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Abstract
Protein allostery is ubiquitous phenomena that are important for cellular signaling processes.
Despite extensive methodology development, a quantitative model is still needed to accurately
measure protein allosteric response upon external perturbation. Here, we introduced the relative
entropy concept from information theory as a quantitative metric to develop a method for
measurement of the population shift with regard to protein structure during allosteric transition.
This method is referred to as relative entropy-based dynamical allosteric network (REDAN)
model. Using this method, protein allostery could be evaluated at three mutually dependent
structural levels: allosteric residues, allosteric pathways, and allosteric communities. All three
levels are carried out using rigorous searching algorithms based on relative entropy. Application of
the REDAN model on the second PDZ domain (PDZ2) in the human PTP1E protein provided
metric-based insight into its allostery upon peptide binding.
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Introduction
Molecular dynamics (MD) simulations have been widely applied to investigate protein
structures and functions.[1] Function regulations of many proteins involve external or
internal perturbations including light stimulation[2], ligand or peptide binding[3], stress
activation [4], pH activation[5] etc., which are essential for protein regulations. In general,
the regulations of protein function due to external perturbations are referred to as allostery
[6], which are ubiquitous molecular processes in biological systems. Recently, a population
shift model was proposed that different function related protein conformations could coexist
[7,8]. Upon external perturbation, the free energy landscape of a target system could change
significantly whereas the populations of different states are shifted. These changes of free
energy landscape are essential for so-called dynamics-driven allostery.[6,9–13]

Dimensionality reduction methods could be applied to investigate the distribution changes
using only limited number (usually up to three) of collective variables.[14] Due to
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unavoidable structural information loss, it is difficult to investigate how the dynamics lead
to the distribution changes, and how the perturbation information propagates inside protein.
To address this difficulty, an improved method is needed to accurately compare the
distribution between the simulations of two allosteric states to offset the structural
information loss due to dimensionality reduction analysis.

One metric to quantitatively measure the difference between two probability distributions is
relative entropy[15]. Relative entropy, also known as Kullback–Leibler divergence, is a
concept in statistics to measure how one probability distribution diverges from the expected
distribution with broad application in many fields[16–20]. By adapting this metric into MD
simulation analyses, one would be able to quantitatively describe how one simulation
diverges from other simulations. This measurement could be applied on many distributions.
The distribution differences measured by relative entropy are equivalent to the free energy
changes upon external perturbations, and can be considered as one of the allostery effects.

To analyze protein structure-function relations and quantify the communication among
residues inside protein, a group of approaches referred to as protein structure network
methods were developed to identify network of residues to model residue communication
based on protein structural dynamics. In protein structure network analysis, each amino acid
residue is considered as a node, and edges are built to connect nodes to obtain different
network representation of a protein. Specifically, protein contact network (PCN) and residue
interaction network (RIN) models were developed and applied to reveal the residues crucial
for protein stability, and identify domains, hubs, and clusters of residues correlated with
protein functions[21–23]. Elastic network models (ENM) were developed to investigate the
interactions among residues through approximating inter-residue interactions by harmonic
elastic restraints [24,25]. The network analysis has also been adapted broadly to analyze MD
simulations. Dynamics network analysis (DNA) method models the residue interaction in
the network using the correlation matrix based on MD simulations [26]. These network
analyses have been widely applied to investigate the communication among residues in
proteins [27]. However, no method has been developed to utilize simulation distribution
information, which closely correlates with the functions, and is readily available from the
MD simulations of macromolecules. In addition, few methods could quantitatively
characterize the allosteric effects of proteins upon external perturbations. Here, we
developed a novel quantitative network analysis method utilizing distribution information
from MD simulations specifically targeting protein allostery. This method is referred to as
relative entropy-based dynamical allosteric network (REDAN) model, and could be applied
to compare distribution differences of two allosteric states upon perturbation and build
quantitative network model.

In REDAN model, each amino acid residue is considered as a node, and connection between
any node pair is considered as an edge. The change of distance distribution between any
node pair can be calculated using relative entropy method and used as the weight for the
corresponding edge. These weights quantitatively measure the response of protein dynamics
upon perturbation, and could be used to characterize allostery induced by the same
perturbation. Therefore, this network model could quantitatively describe protein allosteric
effects from the perspective of structural biology and population shifting. Higher relative

Zhou and Tao Page 2

Mol Phys. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



entropy indicates significant allosteric effect or larger distribution shift due to perturbations.
Using this allosteric network model, we can quantitatively compare allosteric effects upon
perturbation with minimum structural information loss.

