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Allostery is a process by which proteins transmit the effect of

perturbation at one site to a distal functional site upon certain

perturbation. As an intrinsically global effect of protein dynam-

ics, it is difficult to associate protein allostery with individual

residues, hindering effective selection of key residues for muta-

genesis studies. The machine learning models including deci-

sion tree (DT) and artificial neural network (ANN) models were

applied to develop classification model for a cell signaling

allosteric protein with two states showing extremely similar

tertiary structures in both crystallographic structures and

molecular dynamics simulations. Both DT and ANN models

were developed with 75% and 80% of predicting accuracy,

respectively. Good agreement between machine learning

models and previous experimental as well as computational

studies of the same protein validates this approach as an

alternative way to analyze protein dynamics simulations and

allostery. In addition, the difference of distributions of key

features in two allosteric states also underlies the population

shift hypothesis of dynamics-driven allostery model. VC 2018

Wiley Periodicals, Inc.

DOI: 10.1002/jcc.25218

Introduction

Allostery, which is referred to as a process by which proteins

transmit the effect of perturbation at one site to a distal func-

tional site, is fundamental to many biological regulations. Numer-

ous studies have been conducted in the past half centuries. In

the early 60s, two theoretical models, Monod–Wyman–Changeux

(MWC)[1] and Koshland–N�emethy–Filmer (KNF) models,[2] were

proposed to explain significant conformational change observed

in protein hemoglobin upon binding with oxygen molecules as

concerted or sequential processes, respectively. Since then, pro-

tein allostery was commonly considered as the significant confor-

mational change observed in protein structure upon local

perturbation. However, there are many allosteric proteins being

identified without significant conformational change upon pertur-

bation. In contrast to the conformation-driven allostery observed

in hemoglobin, new theoretical models were proposed as

dynamics-driven allostery[3–5] or population shift among different

states[6–10] to explain protein allostery without significant confor-

mational changes. In these models, it was proposed that the

external perturbations cause significant changes in the distribu-

tion of protein in different states, and lead to the change of free

energy landscape related to protein allosteric functions. Various

studies were carried out to distinguish different states through

simulations[11–14] using principal component analysis based on

the cross correlation matrix of protein simulations. Despite the

progress made in these studies, further development is still nec-

essary for better recognition of the different states of dynamics-

driven allosteric proteins.

Identifying allostery-related residues and the pathways

responsible for allosteric transformation is another challenge

for the protein allostery studies. The theory for allosteric infor-

mation transduction within the proteins has evolved from sin-

gle pathway formed by residues into allosteric information

transduction network model.[15] Numerous methods for identi-

fying key allosteric residues from simulations have been devel-

oped recently.[11,16–19] These computational methods focus on

correlation analysis related to protein dynamics. Potential con-

tribution from simple geometric parameters, such as distances

between residues or dihedral angles to allostery, has not been

explored extensively.

In computer science, machine learning (ML) methods were

developed for many purpose including pattern classification.[20]

Due to their various advantages, ML methods have also been

applied in computational biology.[21–24] Many ML methods are

specialized in classification with high accuracy, and can also

provide insights into the intrinsic differences in classification

model. Therefore, ML methods are applied in this study to

develop classification model with regard to protein allostery.

Specifically, two widely applied ML methods, neural networks

and decision tree models, are used to analyze geometric

parameters including distances among residues and backbone

dihedral angles, and develop prediction models to differentiate

states of dynamics-driven allosteric proteins.

Neural network, also named as artificial neural network, was

first proposed in the 1960s[25,26] to mimic the biological neural

networks in animal brains. Recently, being developed as deep

learning methods, the artificial neural network model has been

widely used in many applications, including artificial intelli-

gence and image recognition.[27,28] Since its initial application
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in computational chemistry in the 1990s,[29,30] artificial neural

network model has been applied in rational drug design.[31–33]

Being a nonlinear activation function, artificial neural net-

work method is particularly suitable for modeling nonlinear

relationships.[34]

Decision tree model, as another ML method, is widely used

to identify key factors that contribute the most to the target

states. In general, decision tree model is easy to apply on large

amount of data with high dimensions. The resulted classifica-

tion model based on the decision tree method is also easy to

interpret related to the nature of the systems being studied.[35]

Due to these advantages, decision tree model is often used to

preprocess raw data in combination with other ML methods.

