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Abstract
Intra-protein information is transmitted over distances via allosteric processes. This ubiqui-

tous protein process allows for protein function changes due to ligand binding events.

Understanding protein allostery is essential to understanding protein functions. In this

study, allostery in the second PDZ domain (PDZ2) in the human PTP1E protein is examined

as model system to advance a recently developed rigid residue scan method combining

with configurational entropy calculation and principal component analysis. The contributions

from individual residues to whole-protein dynamics and allostery were systematically

assessed via rigid body simulations of both unbound and ligand-bound states of the protein.

The entropic contributions of individual residues to whole-protein dynamics were evaluated

based on covariance-based correlation analysis of all simulations. The changes of overall

protein entropy when individual residues being held rigid support that the rigidity/flexibility

equilibrium in protein structure is governed by the La Châtelier’s principle of chemical equi-

librium. Key residues of PDZ2 allostery were identified with good agreement with NMR stud-

ies of the same protein bound to the same peptide. On the other hand, the change of

entropic contribution from each residue upon perturbation revealed intrinsic differences

among all the residues. The quasi-harmonic and principal component analyses of simula-

tions without rigid residue perturbation showed a coherent allosteric mode from unbound

and bound states, respectively. The projection of simulations with rigid residue perturbation

onto coherent allosteric modes demonstrated the intrinsic shifting of ensemble distributions

supporting the population-shift theory of protein allostery. Overall, the study presented here

provides a robust and systematic approach to estimate the contribution of individual residue

internal motion to overall protein dynamics and allostery.
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Author Summary

Allostery is a fundamental dynamics property of many proteins, and plays a critical role in
protein functions. Despite extensive experimental and theoretical studies of protein allo-
steric mechanisms, the current understanding and predicting power of protein allostery
are still limited. One of the main challenges in studying protein allostery is effectively nar-
rowing down residues for further site-directed mutagenesis study. Our goal is to develop
effective computational tools to systematically evaluate significance of individual residue
in protein dynamics and allostery without any a priori knowledge about protein allosteric
mechanism. In this study, we significantly enhanced a simulation protocol developed in
our lab, rigid residue scan (RRS), through combination of configurational entropy calcula-
tion, principal component analysis (PCA), and projection of ensembles onto coherent allo-
steric modes. Detailed analysis of the impact of removing individual residue internal
motions on overall protein dynamics led to identification of key allosteric residues. Our
prediction of key allosteric residues has good agreement with experimental studies of an
allosteric protein as a model system, which displays allostery through binding events.
Interestingly, the entropy calculations suggest that the La Châtelier’s principle in chemical
equilibrium may also govern the rigidity/flexibility equilibrium in protein structure, which
is related to protein allostery. Our study has demonstrated these methods to be very valu-
able tools to effectively identify initial key residues for proteins with crystallographic struc-
tures and limited information of their allosteric mechanisms.

Introduction
Allostery is the process by which signals are transmitted from distal ligand binding sites to
functional sites in proteins. The concept of allostery originated from early attempts to explain
the fact that the binding of oxygen molecules to hemoglobin deviates from the typical Michae-
lis-Menten kinetics model.[1–3] Following the term “allosteric” being coined and reviewed
during early 60’s,[4, 5] two protein allostery theories were proposed and referred to as the
Monod−Wyman−Changeux (MWC)[6] and Koshland−Neḿethy−Filmer (KNF)[7] models. In
these models, allostery theories were formed based on significant conformational changes of
hemoglobin observed in crystallographic structures. In addition to hemoglobin, allostery with
conformational change has been observed in other proteins such as aspartate transcarbamoy-
lase,[8] insulin,[9] trypsin,[10] and caspases[11]. In these proteins, the binding signal is
assumed to be transmitted through protein conformational change.

Multiple allostery theories have evolved based on experimental and theoretical studies.[12–
27] The classical “induced fit”model[28–30] fits well to protein conformational changes upon
ligand binding observed in hemoglobin.[31] However, a more recent “population shift”model
of protein allostery[32–35] is strongly supported by sophisticated NMR experiments.[36–38]
In this model, no conformational changes can be detected throughout the process in which
proteins carry out their functions. Instead, allostery-triggering events alter the distribution of
the protein ensemble among distinctive sub-states.

Many computational methods have been developed to delineate protein allosteric mecha-
nisms in atomic detail and to facilitate development of allostery theories. Some methods are
mainly based on protein tertiary structure comparison using topology or graph theory for anal-
ysis.[39–45] Some methods analyze energy-based residue-residue interactions to explore resi-
due coupling.[46–50] Normal mode analysis (NMA)[51] is employed based on the elastic
network model (ENM)[52, 53] or the Gaussian network model (GNM).[54] These models
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provide coarse-grained protein structure descriptions, which reduce the computational cost to
probe the protein’s vibrational modes. Modes with low frequency and large magnitude pre-
sumably correspond to allosteric mechanisms.[55–58] Molecular dynamics (MD) simulation is
the most widely used and direct means to simulate protein dynamics. Thus, it is frequently
used with certain modifications to investigate protein allostery as a dynamical process. Ota and
Agard proposed the MD-based anisotropic thermal diffusion (ATD) method to probe energy
dissipation pathways in proteins. In this method, a single residue is heated in a protein at an
extremely low temperature (approximately 10K) to probe energy dissipation pathways.[59]
Sharp and Skinner developed a pump-probe MDmethod that perturbs protein dynamics by
exerting oscillating forces on target residues.[60] Long-time MD simulations were carried out
and subjected for further analysis to reveal protein allosteric effects in several other studies.[35,
61–64]