Similar with other network models[21,26], the pathway and community analyses could also
be conducted in this allosteric network model. A typical allosteric pathway consists a series
of edges connecting two distal residues to exhibit the potential communication between
residues leading to the allosteric effects. An allosteric community represents a group of
residues with minimum allosteric effects upon perturbation. The second PDZ domain
(PDZ2) in the human PTP1E protein[28] is an allosteric protein which could propagate
signals to other part of molecular complex upon peptide binding[28,29], and is subjected to
the allosteric pathway and community analysis using REDAN method to reveal potential
allosteric mechanism and identify allostery-related residues.

Materials and Methods
Molecular Dynamics Simulation

For PDZ2 system, the initial structures were obtained from the Protein Data Bank (PDB)
[30] with the ID as 3LNX (peptide unbound state) and 3LNY (peptide bound state),
respectively. After adding hydrogen atoms, PDZ2 is solvated using explicit water model
(TIP3P)[31] and neutralized with sodium cations and chloride anions to maintain 0.1M ionic
strength. The simulation system was then subjected to the adopted basis Newton-Raphson
(ABNR) energy minimization, which yielded a total gradient of less than 0.001 kcal/
(mol•Å). After the minimization, 10 nanoseconds (ns) of isothermal-isobaric ensemble
(NPT) MD simulations followed by 100 ns of canonical ensemble (NVT) Langevin MD
simulation at 300K were conducted for both PDZ2 domain unbound and bound states. For
all simulations, SHAKE constraint was applied to constrain all bonds associated with
hydrogen atoms. Step size of 2 femtosecond (fs) was used and simulation trajectories were
saved every 100 picosecond (ps). Cubic simulation box and periodic boundary condition
were applied for all MD simulations. Electrostatic interactions were calculated using particle
mesh Ewald (PME) method[32]. All simulations were carried out using CHARMM[33]
simulation package version 41b1 with the support of GPU calculations based on
OpenMM[34].

Relative Entropy

Relative entropy method was applied to calculate the difference between the distributions of
the distance between the alpha carbon (Cα) of two residues upon perturbation. The
probability distributions of the Cα distance before and after allosteric perturbation are
represented as P and Q, respectively, with p(x) and q(x) as the distribution density at
distance x. The relative entropy DKL between P and Q is calculated as the following

���(� | |�) =   ʃ �(�)ln�(�)�(�)�� (Eq. 1)
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Because the above equation is not symmetrical measurement for P and Q, we symmetrize
the relative entropy between P and Q by taking the average of DKL(P∣∣Q) and DKL(Q∣∣P).
This averaged relative entropy is referred to as the perturbation relative entropy (PRE)
between two distributions of the same distance in different allosteric states upon
perturbation (Eq. 2).

���(� | |�) = ���(� | |�) +  ���(� | |�)2 = 12 ʃ (�(�) − �(�))ln�(�)�(�)�� (Eq. 2)

In any distribution, e.g. P, the free energy at distance x (APx) can be estimated from the
distribution probability at x as the following��� =  − ���ln�(�) (Eq. 3)

where kB is the Boltzmann constant, and T is the temperature. Combining Eq. 2 and Eq.3,
the PRE between distributions P and Q is a direct measurement of the free energy difference
for the given order parameter between two states:

���(� | |�) = 12 ʃ �(�)− �(�) ln�(�)�(�)�� = − 12   ��� ʃ �(�)− �(�) ���− ��� ��
(Eq. 4)

Allosteric Pathways

The allosteric networks can be built based on PRE matrix. PRE value measures the
magnitude of the distribution shifting upon perturbations, and can be considered to indicate
the significance of the allosteric effects. To identify potential allosteric pathways between
two distal residues with large PRE, a cutoff value to control the edge length is necessary to
facilitate the analysis. An edge between any residue pairs will be chosen if the most
probable distance between the Cα of these two residues is smaller than the given cutoff
value. For each chosen edge, a weight is defined as 1/PRE. Therefore, the pathway with the
smallest overall weight implies the propagation channel with the largest allosteric effect.
The shortest pathway was identified by the Dijkstra’s algorithm [35], which is the most
common pathway-searching algorithm. Using Dijkstra’s algorithm, the search starts with the
starting node, and iteratively loops all the available nodes until reaching the destination node
to identify the shortest path connection two nodes. More details could be obtained by
referring to the literature [35].