Therefore, both artificial neural network and decision tree

methods were applied in this study to develop prediction

models for protein allostery.

The second PDZ domain (PDZ2) in the human PTP1E protein

is a typical dynamics-driven allosteric protein upon binding

with its allosteric effectors, and has been subjected to both

experimental and computational investigations. Therefore, it is

used as model system in this study and subjected to above

two ML methods to develop classification models associated

with its allosteric states. There are two goals to achieve in this

study: developing theoretical prediction models to recognize

two allosteric states of PDZ2 (unbound and bound) and identi-

fying key geometric features that potentially drive allostery of

this protein. It is expected that the selected ML methods could

facilitate to reveal key features to influent the overall protein

allosteric processes.

Methods

Molecular dynamics simulations

The initial structures of PDZ2 protein were obtained from Protein

DataBank (PDB)[36] with codes as 3LNX and 3LNY, for the

unbound and bound states, respectively (Fig. 1). These PDB

structures were processed with hydrogen atoms added and sol-

vated in a cubic water box as TIP3P model[37] with charge bal-

ancing ions as sodium and chlorine added. The systems were

then subjected to energy minimization. Consequently, the sys-

tems were subjected to 12 picoseconds (ps) molecular dynamics

(MD) simulations to gradually raise the temperature to 300K

before being equilibrated via 10 nanoseconds (ns) isothermal–

isobaric ensemble (NPT) MD simulations at 300 K and 1atm.

Afterwards, canonical ensemble (NVT) Langevin MD simulations

were carried out as the production runs. For all above simula-

tions, 2 femtoseconds (fs) step size was used. The chemical

bonds associated with hydrogen were fixed using SHAKE

method.[38] Cubic periodic boundary condition (PBC) was applied

in these simulations. The long-range electrostatic interactions

were modeled using the particle mesh Ewald algorithm.[39] All

simulations were carried out using CHARMM simulation pack-

age[40] version 40b1 and the CHARMM22 force field.[41] For both

unbound and bound states of PDZ2, total of 13 simulations of

34 ns in length were carried out. For all trajectories, the initial 4

ns were discarded as equilibrium phase. Frames were saved

every 10 ps. Therefore, 3000 frames were extracted from each

30 ns trajectory and subjected to the ML model analysis. Among

13 simulations of each state, 10 simulations were randomly

selected as training set, and remaining three simulations were

used as testing set. Cross-validation on training set was used to

optimize the classification models and tested on test sets.

Machine learning methods

The machine learning methods applied in this study include

the artificial neural network (ANN) model, and the decision

tree (DT) model. A typical ANN model consists of input layer,

hidden layers, and output layer. Each layer consists a set of

“nodes” interconnected with other nodes in the adjacent

layer(s). These nodes contain activation functions. The connec-

tions among nodes are weighted by additional factors. During

the training process of an ANN model, the original data from

the training set were entered to the input layer and went

through the hidden layer(s) before reaching the output layer.

A feedback process called “back propagation” was employed

to minimize the error at the output layer. The purpose of the

back propagation is optimizing the activation functions and

weights on internode connections to achieve the minimum

prediction error at the output layer upon convergence.[42]

When there is more than one hidden layer, ANN is also

referred to as deep neural network model, which usually

requires much higher computational cost in training pro-

cess.[43] Therefore, only one hidden layer was used in the initial

ANN model setup, and was shown to be sufficient. An addi-

tional regularization including L2 penalty term was used to

avoid over-fitting problem in the training process. L2 penalty

term was added to the ANN model when updating the weight

of each node. This penalty term limits the changes of weights

during each iteration to avoid over-fitting. Overall, the number

of nodes in hidden layer and L2 penalty term was refined to

achieve the highest accuracy.[44–46]

DT method has been widely used in strategy determination

and identification of important factors. Combined with

Figure 1. PDZ2 bound state with peptide. [Color figure can be viewed at

wileyonlinelibrary.com]

FULL PAPER WWW.C-CHEM.ORG

1482 Journal of Computational Chemistry 2018, 39, 1481–1490 WWW.CHEMISTRYVIEWS.COM

http://wileyonlinelibrary.com


chemical descriptors, DT method was also applied to predict

chemical activities.[47] The DT method was also applied in this

study to develop a classification model. It provides an efficient

algorithm to identify how the results can be predicted from

individual features based on the information entropy gain. The

DT model implemented in scikit-learn package[48] was

employed and refined to achieve the best predicative model

in this study. Comparing to the ANN model, the classification

or prediction model resulted from DT model is easier to inter-

pret and understand.