Deep understanding of protein allostery remains elusive despite the experimental and theo-
retical studies done thus far. More methodological development is needed to quantitatively
evaluate the effect of individual amino acid residues on overall protein dynamics. Although
mutagenesis studies can provide valuable information about the impact of changing specific
residues on protein activity, systematically posing perturbation on individual residues provides
an alternative way to probe the effect of the internal motions of specific residues on protein
dynamics or to discover the function of individual residues without changing their chemical
entity. Applying rigid constraints on selected degrees of freedom in protein structure has been
implemented to probe protein allostery.[65–67] Alternatively, we recently developed a simula-
tion method, referred to as rigid residue scan (RRS),[68] to systematically probe the impact of
each individual residue on overall protein dynamics through rigid body MD simulations using
an efficient integrator.[69] In this study, the entropy calculation and principal component anal-
ysis are combined with the RRS method to evaluate the effects of internal motions from indi-
vidual residues on overall protein dynamics as well as allostery upon ligand binding.

Results

Root-Mean-Square Deviation (RMSD) and Average Structures from
Simulations
The all-atom RMSD for the unperturbed unbound and bound states (without rigid residue per-
turbation) of PDZ2 are shown in Fig 1, which indicates that both structures are stable through-
out the simulations. The RMSD plots of all RRS simulations are listed in S1 Table. In general,
the RRS simulations are stable throughout the simulations, with the majority of the simulations
having average RMSD under 2 Å (Fig 2).

To assess the overall conformational change upon binding and rigid residue perturbation,
averaged structures of PDZ2 were calculated for each simulation. Using the averaged structure
of PDZ2 from unperturbed unbound simulation as reference structure, the all-atom RMSD of
all other averaged structures were calculated and plotted in Fig 2. For most of the RRS simula-
tions, both unbound and bound, the average structures have RMSD between 1.5 and 2.0 Å,
with very few exceptions.

Changes of Protein Entropy upon Perturbation
Entropy contributions from PDZ2 are estimated using the method[70, 71] described in the
Computational Methods section for all the unperturbed and rigid body perturbed simulations.
The heat maps of cross-correlation matrices (based on which the entropy was calculated) are
provided for all the simulations in S2 Table. Using the entropy of PDZ2 from unperturbed
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simulation of unbound state as reference, the relative entropies of PDZ2 (ΔS) from all the simu-
lations are plotted in Fig 3 and listed in S3 Table. The ΔS are also sorted with ascending order
and listed in S4 Table.

For both unbound and bound states, the entropy of PDZ2 significantly increases for most of
the RRS simulations. The changes of unbound PDZ2 entropy in rigid residue simulations com-
paring to unperturbed simulations vary from −0.100 to 0.254 kcal/(mol•K) with average as
0.058 kcal/(mol•K) and unsigned average as 0.066 kcal/(mol•K). For the bound state, the
PDZ2 entropy differences in rigid residue simulations comparing to unperturbed simulation
vary from −0.065 to 0.405 kcal/(mol•K) with average as 0.060 kcal/(mol•K) and unsigned aver-
age as 0.071 kcal/(mol•K). Overall, in 80 unbound and 68 bound RRS simulations, the ΔS of
PDZ2 is positive. This is counterintuitive, because treating a residue as a rigid body removes
the internal degrees of freedom of that residue and should reduce the overall entropy. Further-
more, we calculated the PDZ2 entropy difference between two states (ΔΔS) by subtracting the
unbound state entropy from the bound state entropy with the same residue being held rigid

Fig 1. RMSD for the unperturbed (no rigid residue perturbation) molecular dynamics simulations of
both unbound and bound PDZ2. The RMSD is determined relative to the initial simulation structure of each
simulation.

doi:10.1371/journal.pcbi.1004893.g001

Fig 2. All-atom RMSD of average structures of 190 RRSMD simulations.

doi:10.1371/journal.pcbi.1004893.g002
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(Fig 4 and S3 and S4 Tables). The absolute ΔΔS values range from 0.001 to 0.341 kcal/(mol•K)
(S4 Table). For the two unperturbed simulations, this difference is 0.016 kcal/(mol•K) with a
higher PDZ2 entropy from the bound state (Residue 0 in S3 and S4 Tables). For the 11 residues
being held rigid, the absolute ΔΔS is smaller than 0.016 kcal/(mol•K) (S4 Table). Seven among
these 11 residues, D15, T28, V40, T81, R31, L78, L18, were reported as important allosteric res-
idues from an NMR study of PDZ2 bound to the RA-GEF-2 peptide (Table 1).[72]