Allosteric Communities

The main objective for community analysis is dividing the residues into different
communities, so that the total PRE associated with residue pairs within each community is a
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minimum, and the total PRE associated with residue pairs across different communities is a
maximum. Therefore, the overall allosteric effects upon perturbation could be projected onto
the correlation among communities. Both Girvan-Newman[36] and Kernighan-Lin[37]
algorithms are implemented in this study to construct communities.

Girvan-Newman (GN) algorithm

The GN algorithm is a top-down community detection approach, which removes the “most
valuable edge” in each iteration, and recalculates the betweenness of all remaining edges
until no edge remains. This algorithm depends on the graph construction and cutoff values.
The optimal communities are determined by modularity value[36], which is the
measurement of the strength of the community separation. Better community structure is
indicated by larger modularity value. Final communities are selected with the highest
modularity during iteration.

Kernighan–Lin (KL) algorithm

The KL algorithm[37] is a heuristic algorithm for finding the partition of graphs. The
algorithm is independent to the graph construction and cutoff value, and only depends on the
relative entropy matrix. Multiple random initializations are carried out in KL algorithm to
search for the lowest possible relative entropy value within each community. The KL
algorithm is outlined as the following.

Assuming n communities labeled as C1 through Cn, the total PRE inside communities are
defined as � =  ∑�∑�, � ⊆ �������, (Eq. 5)

where i, j are the residues in Community Cl, and PREij is the perturbation relative entropy
between distance distribution of residues i and j upon perturbation.

Assuming that node i belongs to Community Cm, the internal PRE of node i in community
Cm is defined as Eq. 6, and the external PRE of node i with reference to community Cq is
defined as Eq. 7: ��� =  ∑� ⊆ �������, (Eq. 6)

���,�� =  ∑� ⊆ ������� . (Eq. 7)

The allosteric communities can be optimized by inserting node i from Cm into Ck or
swapping node i from Cm with node j from Ck. The benefits of the total PRE inside
communities are calculated as Eq. 8 and Eq. 9 for inserting and swapping operations,
respectively:
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Benefit =  ����− ���� =  ���,��− ��� . (Eq. 8)

Benefit = ����− ���� = ���,�� + ���,�� − ��� + ��� − 2*����� (Eq. 9)

Therefore, the optimal KL communities can be computed by selecting maximum benefit
operation during each iteration until converging to a minimum total PRE value inside
communities. However, the KL algorithm can only achieve a solution as a local minimum.
In the current study, we repeat the KL algorithm until the lowest PRE value in communities
remains unchanged for more than 1,000 times, then the current partition is selected as the
final community configuration. In addition, the KL algorithm could be applied on the GN
searching results to further optimize the communities until convergence. This combination
of GN and KL methods is referred to as a hybrid GN-KL algorithm.

Results
Although PDZ2 exhibits signal propagation upon ligand binding, the structures of the PDZ2
unbound state (3LNX[38]) and bound state (3LNY[38]) are very similar. It was shown that
the distributions between the unbound and bound simulations are significantly different[39].
REDAN model is built based on those differences. Considering each residue as a node, the
significance of allosteric effects for any node pair is measured as the relative entropy
divergences between its distributions in two states, and treated as the weight of the edge
connecting these two nodes. These weights could reflect the allosteric response of the
corresponding edges upon peptide binding, and are referred to as PRE. It is worth to mention
that because the free energy can be computed based on probability distribution P as A =
−kBTlnP, the PRE measures the change of free energy upon peptide binding. Therefore, the
edges along with their weights can be used to model the direction of free energy propagation
upon perturbation.

The PRE values of all edges in PDZ2 are calculated and illustrated in Figure S1. For most
residue pairs, the PRE values upon peptide binding are close to zero, and are significant for
only part of the residue pairs, making it a sparse matrix. The sparsity of the PRE matrix
makes it suitable for a sparse protein network as illustrated in Figure S2. Comparing with
other network methods including protein contact network, residue interaction network, and
dynamical networks analysis[21,26], the REDAN method could identify key allosteric edges
between the residues far from each other rather than adjacent residues.