Both pairwise distances for alpha carbons (Ca) and back-

bone dihedral angles (w and u) were used as features to train

the ANN and DT models. MSMbuilder[49] package was

employed to extract full Ca pairwise distances and dihedral

angles from simulation trajectories. For better performance of

these two ML models, prescreening all features is necessary.

Tree-based feature selection methods implemented in scikit-

learn package[48] were applied to prescreen important features

for the ML analyses presented in this study.

To assess the performance of each classification model, we

calculated four summary metrics including accuracy, recall, pre-

cision, and F1 score, which are defined as

Accuracy5
TP1TN

all
; Precision5

TP

TP1FP
(1)

Recall5
TP

TP 1FN
;

F152
Precision � Recall

Precision1Recall

where true positive (TP) and true negative (TN) are defined as

the number of structures that are classified correctly into

unbound and bound state. False positive (FP) and false nega-

tive (FN) are defined as the number of structures that are mis-

classified into the other states.

Analysis of MD trajectories

Root-Mean-Square Deviation (RMSD) and Root-Mean-Square

Fluctuation (RMSF). The RMSD is used to measure the overall

conformational change during the MD simulations with regard

to a reference structure. For a molecular structure represented

by Cartesian coordinate vector ri i51 to Nð Þ of N atoms, the

RMSD is calculated as the following:

RMSD5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i51 r0

i 2Uri

� �2

N

s
(2)

The Cartesian coordinate vector r0
i is the ith atom in the refer-

ence structure. The transformation matrix U is defined as the

best-fit alignment between the PDZ2 structures along trajecto-

ries with respect to the reference structure.

RMSF is used to measure the fluctuation of atoms during

MD simulations with respect to the averaged structure. RMSFi

of atom i for a given MD trajectory is defined as

RMSFi5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT

j51

vj
i 2vi

� �2

vuut ; (3)

where T is the total number of frames in the given MD trajec-

tory, vj
i is the coordinate atom i in the frame j, and vi is the

averaged coordinate of atom i in the given trajectory. This

analysis is based on the simulation frames superimposed to

the averaged structure of the given trajectory.

Principal Component Analysis (PCA). By applying quasi-

harmonic analysis implemented in the CHARMM program, PCA

was performed on the unbound and bound state simulations

to obtain dominant modes in each state. Translational and

rotational components were projected out for each frame. All

analyses were carried out using CHARMM simulation package

version 40b1.

Cross-correlation matrix is a measurement of the correlated

movement of a set of atoms. Each matrix element is defined

as

Cij5
cij

c
1=2
ii c

1=2
jj

5
hrirji2hriihrji

hr2
i i2hrii2

� �
hr2

j i2hrji2
� �h i1=2

; (4)

where Cij is the measurement of the correlated movement

between atoms i and j, cij, cii, and cjj are the covariance matrix

elements, and ri and rj are Cartesian coordinate vectors from

the least-square fitted structures, hence with translation and

rotation projected out. Matrix elements Cij are between 21

and 1 with negative values indicating negative correlation and

positive values indicating positive correlation between the

motions of atoms i and j. It should be noted that the correla-

tion is defined as related movement along the line between

two points. Correlated movement along orthogonal paths

yields a cross-correlation matrix element of zero.[50]

Dynamical Network Analysis. Potential allosteric pathways

consisting residues identified by machine learning models

were examined through dynamical network analysis using the

NetworkView plugin implemented in VMD program.[51,52] In the

dynamical network analysis, if the backbone alpha carbons of

any residue pairs are within 4.5 Å for more than 75% of simu-

lation time, these two residues are considered as being con-

nected. The connection strength for each connected residue

pair is weighted by correlation value of these two residues in

the cross-correlation matrix. For any two residues not con-

nected, optimal pathways may be identified through other

connected residues and the connections among them.