The error bar of PDZ2 entropy calculations was estimated for both unbound and bound
states of PDZ2 in unperturbed simulations and seven RRS simulations (Table 2). For these sim-
ulations, the PDZ2 entropy was calculated based on seven sets of 30 ns (total of 210 ns)

Fig 3. Relative entropy (ΔS) of PDZ2 in unbound and bound states from RRS simulations. The entropy of PDZ2 from unperturbed simulations is used
as reference.

doi:10.1371/journal.pcbi.1004893.g003

Fig 4. Entropy difference (ΔΔS) between unbound and bound PDZ2 states from unperturbed and RRS
simulations.

doi:10.1371/journal.pcbi.1004893.g004
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trajectories. The standard deviation (σ) and 85% Confidence Interval (CI) of each state is rather
small, indicating the convergence of simulation within 30 ns of trajectories. The standard devi-
ation (σ) and 85% CI of ΔΔS for unperturbed states are 0.037 and 0.039 kcal/(mol•K), respec-
tively. It is noticeable that the errors of entropy calculations, although small when compared to
the total entropy, are comparable to the differences between simulations. For the unbound
state, total of 28 RRS simulations have ΔS smaller than the 85% CI of unperturbed unbound
state. For the bound state, total of 53 RRS simulations have ΔS smaller than the corresponding
85% CI (S3 Table). Among seven identified residues, there are three residues (D15, T28, V40)
with ΔS values higher than the 85% CI of corresponding unperturbed states. Although the can-
celling of the error could improve the reliability of the analysis, these comparisons indicate that
the uncertainty of calculated configurational entropies requires further improvement, for
example by including anharmonicity and higher order correlations, to increase the reliability of
the calculations.

Velocity autocorrelation analysis was carried out for the unperturbed simulations and the
seven RRS simulations listed in Table 2 to estimate the relaxation time in these simulations.
Only one trajectory of each simulation was subjected to the analysis. All the selected simula-
tions display a relaxation time around 20 ps (S1 Fig), showing that RRS simulations have simi-
lar relaxation time to the unperturbed simulations.

Individual Residue Response upon Perturbation
From each simulation, the entropy contribution of each residue to total protein entropy was
evaluated. Such individual residue entropy contributions are plotted as heat maps for the RRS
simulations of both unbound and bound states of PDZ2 (Fig 5). To make plots clear, the con-
tribution from each individual residue in unperturbed simulations was used as reference in
unbound and bound states, respectively. The response of each individual residue varies signifi-
cantly. The most prominent features in both heat maps are the blue diagonal lines, reflecting
the fact that the entropy contribution from each residue diminishes when that residue is held

Table 1. Key residues for PDZ2 allostery upon RA-GEF2 peptide binding from NMR study [72].

D15,a N16, L18, I20, V22, V26, N27, T28, V30, R31, G34, A39, V40, V61, V64, L66, A69, H71, L78, T81,
V85

a Residues in bold type are recognized from the present study.

doi:10.1371/journal.pcbi.1004893.t001

Table 2. Estimation of error bar for PDZ2 entropy calculations (kcal/(mol•K))a.

Rigid Average S (σ, 85% Confidence Interval)

Residue Unbound Bound

none 5.202 (0.046, 0.029) 5.238 (0.098, 0.061)

15 5.213 (0.086, 0.054) 5.241 (0.068, 0.042)

18 5.154 (0.045, 0.028) 5.224 (0.047, 0.029)

22 5.208 (0.058, 0.036) 5.203 (0.056, 0.035)

28 5.180 (0.038, 0.024) 5.185 (0.059, 0.037)

40 5.269 (0.064, 0.040) 5.183 (0.033, 0.021)

61 5.206 (0.084, 0.052) 5.250 (0.079, 0.049)

81 5.208 (0.039. 0.024) 5.237 (0.073, 0.046)

a For each state, seven sets of 30 ns trajectories were used.

doi:10.1371/journal.pcbi.1004893.t002
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as a rigid body during the simulation. The most recognizable features besides blue diagonal
lines are the horizontal lines in both heat maps, either in red or blue. These horizontal red or blue
lines indicate that response from some residues to rigid body perturbation is consistent regardless
which residue being held rigid in the perturbed simulations. To further illustrate this feature, the
average entropic response from each residue in all RRS simulations was calculated and plotted in
Fig 6 for the unbound and bound states, respectively. The average entropic responses are also
listed in S5 Table and with descending order in S6 Table. The individual residue entropies were
also normalized using the number of atoms in each residue following a previous study.[73]
The normalized individual residue entropies are illustrated in S2 Fig and S3 Fig. The patterns
described above remain the same with the normalized entropies, showing that the differences of
residue responses are inherent to each residue and not scaled with residue size.

The average entropic responses range between 0.0352 and −0.0167 kcal/(mol•K) for the
unbound state, and between 0.0183 and −0.0161 kcal/(mol•K) for the bound state. Among the
top ten residues with largest average entropic responses in the unbound state, seven residues,
R31, T28, V61, L18, V26, V22, N27, were among the 21 important allosteric residues reported
in an NMR study of PDZ2 (Table 1).[72] However, for the bound state, only four residues,
V22, V85, V61, V26, among top ten residues were reported as important allosteric residues
from the same NMR study of PDZ2 (Table 1).[72] Noticeably, three residues, V22, V61, and
V26, are among the top ten residues of both unbound and bound states.

