefficients of peptides smaller than
hexapeptides.

The program

Based on the final model, we have written a computer pro-
gram, PLOGP, which can calculate logP and logD values of
a given peptide and the MLP of protein with known 3D struc-
ture. This program is written in C language. Its source code
and a detailed description are available in the Supplementary
Material.

Figure 3 Correlation between the experimental and calcu-
lated logD values of 216 peptides given by the fragment ad-
dition model

Figure 4 The correlation between the experimental and cal-
culated logD values of 10 peptides in the test set

Table 2 Hydrophobicity contributions of 18 fragments

Fragments Contribution Confidence
 interval[a]

-CH3 0.051 (+/-)0.140
-CH2- 0.388 (+/-)0.064

C
H

0.577 (+/-)0.188

-OH (in Ser) -0.498 (+/-)0.192
-OH (in Thr) -0.565 (+/-)0.214
-OH (in Tyr) -0.604 (+/-)0.097

O

OH

-2.344 (+/-)0.214

O

NH2

-1.244 (+/-)0.103

-NH2 -3.306 (+/-)0.283
-S- -0.007 (+/-)0.204
-SH 0.759 (+/-)0.360

1.087 (+/-)0.141

N

N

-0.506 (+/-)0.236

N

1.401 (+/-)0.160

N

N

N

-2.456 (+/-)0.306

O

N
-0.323 (+/-)0.168

O

N -0.227 (+/-)0.069

N
O -0.986 (+/-)0.250

Unblocked[b] -3.235 (+/-)0.167

[a] The confidence level is 95%.
[b] For free peptides.
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Discussion

Residue addition model

While reproducing the experimental logP and logD values
satisfactorily, the residue addition model is rather simple and
straightforward. By using this model, the regression analysis
of the training set gives an “eigenvalue” for each kind of
amino acid. This value represents the contribution of a spe-
cific amino acid to the partition coefficient and therefore can
be regarded as its hydrophobicity scale. According to these
hydrophobicity scales, we can roughly divide the 21 kinds of
amino acids into five groups (see Figure 5). It is not surpris-
ing that those amino acids with aromatic side chains, e.g.
Trp and Phe, are “very hydrophobic”, while those amino ac-
ids with ionizable side chains, e.g. Asp, Glu, Orn, Lys, and
Arg, are “very hydrophilic”. However, it is noticeable that
Ala, Gly, and Pro are not as hydrophobic as they are usually
considered to be (these amino acid residues are typically
treated as hydrophobic residues in approaches such as pro-
tein structure modeling). Furthermore, Thr and Ser are only
slightly hydrophilic in spite of the existence of a hydroxy
group in the side chain of each amino acid. All of these amino
acids have relatively short side chains that cannot extend into
the solvent. Perhaps that is why the hydrophobicity proper-
ties of these amino acids differ from the conventional con-
cept.

Fragment addition model

Compared to the residue addition model, the fragment addi-
tion model provides further information on the distribution

Figure 5 The subdivision of 21 natural amino acids accord-
ing to their logD contribution

Table 3 Test set

Peptide Obs. logD [a] Calc. logD [b]

Ac-Tyr-Pro-Ile-Asp-Val-N -1.85 -1.52
Ac-Tyr-Pro-Gly-Asp-Val-N -3.71 -2.44
Ac-Tyr-Pro-Ile-Asn-Val-N -0.42 -0.44
Ac-Tyr-Pro-Gly-Asn-Val-N -2.06 -1.36
Ac-Tyr-Pro-Ile-Ile-Val-N 1.13 1.23
Ac-Tyr-Pro-Gly-Ile-Val-N -0.20 0.31
Ac-Phe-Pro-Ile-Ile-Val-N 1.61 1.84
Ac-Phe-Pro-Gly-Ile-Val-N 1.96 0.92
Ac-Phe-Pro-Ile-Ile-N 1.17 1.52
Ac-Phe-Pro-Gly-Ile-N 2.00 0.60

[a] Observed logD value, cited from Ref. [24].
[b] Calculated logD value, given by equation 2.

of hydrophobicity properties upon the whole molecule. For
example, Lys is considered to be very hydrophilic (its contri-
bution to the logD value is –2.27 according to the residue
addition model). By using the fragment addition model, it
can be seen very clearly that the significantly negative logD
value of Lys comes mainly from the amino group (see Ta-
ble 3). This is also true for Orn.