Results

Prescreening features for further analysis

The pairwise distances for Ca and backbone dihedral angles

were subjected to a prescreening process using DT model to

select features for efficient machine learning analysis. All 26

trajectories for both unbound and bound PDZ2 states were

used for the prescreening purpose. Total of 4371 Ca pair
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distances and backbone dihedral angles were subjected to the

prescreening process. The number of important features that

could be selected depends on the depth of DT model. With

the depth n, the maximum number of features that can be

covered in the model is 2n–1. For feature prescreening pur-

pose, to ensure that the DT model covers all the possible fea-

tures in the affordable computational costs, the depth of DT

model was set as 20. After training this DT model, total of 289

features each with importance greater than 0.1% were

selected for the following analysis. Combined together, these

289 features contribute 90.0% as total importance to the

model.

PDZ2 state classification by DT and ANN models

Using the preselected 289 features, the DT model was further

refined through the following training procedure. Ten trajecto-

ries were randomly selected among 13 independent simula-

tion trajectories as training set for the unbound and bound

states of PDZ2, respectively. For each state, 10 selected trajec-

tories were randomly divided into five groups each with two

trajectories. For each 30 ns trajectory, 3000 frames evenly dis-

tributed along the trajectory were selected for the training

and testing purpose. The five groups of trajectories of both

unbound and bound states were subjected to five rounds of

cross-validation process described as the following. In each

round of the validation process, one group of both unbound

and bound states trajectories was selected as the test set for

validation purpose with the remaining four groups as the

training set.

For the DT model, depths of the tree ranging from 3 to 12

were tested in the cross-validation process. With depths as 4

and 5, the best performance is achieved to avoid potential

over-fitting problem (Fig. 2a). The DT model with depth 4

showed higher prediction power for the additional six simula-

tions of unbound and bound states than the one with depth

5. Therefore, the DT model with depth 4 was selected as the

final model. For ANN model, six different values of a parameter

alpha, also referred to as learning rate, were tested for the

best performance, with alpha as 1 (log(alpha)50) leading to

the best prediction model (Fig. 2b). For the best DT model

with depth 4 and ANN model with alpha as 1, the prediction

accuracy for the six testing trajectories is 75% and 80%,

respectively (Figs. 2c and 2d). In addition, one dummy classifier

was built to generate random predictions as a baseline com-

parison for the ANN and DT classifiers. Random dummy pre-

dictions were repeated 100 times, and the metrics calculated

by averaging these 100 dummy classifications is 0.5 with stan-

dard deviation as 0.0034 (Fig. 2e). The differences between the

baseline dummy classifier and the ANN or DT classifier suggest

that, although the unbound and bound states have similar

structure with less than 2 Å RMSD differences, these two states

are clearly differentiable using machine learning methods.

One of the advantages about the two prediction models

using machine learning methods is that they could calculate

the probability of any given structure that belongs to either

unbound or bound state. The distribution of this probability

was calculated for all the testing trajectories using both DT

and ANN models, and is plotted in Figure 3. In the distribu-

tions calculated using DT model, there are five peaks in each

state. Each peak from one state overlaps with a corresponding

peak from the other state. The major difference between each

peak from two states is the height (Fig. 3a). For example, the

unbound state simulations have the highest peak close to the

unbound state end of x-axis. For the bound state, the highest

peak is the closest to the bound state end of x-axis. However,

Figure 2. Machine learning models for PDZ2. a) Decision tree (DT) model parameters refinement, b) DT model testing results, c) artificial neural network

(ANN) model parameters refinement, d) ANN model testing results, e) benchmark dummy classifier. [Color figure can be viewed at wileyonlinelibrary.com]
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the second highest peak of the bound state is close to the

unbound state end. In the ANN prediction model, the proba-

bility distribution of each state has only one major peak very

close to each end of the x-axis, reflecting the high prediction

accuracy of this model. In addition to the differentiation

between two states, the calculated probabilities could also be

utilized to select representative structures for various states,

especially those different from both unbound and bound

states, which are referred to as intermediate states. Using the

probabilities calculated by the ANN model, the representative

structures were selected for the unbound, bound, and inter-

mediate states (Fig. 4). The colored arrows in unbound and

bound states provide structural information differentiating

these states from the intermediate state.