Quasi-harmonic Analysis and Principal Component Analysis (PCA)
Quasi-harmonic analysis was carried out for both unperturbed and RRS simulations. The dis-
tributions of density of states from quasi-harmonic analysis of unperturbed simulations are
plotted for both unbound and bound states in Fig 7. Obviously, the binding with the peptide

Fig 5. Heat maps of individual residue entropic contribution under rigid residue perturbation for unbound (left) and bound (right) states. The
entropic contribution from each residue in unperturbed simulations (with index as 0 in both plots) is set as reference.

doi:10.1371/journal.pcbi.1004893.g005
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does not significantly affect the distribution of density of states. Similarly, the rigid residue per-
turbation does not significantly affect the distribution of density of states either (S4 Fig). We
further carried out the PCA to evaluate the contribution of each quasi-harmonic mode to over-
all dynamics, and plotted accumulative contribution of these modes for both unperturbed
unbound and bound states in Fig 8. Low frequency modes significantly contribute to overall
protein dynamics. For the unbound state, total of 83 modes with frequency under 18.7 cm−1

contribute 90% to the overall dynamics. For the bound state, total of 52 modes with frequency
under 13.4 cm−1 contribute 90% to the overall dynamics. In both cases, translational and rota-
tional modes are excluded. Because protein allostery is highly dynamical process that couples
the dynamics of distal parts of the protein, it is logical to assume that mainly low frequency
modes, which involve overall dynamics of proteins, play important roles in protein allostery.

Fig 6. Average entropic response from each residue in all RRS simulations.

doi:10.1371/journal.pcbi.1004893.g006

Fig 7. Distributions of density of states for unperturbed unbound and bound states.

doi:10.1371/journal.pcbi.1004893.g007
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To identify significant low-frequency modes, PCA was carried out for the seven 30 ns trajec-
tories as well as total 210 ns trajectories for the unperturbed unbound and bound states, respec-
tively. For the unperturbed unbound state, the dot products were calculated between the five
lowest frequency quasi-harmonic modes (PC1 to PC5) of each 30 ns trajectory with the PC1 to
PC5 modes from the whole 210 ns trajectory (S7 Table). The same calculations were also car-
ried out for the unperturbed bound state (S7 Table). The unsigned averaged dot product of
each mode is listed in Table 3. Among five modes, only PC1 modes (with the lowest frequency
quasi-harmonic mode) in both unperturbed unbound and bound states have significant over-
lap between each trajectory and overall trajectory. The overlaps for PC2 through PC5 are sig-
nificantly less than PC1 (Table 3), indicating that these modes and all other modes with higher
frequencies do not have physical significance.

To further evaluate significance of PC1 modes in the unperturbed unbound state, the dot
products among PC1 modes from seven 30 ns trajectories were calculated to produce a 7×7
matrix (S8 Table). The absolute values of off-diagonal matrix elements range from 0.694 to
0.960 with unsigned average values (standard deviation) as 0.842 (0.078). The similar analysis
of the unperturbed bound state results in a matrix with absolute values of off-diagonal matrix
elements range from 0.653 to 0.938 with average values (standard deviation) as 0.781 (0.089)
(S8 Table). It should be noted that PC1 modes from 210 ns trajectories of unperturbed
unbound and bound states do not overlap significantly with each other (with magnitude of dot
product as −0.214). Therefore, two PC1 modes from two states could serve as coherent alloste-
ric modes revealing effect of PDZ2 upon ligand binding. The PC1 modes calculated using 210

Fig 8. PCA contributions in unperturbed unbound and bound states.

doi:10.1371/journal.pcbi.1004893.g008

Table 3. Unsigned average dot products of five lowest frequency quasi-harmonic modes (PC1
through 5) between each 30 ns trajectory and whole 210 ns trajectory.

Modes Average dot produces (σ)

Unbound Bound

PC1 0.929 (0.044) 0.899 (0.051)

PC2 0.422 (0.171) 0.459 (0.227)

PC3 0.193 (0.116) 0.204 (0.150)

PC4 0.206 (0.128) 0.176 (0.103)

PC5 0.287 (0.177) 0.254 (0.175)

doi:10.1371/journal.pcbi.1004893.t003
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ns trajectories of the unperturbed unbound and bound states are used for further analysis in
this study.