The distributions of edges with the highest and lowest PRE values are illustrated in Figure 1,
respectively. Clearly, the peptide binding does not equally influence the distance
distributions of different residue pairs. For the residues pair N14:A74 with the highest PRE,
the unbound state has the distance around 19Å with the peak density. Upon peptide binding,
the distribution is broadened with a new peak appearing around 21Å (Figure 1a), leading to

Zhou and Tao Page 6

Mol Phys. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the PRE of this edge upon peptide binding as 2.019. As a comparison, for the residue pair
D56:V64, the peptide binding does not lead to observable distribution changes, which
results in the PRE of this distribution close to zero (Figure 1c). The probability distribution
was closely related to the free energy. The free energy profiles with reference to the edge
distance between residue pairs N14:A74 and D56:V64 are plotted in Figure 1b and 1d,
respectively. With the large PRE value, the change of the free energy profile upon
perturbation is more significant for the N14:A74 pair than the D56:V64 pair. Therefore, the
PRE can be used as an adequate metric to measure the free energy changes upon external
perturbations. These calculated PRE values are used in REDAN model to identify allostery
related residues, residue pairs, allosteric pathways, and allosteric communities.

Identification of Allosteric Effects and Allostery Related Residues

The REDAN model provides a tool to easily detect the residues and residue pairs that are
more responsive to allosteric perturbations. For PDZ2, residue pair N14:A74 has the highest
PRE upon peptide binding. The top five residue pairs with the highest PRE value are listed
in Table S1. The residue pairs with the highest PRE are all correlated with β1/β2 loop with
α3 helix (Figure 1e). Interestingly, the peptide-binding site is formed between β2 strands and
α3 helix.

For each residue, the PRE associated with all edges which include that specific residue could
be summed together as residue specific total PRE. This total PRE may reflect the
significance of allosteric effects between each individual residue and the rest of protein upon
perturbations. All residues in PDZ2 are sorted using their total PRE with the top 15 residues
listed in Table 1 and the complete list provided in Table S2. Because the edge can be
considered as the direction of free energy propagation, the total PRE could reflect the
magnitude of free energy passing through that residue as a node upon perturbation. The top
15 residues cover exactly the residues from G68 to V75 and V26 to H32 (Figure S3).
Comparing with a previous network analysis and an NMR study related to PDZ2 bound with
the same peptide[29,40,41], 12 out of these 15 residues have been identified as allosterically
or functionally related residues (Table 1). The residues V26 to H32 form β2/α1 loop and the
residues G68 to V75 form β5/α3 loop and part of α3 helix. Those regions are highlighted as
allostery related structures in many studies [28,29,40,41].

Allosteric Pathways

The residue pairs identified above with significant allosteric effects usually are not adjacent
with each other. For example, the distance between N14:A74 residue pair is around 20Å.
The significant allosteric effect between these two residues could not be fully accounted for
by non-bonded interactions between them, because the non-bonded interactions are too
small at this distance to exert any significant impact. Alternatively, significant distribution
changes correlated with large allosteric effect could stem from the accumulation of shorter-
range allosteric effects. In REDAN model, the decomposition analysis of the long-range
allosteric effect into sequential short-range and smaller allosteric effects is carried out using
the shortest pathway searching algorithm. For example, in the PDZ2 protein, the large
allostery effect displayed by N14:A74 residue pair (Figure 1a) is decomposed into a series
of sequential residue pairs with short-range allosteric effect using a cutoff value as 12 Å:
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N14:R79, R79:S17, S17:V75, V75:S21 and S21:A74 (Figure 1g). Comparing distributions
in Figure 1f and 1a, it is clear that the decomposed residue pairs have smaller shift of
distribution upon peptide binding but all in the same direction to the larger allosteric effect
displayed by N14:A74 residue pair. This series of short-range edges with significant PRE
values may contribute to the large allosteric effect between N14:A74 as one important
pathway consisting of N14, S17, S21, V75 and R79. It should be noted that the potential
allosteric communication between residues N14 and A74 does not necessarily propagate
only though this identified pathway. However, all five residue-pairs as part of this pathway
have increasing distance distribution upon peptide binding, which is consistent with the
target N14:A74 edge, making it likely that this pathway correlates with the overall allosteric
effect.