Identifying key residues

Another important implication of machine learning models is

identifying the important features strongly correlated with

allosteric states. In both DT and ANN models, the contribution

from each feature to differentiate two states is calculated and

can be used to rank the features. In the two models of this

study, both Ca distances and backbone dihedral angles are

used and ranked together based on their contributions. The

top 10 features with the highest contributions are listed in

Table 1 for the DT and ANN models, respectively. In the DT

model, eight top features are Ca distances, while five of top

ten features are Ca distances in the ANN model. Among the

top 10 features, two models share three features (Ca distance

between residues 38 and 71, backbone dihedral angle w con-

necting residues 1 and 2, backbone dihedral angle / connect-

ing residues 22 and 23). Among the top 10 features reported

from the DT and ANN models, there are 19 different residues

involved. Total of 16 among these 19 residues have been iden-

tified as related to PDZ2 allostery upon binding with the same

peptide in several studies[53–56] The top three features listed in

Table 1 from the DT and ANN models are subjected to further

analysis described as the following.

Further analysis of the key residues

To illustrate the difference between the distributions of the

unbound and bound states of PDZ2, a 2D-RMSD plot with ref-

erence to the crystal unbound and bound structures is shown

in Figure 5a. The distribution plot shows that the bound state

simulations sampled a region similar to the unbound state

simulation, but covered larger conformational space. To further

compare the simulations of the two states, distributions of

three key features identified in the DT and ANN models (Ca
distances between residues Lys38 and His71 and between resi-

dues Asn16 and Arg31, backbone dihedral angle w connecting

residues Pro1 and Lys2) are plotted in Figures 5b–5d. Ca dis-

tance between Lys38 and Thr70 was not plotted because resi-

due Thr70 is adjacent to residue His71. Interestingly, although

the unbound and bound states have similar structures with

low RMSD difference, the distributions of these three key fea-

tures are significantly different between the two states. For

the dihedral angle between residues Pro1 and Lys2, which

Figure 3. Probability distribution for unbound and bound states simulations: a) decision tree model and b) artificial neural network model. Unbound/inter-

mediate/bound states are defined based on probabilities. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 4. Representative structures for: a) unbound state, b) a representative intermediate state, and c) bound state. The colored arrows in unbound and

bound states indicate the direction and magnitude of difference with reference to the intermediate state. [Color figure can be viewed at wileyonlinelibrary.com]
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appeared as the top feature in ANN model and the second

most important feature in the DT model, the relative heights

of two peaks are switched in the bound state compared with

the unbound state. This observation is consistent with the

population shift hypothesis,[8] that the free energy landscapes

of two allosteric states are different upon perturbations

despite the similarity of their structures. The distribution of the

Ca distance between Lys38 and His71 is also significantly dif-

ferent between the two states. The most probable value of

this distance in the bound state is larger than the one in the

unbound state (Fig. 5b). The distribution of the Ca distance

between residues Asn16 and Arg31 is peaked around 29 Å in

both states. But the probability at the peak is much higher in

the unbound state than in the bound state (Fig. 5d). Interest-

ingly, the pairing residues for key Ca distances, Lys38:His71

and Asn16:Arg31 are far from each other and across the pro-

tein structure, as they are located either on or close to distal

loop structures (Fig. 6). These results suggest that the corre-

lated fluctuation of Lys38:His71 and Asn16:Arg31 or their asso-

ciated secondary structures play a critical role to differentiate

the unbound and bound states, and hence, serve as key fac-

tors related to the PDZ2 allostery.

In addition to the distribution analysis, the fluctuations of

the key residues are another comparison between the differ-

ent simulations. RMSF analysis could be used to measure the

averaged structural fluctuations of each residue in dynamics

simulations. PCA is a widely applied method to analyze the

global motion of protein structures based on dynamics simula-

tions. Therefore, we applied RMSF and PCA on the simulations

of both unbound and bound states of PDZ2. In the RMSF plot

(Fig. 7a), the four key residues Asn16, Arg31, Lys38, and His71,

display rather high fluctuations. The cumulative contributions

from PCA modes are plotted for both unbound and bound

states in Figure 7b. For both states, the 20 modes with lowest

frequencies account for more than 50% of the total variances.