Ensemble Distributions
The simulations of unperturbed states are projected onto a 2D surface using two PC1 vectors
from unperturbed states to illustrate the distribution of ensemble representing each state (Fig
9). Despite the close similarity between PDZ2 structures from unbound and bound states, the
clear separation between two states on this 2D surface provides more insight into the allosteric
difference between these states. The separation of two distributions on the 2D surface was rep-
resented by an average distance (0.734) between two attraction basins (Fig 9). All RRS simula-
tions are also projected onto this 2D surface using the same two PC1 vectors to probe the
impact of rigid residue perturbation on the distribution of ensemble on the same surface (S9
Table). For all the RRS simulations, the separation between unbound and bound states distri-
butions resembles the unperturbed states, suggesting that the allosteric effect triggered by
ligand binding event is robust upon rigid residue perturbation. However, the average distance
between two distributions varies significantly among RRS simulations (Fig 10, S10 Table and
sorted values in S11 Table), revealing the different contribution from each residue in the pro-
tein allostery. It is notable that the distribution distances of RRS simulations when residues
R31, V40, or L78—all identified as key allosteric residues in the NMR study [72]—being held
rigid are significantly shorter than the one of unperturbed states.

Discussion
In the present study, we applied entropy analysis, quasi-harmonic analysis, and PCA on the
RRS simulations of PDZ2 domain from PSD-95 protein to investigate the relationship between

Fig 9. Distribution of unperturbed states projected onto a 2D surface using two PC1modes.Only one
set of 30 ns trajectories are used for sake of consistency with RRS simulations.

doi:10.1371/journal.pcbi.1004893.g009
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each individual residue and overall protein dynamics aiming to decipher protein allosteric
mechanism within this framework.

Residue Internal Dynamics and Overall Protein Dynamics
Individual amino acid residues, which are basic building blocks for protein structures, and
therefore serve as the main target for many residue based protein allostery analysis methods,
[47, 74–76] in which residue based interaction energy is the target for analysis. However,
because protein allostery is mainly considered a dynamical process, it should be informative to
investigate the internal dynamics of each individual residue and their impact on overall protein
dynamics. Presumably, the internal degrees of freedom or dynamics of key allosteric residues
should play unique roles in allostery with specific impact on overall protein dynamics. The
RRS simulations combining with entropy analysis make it feasible to systematically evaluate
the contribution from individual residue internal degrees of freedom to overall protein dynam-
ics. Comparison between the unbound and bound states connects such contribution with pro-
tein allostery upon binding.

Rigid body constraint, which effectively removes the internal degrees of freedom in residue,
should theoretically reduce the disorder of the protein as well as the protein entropy. On the
contrary, rigid residue constraints lead to the increase of PDZ2 entropies in most RRS simula-
tions. This counterintuitive observation indicates that the internal dynamics of each individual
residue in a well-folded protein cooperatively contribute to the overall protein dynamics. In a
recent simulation study of protein structures,[77] it was also reported that rigidifying some of
protein degrees of freedom often cause more flexibility in other parts and lead to increasing
protein entropy. The basic La Châtelier’s principle in chemical equilibrium was referred to gov-
ern the rigidity/flexibility equilibrium in protein structure.[77] Seemingly, our observation of
increasing protein entropies in rigid residue simulations also agrees with the La Châtelier’s
principle.

Without rigid body constraints, the binding with peptide leads to slight increase of PDZ2
entropy (0.016 kcal/(mol•K)). This is also in agreement with that the RMSD of PDZ2 in bound
state is slightly higher than the one of unbound state (Fig 1). For only 11 residues among 94
PDZ2 residues, the PDZ2 entropy difference between unbound and bound states from RRS

Fig 10. Distances between distributions of unbound and bound states from RRS simulations
projecting onto the surfaces of two PC1modes.Dashed line indicates the distance in the unperturbed
simulations.

doi:10.1371/journal.pcbi.1004893.g010
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simulations is smaller than 0.016 kcal/(mol•K). Seven among these 11 residues D15, T28, V40,
T81, R31, L78, L18 (Fig 11), were recognized as important for PDZ2 allostery upon binding by
the NMR study.[72] All seven residues displayed significant dynamical parameter change upon
binding. Although the direct relationship between the present study and NMR study of PDZ2
is not obvious, the overlap between two studies are unlikely to be random coincident. It should
not be overlooked that the uncertainty of calculated configurational entropies undermines the
reliability of predictions based on these calculations. Nevertheless, the current development is
only a small step towards deeper understanding of protein allostery in terms of configurational
entropy change. Improvement of configurational entropy calculations by including anharmo-
nicity and higher order correlations will be applied to increase the reliability of the calculations.

The remaining residues were also identified by various computational studies as key alloste-
ric residues. R79 was identified as one of “Hot Residues” for allostery in a study using ENM to
probe PDZ2 allostery[58] as well as one of “nodes” to form an allostery communication net-
work in another study using protein structure network model.[42] Both residues N14 and E90
were identified as part of an interacting cluster localized at the ligand binding pocket.[47] This
strongly suggests that the RRS simulations could reveal the significance of internal dynamics of
some key allosteric residues with regard to overall protein dynamics.