Using the hydrophobicity contribution of each fragment,
we can calculate the Molecular Lipophilicity Potential (MLP)
for peptides or even protein molecules. The MLP can pro-
vide a 3D profile to illustrate the spatial distribution of
hydrophobicity properties around a molecule and is widely
applied to QSAR and molecular docking approaches. The
MLP value at a certain grid point i around the molecule is
usually calculated as:

∑ +
=

k ik

k

i
r

h
H

1
(4)

where Hi is the hydrophobic potential at the ith grid point, hk
is the hydrophobicity contribution of the kth fragment in the
molecule, and rik is the distance between the ith grid point
and the geometric center of the kth fragment in the molecule
(a minimum cutoff distance of 5 Å is imposed to avoid artifi-
cially large values of Hi).

As an example, we have calculated the MLP profile of the
HIV-1 protease enzyme (PDB entry 1aaq), and show its MLP
contour lines at level 1.2 in red (Figure 6). The HIV-1 pro-
tease enzyme has five rigid domains: two flap domains, two
core domains and one terminal domain [25]. As indicated by
red contour lines at a high MLP level (1.2), the space be-
tween the two core domains is the largest hydrophobic area
in the whole molecule. Perhaps this means that hydrophobicity
plays an important role in the stability of the dimer.
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Evolution test

The two models we have described above, both the residue
addition model and the fragment addition model, are empiri-
cal methods. They are derived from the regression analysis
of a training set. Therefore, the final model is inevitably de-
pendent on the training set. It is commonly believed that an
ideal training set should contain adequate samples to guar-
antee the reliability of the final regression model. However,
no consensus on the actual size of an ideal training set has
been reached so far. If a training set contains N samples and
the model to be studied includes M terms, it is generally ac-
cepted that N/M should be larger than 3 or 5 at the very mini-
mum. This is too rough of an estimate to be a convincing
standard. To resolve this problem, we have put forward a
stepwise procedure, the evolution test, to investigate the re-
lationship between the size of the training set and the predic-
tive ability of the regression model.

We performed an evolution test for equation 2. The evo-
lution procedure began by selecting a subset from the train-
ing set. As mentioned above, the training set contains a total
of 219 samples. We randomly selected 50 samples from the
training set to form a subset. Then we performed the regres-
sion analysis on this subset with equation 2 and therefore
derived a regression model. Using this model, we calculated
the logD values of the samples in the test set. We recorded
the correlation coefficient (q). and the standard deviation (s)
of the regression fitting of the subset. We also recorded the
correlation coefficient (q_pred). and the standard deviation
(s_pred). of the calculated and observed logD values of sam-
ples in the test set. Here q_pred is defined as equation 5, repre-

senting the predictive ability of the regression model. To mini-
mize the coincidence in such analysis, the whole process,
(i.e. selection, regression, and prediction), was repeated 20
times and the average values of q_pred , q , s_pred and s were
recorded. Then the evolution procedure moved to the next
step by increasing the size of the subset to 70 and performing
all the analysis, again. Then the size of the subset increased
to 90, 110, …, until the size of the training set itself was
reached. Figure 7a shows the trends of q and q_pred through-
out the entire procedure, and Figure 7b shows the trends of s
and s_pred , respectively.

∑
∑

−
−
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For a good stable model, we assume that the predictive
ability will increase steadily with the increase in the size of
the subset. The results of the evolution test on our model
confirm this assumption. We also note that, when the size of
the training set is larger than 100, the predictive ability of
our model rises stably but slightly. This indicates that a train-
ing set containing 100 to 200 samples is sufficient for “train-
ing” the models we have proposed. Using an even larger train-
ing set is unnecessary.

Conclusion

In this study, we have demonstrated that partition coefficients,
logP and logD, of oligo-peptides can be calculated reliably

Figure 6 MLP contours at
level 1.2 of HIV-1 protease
enzyme (PDB entry 1aaq).
Five domains of HIV-1 pro-
tease are indicated by green
notes. Each part of the figure
is shaded: the contour lines
are shaded red; the ribbon
that represents the backbone
of the protein is shaded blue;
and the ligand molecule is
shaded cyan.



J. Mol. Model. 1999, 5 195

by either the residue addition model or the fragment addition
model. Our addition models are derived from regression analy-
sis of 219 peptides and validated by an extra test set. We
have also introduced a new stepwise procedure, the evolu-
tion test, to test the self-consistency of the regression model.
The hydrophobicity scales obtained by our models for 21
kinds of natural amino acids are valuable for QSAR studies
and protein structure modeling.

Supplementary material available statementThe training
set, and the source codes of PLOGP (in C), are available from
the authors.
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