Therefore, the average of these modes was used to measure

the fluctuation of each residue in principal component (PC)

Table 1. Top 10 important features identified by decision tree and artifi-

cial neural networks models.

Decision tree Neural networks

Type Residues Type Residues

Ca distance 38[b], 71[a,b] w angle 1[b], 2[b]

w angle 1[b], 2[b] Ca distance 38[b], 70[b]

Ca distance 16[a,b], 31[a,b] Ca distance 38[b], 71[a,b]

Ca distance 31[a,b], 69[a,b] u angle 22[a,b], 23[b]

Ca distance 18[a,b], 28[b] Ca distance 38[b], 73[b]

Ca distance 23[b], 31[a,b] w angle 92, 93

Ca distance 31[a,b], 71[a,b] w angle 22[a,b], 23[b]

Ca distance 7[b], 30[b] Ca distance 24[b], 54

w angle 22[a,b], 23[b] w angle 22[a,b], 23[b]

Ca distance 31[a,b], 52[b] Ca distance 22[a,b], 73[b]

[a] Residue has already been identified by NMR studies.[53] [b] Residue

has already been identified by other computational studies.[55,56]

Figure 5. Distribution differences between the unbound and bound states for different features. a) 2D RMSD distribution, b) Ca distance between residue

Lys38 and His71, c) dihedral angle between residue Pro1 and Lys2 (normalized by cosine value), d) Ca distance between residue Asn16 and Arg31. [Color

figure can be viewed at wileyonlinelibrary.com]
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vector space (Fig. 7c). Three residues, Asn16, Arg31, and His71

also display high fluctuations in the PC vector space.

PC1, the most dominant PC modes of unbound and bound

states simulations, are illustrated in Figure 8. The loop between

residues Val26 to Gly33 in both states displays higher fluctuation

comparing with other part of the protein. Also, the bound state

has a higher fluctuation than the unbound state. As shown in

Figure 8, the fluctuation in that loop shows a trend to change

the shape of the protein, which could be one of the reasons for

the fluctuation difference between Asn16 and Arg31 as shown in

Figure 5. Those differences between the PC1 modes in the two

states could account for the allosteric effects.

Thus far, we focus on the distance distributions and residues

fluctuations of key features identified by the machine learning

models. The mechanisms how the key residue pairs are corre-

lated with each other still remain unclear. Therefore, dynamical

networks analysis,[51,52] a correlation-matrix-based method, was

applied to identify potential allosteric pathways for Lys38:His71

and Asn16:Arg31 as the key residue pairs (Fig. 9). The analysis

reveals that Val22 serves as one key residue involving correla-

tion between Lys38 and His71. Although Val22 is not close to

either Lys38 or His71 in sequence, it is located at the middle

of these two residues in space and closer to Lys38 than to

His71 (blue pathway in Fig. 9). In addition, four residues

(Val22, Ile20, Leu18, Ser17) from the loop containing Asn16

and four residues (His32, Gly33, Gly34, and Tyr36) from the

loop containing Arg31 form a communication pathway involved

with the correlation between Asn16 and Arg31 (red pathway in

Fig. 9). It is interesting that both pathways share the same resi-

due Val22, which is also associated with multiple key features

selected from the two machine learning models (Table 1) and

other experimental and computational studies.[53–56]

Discussion

In this study, the decision tree and artificial neural networks

models were applied to develop classification models of two

allosterically related states of PDZ2 domain from PSD-95 pro-

tein. Principal component analysis of protein dynamics and

RMS fluctuation analysis of individual residues were carried

out to further evaluate the machine learning models. Dynami-

cal network analysis was used to identify potential pathways

accounting for the correlations among the key residues.