L18, as one of identified residues, when being held rigid, leads to the entropy increase of
0.045 kcal/(mol•K) for unbound state and 0.031 kcal/(mol•K) for bound state, which may be
resulted from La Châtelier’s principle of protein rigidity/flexibility equilibrium.[77] How-
ever, this residue makes hydrophobic contact with the C-terminal valine of the binding pep-
tide, which may counteract some of the entropy increasing effect. K13, another key residue
for PDZ domain for interaction with binding peptide, forms multiple hydrogen bonds with

Fig 11. Key residues recognized based on protein entropic response to rigid body perturbation.

doi:10.1371/journal.pcbi.1004893.g011
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Gly82, the backbone and side chain of Thr81. When K13 being held rigid, the entropy of
PDZ2 increases 0.013 kcal/(mol•K) for unbound state and decreases 0.052 kcal/(mol•K) for
bound state. These observations indicate that in RRS, strong interactions between residues
being held rigid and ligand may help to counteract the general trend of increasing entropy in
rigid body simulations.

Response of Individual Residue to Perturbation
Another informative analysis presented in this study is the response from each individual resi-
due to perturbations on proteins. By its definition, the mechanism of protein allostery is to be
elucidated at overall protein structure level. However, this should not prevent any attempt to
evaluate general response of individual residues to external or internal perturbations. Using the
estimate of entropic contribution from individual residue in each simulation, the intrinsic dif-
ference of response to perturbation from each residue is revealed. Residue R31 is a clear case in
the unbound state. Regardless which residue being held rigid, the entropic contribution from
R31 is higher than the value in the unperturbed unbound state. Coincidentally, R31 has also
been identified based on overall protein entropy change and NMR study[72] discussed in the
previous section. On the contrary, this positive entropic response from R31 is inhibited upon
binding with the peptide (Fig 5 and S3 and S4 Tables). Another six residues (T28, V61, L18,
V26, V22, N27) also showed overwhelming positive response similar to R31, and were also rec-
ognized in the NMR study of PDZ2 allostery (Table 1).

The individual residue response pattern is significantly different in the bound state. Resi-
dues with consistent entropic response to rigid residue perturbations are very different from
those in the unbound state. The observations that some residues display consistent response
suggest that these residues are more sensitive to perturbations than other residues. The differ-
ence between unbound and bound states shows that the binding event inherently changes the
sensitivity of each residue upon the perturbations, reflecting the very nature of protein allostery
influenced by binding and perturbation events.

Ensemble Distributions upon Coherent Allosteric Modes
Given the sheer number of modes generated from the quasi-harmonic analysis, one definitely
suffers the risk of studying trivial and random patterns when focusing on only a few modes
related to overall protein dynamics. However, the PCA analyses using multiple trajectories of
unperturbed states clearly validate the physical significance of two PC1 modes from two states.
The fact that two PC1 modes are virtually orthogonal to each other signifies the relevance
between these two modes and protein allostery upon binding. The projection of RRS simulations
onto these coherent allosteric modes support the entropy driven theory of protein allostery,[78,
79] which explain the protein allostery phenomenon as shifting of ensemble distribution upon
perturbation instead of significant conformational change observed in either crystallographic[31]
or NMR studies.[80] The various distances between two states projecting on the coherent alloste-
ric modes demonstrate the shift of protein ensemble distribution upon rigid residue perturbation,
revealing detailed information about individual residue with regard to overall allostery.

Computational Cost of RRS Simulations
It is undeniable that the computational cost of the proposed method is exceptionally high com-
pared to many other methods to elucidate protein allostery mechanisms. However, the current
goal of our research is to develop an unbiased protocol to assess potential individual residue’s
contribution towards overall protein dynamics and consequently allostery, with little or no a pri-
ori information about protein allosteric mechanisms. In the experiment, the most feasible way to
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probe the contribution of each individual residue to protein function is mutagenesis study. How-
ever, some knowledge of importance of residues is necessary for the mutagenesis study. Other-
wise, all positions should be considered. In addition, it is somewhat arbitrary to choose what
amino acids to which the wild type residues should be mutated. From the mutagenesis study, the
perturbation added to protein contains two parts: removing the wild type residue and adding the
mutated residue. These two parts are distinct but inseparable in the mutagenesis study. Without
any a priori knowledge about relationship between protein sequence and allostery, one would
mutate every residue to all other 19 natural amino acids to obtain the most comprehensive and
unbiased evaluation of relationship between each residue and protein allostery. This is actually
what has been done in an experimental study of allostery of another PDZ domain, in which total
of 1577 mutants were generated for 83 out of 115 residues.[81] However the equivalent strategy
could not be applied routinely to other proteins due to its obvious high cost. In addition to the
exceedingly high cost of doing all possible mutations, the effects of removing the wild type resi-
due and adding the mutated residue are still inseparable. One of the main advantages from the
strategy presented in this study is that only the internal motion of each individual residue is
removed, while the chemical content of the wild type residue is intact. This strategy provides a
practical mean to investigate the intrinsic dynamical effect of each individual residue to overall
protein dynamics. At this early stage, the RRS simulations were carried out for all residues for the
sake of completion. Further improvement of the method is ongoing to significantly reduce the
computational cost while keeping the confidence level of the results.

Concluding Remarks
In this study, we further developed a recently proposed RRS method through combination of
configurational entropy calculation and PCA to systematically evaluate the contribution of
internal degrees of freedom of individual residue to overall protein dynamics and potential
allostery upon ligand binding. Through the changes of the entropy from whole protein upon
rigid residue perturbation, key residues were recognized as those when being held as rigid
bodies, the protein entropy difference between unbound and bound states is smaller than the
entropy difference from unperturbed simulations. These key residues have good agreement
with a previous NMR study of the same protein bound to the same peptide.[72] Entropic
response from individual residue upon perturbations was also evaluated. In the unbound state
simulations, residues generally displaying increased entropic contribution upon rigid residue
perturbation are in good agreement with the same NMR study.[72] The different patterns of
individual residue response in the unbound and bound states suggest that the binding event
inherently changes the sensitivity of each residue upon the perturbations. PCA of unperturbed
states of PDZ2 revealed two quasi-harmonic coherent allosteric modes, which are robust upon
analysis of multiple trajectories of each state. The projection of RRS simulations onto coherent
allosteric modes reveals the intrinsic shifting of ensemble distributions upon rigid residue per-
turbations, and supports the population-shift point of view about protein allostery. Overall, the
combination of entropy calculation and PCA with the RRS method provides a systematic
approach to estimate the individual residue contribution to protein dynamics as well as allo-
stery. Further development is actively under development to reduce the computational cost
with deeper understanding of the protein allostery.

Methods

MD Simulations
The assessment of the role of individual residues in overall protein dynamics is carried out
using rigid residue scan, a systematic simulation method developed in our group.[68] In the
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RRS method, rigid body constraints are applied to each residue in the target protein in separate
simulations (referred to as perturbed simulations). Thus, there are as many rigid body MD sim-
ulations (perturbed simulations) as there are residues comprising the target protein.

The second PDZ domain (PDZ2) from the human tyrosine phosphatase 1E (hPTP1E) is
used as a test protein in this study to further develop the RRS method. The allosteric mecha-
nisms of PDZ2 have been the subject of a number of studies with various residues identified as
key allosteric residues.[42, 47, 61] Initial crystal structures for the unbound and bound states
with RA-GEF2 peptide (EQVSAV) were obtained from the Protein Data Bank (PDB) with IDs
3LNX and 3LNY, respectively.[82] PDZ2 structures in both 3LNX and 3LNY contain 94 resi-
dues. For the residues with multiple copies in the PDB files, the first coordinate set was used to
prepare the simulation systems.

The structures from the PDB were processed with hydrogen atoms added and solvated in
water (TIP3P)[83] with charge balancing ions of sodium and chlorine added. Additional ions
were included to adjust the ionic strength in simulation cells to about 0.02 M. The system was
then subjected to energy minimization with 200 steps of steepest descent and 9491 steps of
adopted basis Newton-Raphson minimization, which yielded a total gradient of less than 0.001
kcal/(mol•Å). This was followed by an equilibration step that raised the temperature of the sys-
tems from 100 K to 300 K over 12 picoseconds (ps). Then the systems were equilibrated via 10
nanosecond (ns) isothermal-isobaric ensemble (NPT) MD simulations at 300 K and 1 atm.
The frame from the simulation trajectory with dimensions closest to the average dimension for
the entire trajectory was selected. This set of coordinates and its corresponding velocities were
used as the initial conditions for 34 ns canonical ensemble (NVT) Langevin MD simulations
also at 300 K. The first 4 ns of each NVT simulation was treated as equilibrium, and therefore
not included in the reported analysis. The NVT simulations consisted of normal MD simula-
tions without rigid residue constraint for the unbound and bound PDZ2 (referred as unper-
turbed simulations) and the rigid residue scan over all 94 residues in PDZ2. There are total of
190 simulations, including 188 rigid residue simulations and two unperturbed simulations of
unbound and bound states of PDZ2. Considering 30 ns of each NVT simulation for analysis,
this work comprises 5,700 ns of simulation time. A 2 femtosecond (fs) simulation time step
was used in all simulations. To estimate the error bar of the entropy calculations and validate
coherent allosteric modes, additional 180 ns simulations were carried out for the unperturbed
states and rigid residue simulations corresponding to seven residues (15, 18, 22, 28, 40, 61, and
81). Each set of 180 ns simulations were carried out with three independent 60 ns trajectories
for better sampling and shorter computing times. All simulations used cubic periodic boundary
conditions, and electrostatic interactions were modeled using the particle mesh Ewald method.
[84] All simulations were carried out using CHARMM version 38b1 and version 27 of the
CHARMM force field.[85]

Analysis of MD Trajectories
RMSD. The RMSD was used to measure the variability of a set of Cartesian coordinates

over the course of a MD trajectory relative to a reference set. Specifically, the coordinates of
each atom comprising the protein or a subset are compared with that of a reference structure.
The RMSD for a given simulation is defined as

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðr0i � UriÞ2
N

s
;

where N is the number of atoms, ri
0 is the Cartesian coordinate vector for atom I, and U is the

best-fit alignment transformation matrix between a given structure and its reference structure.
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Cross-correlation (normalized covariance) matrix. The cross-correlation matrix is a
measure of the correlated movement of a set of atoms. Each matrix element is defined as