Classification of two states

In addition to the conformation-driven allostery, dynamics-driven

allostery model plays increasingly important role in protein allo-

stery from dynamical ensemble point of view.[8,57–59] In dynamics-

driven allostery model, it is likely entropy instead of enthalpy that

drives protein allostery because of the absence of significant con-

formational changes. There are some studies utilizing parameters

associated with whole proteins instead of individual residues,

such as RMSD, principal component analysis, and correlation

matrix, to investigate protein allostery.[6,11,51,52] But there is still

need for methods that differentiate allosteric states of proteins,

build connections with individual residues, and provide guidance

for mutagenesis studies to control protein allostery. Machine

learning methods have been widely used in information technol-

ogy classification applications,[60–62] and are regaining popularity

in computational chemistry and biology.[63–65] One of the goals

of this study is exploring new ways to differentiate protein allo-

steric states and build connections between protein allostery and

individual residues. Therefore, in this study, the DT and ANN mod-

els were built to achieve more than 75% and 80% prediction

accuracy to differentiate the unbound and bound allosteric states

of PDZ2, respectively. More importantly, both models provide

quantitative evaluation of features, which are associated with spe-

cific residues. The good agreement between the residues identi-

fied in both models and the previous experimental as well as

Figure 6. Four residues in the PDZ2 structure associated with the key Ca
distances identified in the machine learning models. [Color figure can be

viewed at wileyonlinelibrary.com]

Figure 7. Residue fluctuations in RMSF method and PCA: a) RMSF, b) PCA cumulative variances, and c) fluctuation based on 20 PCA modes with lowest fre-

quency for unbound and bound state simulations. [Color figure can be viewed at wileyonlinelibrary.com]
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computational studies strongly suggests that the machine learn-

ing models could provide insight into protein allostery as compli-

ment to other widely used analyses of protein simulations. The

distinct distributions of key features in the unbound and bound

states plotted in Figure 3 provide an alternative picture of popu-

lation shift hypothesis underlying dynamics-driven protein

allostery.[9]

One difficulty in protein allostery study is finding appropriate

transition state with reference to distinct allosteric states.[9,18,57,58]

Allosteric processes, especially dynamics-driven allostery, usually

occur in short time scales, and are difficult to be characterized

experimentally.[15,57] Using the quantitative machine learning

models developed in this study, the distributions of simulations

with regard to two allosteric states could be plotted (Fig. 4). The

sampling located at the middle of two states could be considered

as intermediate states and subjected to further analyses.

Given the effectiveness of the machine learning models pre-

sented in this study, one would logically expect that many

other machine learning models could also be useful for analyz-

ing simulations of protein allosteric states. Therefore compari-

son among different machine learning models for protein

simulations will be the focus of future studies. In this study,

the ANN model has better training and predication accuracy

than the DT model. However to develop the accurate ANN

model, the DT model is necessary to prescreen the potentially

important features. This is mainly due to the different charac-

teristics of these two methods. The DT model focuses on indi-

vidual parameters as features for classification.[35] As contrast,

the ANN model uses the combination of all features with dif-

ferent weights for classification purpose. In the future applica-

tions on different systems, caution should be used with regard

to the choices and usage of machine learning models.

Identifying important features

An important strength displayed by machine learning models

in this study is identifying key features for protein allostery.

Both Ca distances and backbone dihedral angles can be easily

used simultaneously for the development of accurate classifi-

cation models. The fact that both distances and dihedral

angles are among the top features suggests that many other

order parameters of molecular simulation systems could be

utilized for machine learning models for either allostery or

other purposes such as computer-aided molecular design. The

distributions of the selected individual features demonstrate

significant difference between structurally similar allosteric

states, and provide an alternative way of analyzing population

shift of simulations upon allosteric or other perturbations on

proteins. In addition, the key features specifically associated

with individual residues provide unambiguous candidates for

mutagenesis studies of proteins comparing to other studies

using global descriptors of protein dynamics.[6,11]

The top 10 features identified in the DT and ANN models

comprise 19 residues. It is significant that 16 of these 19 resi-

dues have been identified in one experimental NMR study and

several computational studies.[53–56] For the top three features

identified in this study, residues Pro1 and Lys2 serve as part of

the allostery communication network identified in a protein

network model.[56] Lys38 is regarded as one of the “hot resi-

dues” in another simulation study of PDZ2[54] as well as part

of the communication network.[56] Asn16, Arg31, and His71

were identified as key allosteric residues in both NMR study[53]

and other computational studies.[54–56] From biological point

of view, Asn16 and His71 are located in the binding pocket,

and could stabilize the binding peptide.[54,55] Residue Arg31

displayed a significant relaxation contribution value in a con-

formation exchange (Rex) study.[47] Some experimental studies

Figure 8. PC1 modes illustrated as porcupine plot: a) unbound state, b) bound state. Colored arrows indicate the direction and magnitude of movement.