Cij ¼
cij

c1=2ii c1=2jj

¼ hrirji � hriihrji��hr2i i � hrii2Þðhr2j i � hrji2
��1=2 ;

where Cij is the measure of correlated movement between atoms i and j, cij, cii, and cjj are the
covariance matrix elements, and ri and rj are Cartesian coordinate vectors from the least-square
fitted structures, therefore with translation and rotation projected out. Matrix elements are
between -1 and 1 with negative values indicating negative correlation and positive values indi-
cating positive correlation between the motions of atoms i and j. Correlation is defined as
related movement along the line between two points. Correlated movement along orthogonal
paths yields a cross-correlation matrix element of zero.[86] After discarding the first 4 ns NVT
simulation as equilibrium for each simulation, total of 15,000 frames were extracted from the
remaining 30ns simulation with 2ps interval, and processed to generate cross-correlation
matrix.

Entropy analysis. All-atom quasi-harmonic analysis was employed to analyze MD trajec-
tories to probe protein dynamics using vibrational normal modes on an effective quasi-har-
monic potential.[87] The element of force constant matrix F on the effective quasi-harmonic
potential for normal modes calculation is given by [70]

Fij ¼ kBT½C�1�ij;

where kB is the Boltzmann constant, T is the temperature, and [C-1] is the inverse of covariance
matrix C. Therefore, the normal modes and corresponding frequency ω of the molecule on the
effective quasi-harmonic potential can be calculated through the solution of secular equation

detðF� o2MÞ ¼ 0;

whereM is the mass matrix of protein. The configurational entropy of protein, Sconfig could be
estimated from the 3n−6 nonzero quasi-harmonic frequencies through [71]

Sconfig ¼ kB
X3n�6

i

ℏoi=kT
eℏoi=kT � 1

� lnð1� e�ℏoi=kTÞ:

It should be noted that the Sconfig is an approximation of the target value using the exact
equation within harmonic limit. The all-atom covariance matrices were employed for entropy
calculations. Because the protein structures from each simulation are superimposed to the first
frame of the simulation before the calculation of covariance matrix, the overall translation and
rotation motion was projected out for the entropy calculation.

To estimate entropy contribution from each residue, all-atom covariance matrix elements
corresponding to correlation between atoms within the same residue (including side chain and
backbone) are selected to form a sub covariance matrix, which is processed in the same way
described above.[85, 88, 89] By constructing a sub covariance matrix for each residue from all-
atom covariance matrix of whole protein, no alignment of the different conformations of the
subsystem was performed. It should also be noted that the entropy corresponding to the corre-
lation between the target residue and the rest of the system is not included in the individual res-
idue entropy.

Principal component analysis (PCA). For each simulation, PCA was performed by pro-
jecting each of the extracted 15,000 frames from 30 ns trajectory onto the normal modes gener-
ated by quasi-harmonic analysis. Both translation and rotation components were projected out
for each frame. The residues being held rigid were included in the above analyses just as any
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other residues. All the analyses described in this section were carried out using CHARMM ver-
sion 38b1.[85]

Supporting Information
S1 Fig. Autocorrelation functions of unperturbed and seven rigid residue scan simulations.
Relaxation time around 20 ps was displayed in all simulations.
(TIF)

S2 Fig. Heat maps of normalized individual residue entropy contribution under rigid resi-
due perturbation for unbound (left) and bound (right) states. The entropy contribution
from each residue in unperturbed simulations (with index as 0 in both plots) is set as reference.
(TIF)

S3 Fig. Average of normalized entropic response from each residue in all rigid residue scan
simulations.
(TIF)

S4 Fig. Distribution of density of states for all rigid residue scan simulations.
(TIF)

S1 Table. RMSD plots of PDZ2 from rigid residue scan for both unbound and bound
states.
(PDF)

S2 Table. Heat maps, histograms of Cα carbons cross-correlation matrices for all residues
in PDZ2 from unperturbed and rigid residue scan simulations.
(PDF)

S3 Table. Relative entropies (ΔS) and differences (ΔΔS) of PDZ2 between unbound and
bound states.
(PDF)

S4 Table. Relative entropies (ΔS) and differences (ΔΔS) of PDZ2 between unbound and
bound states sorted with ascending order.
(PDF)

S5 Table. Average entropic response of individual residues upon rigid body perturbations.
(PDF)

S6 Table. Average entropic response of individual residues upon rigid body perturbations
sorted with descending order.
(PDF)

S7 Table. Dot products of five lowest frequency quasi-harmonic modes (PC1-PC5) from
seven sets of 30 ns trajectories with the PC1 to PC5 from whole 210 ns trajectory.
(PDF)

S8 Table. Dot products among PC1 modes from seven 30 ns trajectories.
(PDF)

S9 Table. Projections of simulations onto 2D-surface using two PC1 modes from unper-
turbed unbound and bound states.
(PDF)
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S10 Table. Average distance between distributions of unbound and bound states projected
onto 2D-surface using two PC1 modes.
(PDF)

S11 Table. Average distance between distributions of unbound and bound states projected
onto 2D-surface using two PC1 modes sorted with ascending order.
(PDF)
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