Val26-Gly33 loop is highlighted in blue color. [Color figure can be viewed at wileyonlinelibrary.com]

Figure 9. Network pathways for Lys38-His71 (blue) and Arg31-Asn16 (red).

[Color figure can be viewed at wileyonlinelibrary.com]
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also pointed out the residues located in b1/b2 loop including

Asn16, and residues located in b2/b3 loop including Arg31

were important for peptide binding.[66] Considering that a

large number of features associated with all the residues in

the protein were treated equally to develop the classification

models in this study, the overwhelming agreement with other

studies strongly support the effectiveness of machine learning

models for protein dynamics analysis.

The differences in the distributions of these key features

between two states (Fig. 5) provide not only mechanistic

insight into the machine learning models, but also a more

quantitative view of population shift hypothesis of protein

allostery. The different distribution of Ca distance between

Lys38 and His71 may suggest the importance of secondary

structures (a loop structure containing Lys38 and a helix struc-

ture containing His71, see Fig. 6) for the protein allostery. The

key residue selections also agree with the residue fluctuation

in the PCA and RMSF analysis (Fig. 7) in this study and another

computational study of PDZ2.[56] The dynamical network anal-

ysis[51] identified two pathways containing additional residues

which may play an important role for the communication

between two key residue pairs (Fig. 9). The fact that residue

Val22 being part of both pathways and also associated with

several top key features identified in this study further support

the notion that the machine learning models could be compli-

mentary to the existing analysis tools of protein simulations

by providing more insights related to individual residues. In

general, these machine learning models could be applied to

investigate the distribution differences between different

states of dynamics-driven allosteric proteins, for which the

conformational changes are not significant and the differences

are difficult to be described by other analysis methods.

There might be concern that the important residues identified

using ML methods are the outcome instead of the cause of allo-

stery. According to the population shift hypothesis, distribution

differences are essential for investigating the mechanism of allo-

stery. Although not determined as either the cause or the out-

come of allostery, it is an important step to identify the residues

displaying distribution differences between two allosteric states.

According to most experimental and computational studies about

protein allostery, important residues behave differently through

allosteric processes in the most cases. It may be possible that res-

idues do not have any changes through allosteric processes but

are fundamental to allostery effect. However probing these

unlikely events is beyond the scope of this study.

Because the ML methods in this study do not require any a

priori knowledge to identify most important residue pairs to

differentiate two allosteric states, these models could serve as

a complimentary method for the dynamical network analysis,

which requires a priori knowledge about the source and target

residues for the investigation of the potential allosteric path-

ways in the proteins of interest.

Conclusions

In this study, both decision tree and artificial neural network

as machine learning models were applied to systematically

investigate allosteric mechanism of PDZ2 protein upon binding

with a peptide. Although there is no significant conformational

change displayed between the unbound and bound states of

PDZ2, two classification models developed in this study pro-

vide more than 75% of accuracy to differentiate these two

states. Both models also provide a quantitative evaluation of

the contributions from individual features to overall difference

between the two states. Most residues associated with the

important features including Ca distances and backbone dihe-

dral angles have also been reported as key allosteric residues

in both experimental and computational studies. Furthermore,

the distributions of key features in different states provide

alternative ways to analyze the population shift of protein

ensemble upon allosteric perturbations. Additional analyses

were also carried out for PDZ2 simulations using widely

applied approaches including principal component analysis,

RMS fluctuation analysis and dynamical network analysis, and

showed good agreement with the machine learning results.

Overall, the adopted machine learning methods on molecular

dynamics simulations of protein in this study showed promise

as a systematic and unbiased means to gain insight into pro-

tein allostery, especially the specific contribution from individ-

ual residues.
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