The PRE values of the short-range residue pairs listed above are 1.385 (N14:R79), 0.660
(R79:S17), 1.337 (S17:V75), 0.815 (V75:S21), and 1.045 (S21:A74) as shown in Figure 1f
and individually in Figure S4. Residues N14 and S17 belong to β1/β2 loop (covering
residues 13 through 19), and residue S21 belongs to β2 strand. Residues A74, V75, and R79
belongs to α3 helix. N14:R79 pair has the highest PRE along this pathway. Comparing with
the β1/β2 loop region, the α3 helix as a stable secondary structure could be more stable.
Therefore, this pathway decomposition may reveal that the large PRE between N14:A74
may stem from the fluctuation of β1/β2 loop. Among A74, V75, and R79 residues, R79 is
the closest residue in α3 helix structure with regard to the β1/β2 loop. Therefore, to further
evaluate allosteric response from the β1/β2 loop, the distribution of residue pair distances
and corresponding PRE values between R79 and all β1/β2 loop residues (10 through 21) are
plotted in Figure S5. Among these residue pairs, the PRE values increase from the lowest
one between E10:R79 with 0.020 to the highest one between N14:R79 with 1.385, and
sequentially decrease to 0.182 as the one between S21:R79. Central three residues N14,
D15, and N16 have PRE values higher than 1, suggesting that this loop region significantly
changes the conformation upon peptide binding.

It has been suggested that allostery was a complex biological function, and multiple
pathways could co-exist and lead to the allosteric effects, ranging from long-range global
pathways to short-range local pathways[42]. Although some pathways may be more
dominant than other pathways for propagation purpose, the allosteric effect should be
considered as the result of cooperation among multiple pathways[42]. To identify potential
multiple pathways, a cutoff value was applied to differentiate allosteric pathways with
different interaction ranges. This cutoff value is used as the upper bound to search for the
shortest allosteric pathway connecting the target residue pair. This gives flexibility of this
model to survey important allosteric pathways at any distance range. To evaluate the impact
of different cutoff values on allosteric pathways, sixteen different cutoff values ranging from
5 Å to 20 Å are used for allosteric pathway identification (Table 2). Cutoff values shorter
than 5 Å do not lead to any allosteric pathways. Different cutoff values do lead to different
allosteric pathways. But for each specific cutoff value, unique allosteric pathway could be
determined. For the cutoff value of 5Å, the adjacent residues as N14-K13-A12 and residues
from 83 through 74 are identified as the shortest allosteric pathway (Figure 1h), highlighting
the importance of the local interaction for the allosteric effect. The allosteric pathway
identified using the cutoff value as 12Å is illustrated in Figure 1g, because this value was
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used in another allosteric pathway analysis [26] and also used as the cutoff value for non-
bonded interaction in the MD simulations. Overall, different cutoff values leading to
different allosteric pathways provide the flexibility to identify pathways targeting the
interactions within different ranges, and could provide insights into allosteric effects from
different aspects.

Allosteric Communities

The allostery could be referred to as the distribution changes related to protein conformation
upon perturbations. The influence of perturbation is not equally exerted on each residue.
Some residue pairs could be affected more than others upon perturbations as demonstrated
in Figure 1. Using the PRE values of the different residue pairs, the residues can be divided
into different groups, with which the total PRE value within each group is minimized, and
the total PRE values across different groups are maximized. These groups are named as
“allosteric communities” as domains that are less affected by the perturbations.

To construct communities through the minimization of total PRE value within each
community, both GN and KL algorithms as well as the hybrid GN-KL algorithm are
implemented in this study. GN algorithm[36,43] has been widely applied in biological and
social network community analyses. As described in the methodology section, GN algorithm
iteratively removes the most valuable edge in the network to identify the community without
minimizing the PRE inside the community. As comparison, the KL algorithm[37] is a
minimization algorithm which iteratively reaches local minimum. The total PRE values
inside communities using these algorithms are plotted in Figure 2b. Apparently, the KL
algorithm is much better than the GN algorithm to identify communities with the minimum
PRE values. However, the computational cost of KL algorithm is much higher than the GN
algorithm. Overall, the hybrid GN-KL algorithm could produce comparable results to the
KL algorithm with much lower computational cost.

As one of its advantages, the GN algorithm is parameter-free, and could be used to
determine the optimal number of allosteric communities with maximum modularity of the
network[36]. Applying GN algorithm, it was determined that five communities are the most
suitable for PDZ2. Community analysis using GN, KL, and the hybrid GN-KL algorithms
are illustrated in Figure 2c, 2d and 2e, respectively. Usually, the allosteric effects induced by
external perturbations alter the protein conformation without changing the secondary
structure. Therefore, stable secondary structures including α-helices and β-strands likely
belong to same community. Overall, most α-helix and β-strand secondary structures are
conserved in the community analyses.

For five communities in PDZ2 domain using KL algorithm (Figure 2a), the percentage of
total PRE values of all residues pairs within each community are only 0.8%, 1.2%, 0.9%,
1.0% and 1.3% of the overall total PRE values of PDZ2 upon peptide binding as allosteric
perturbation, respectively. Therefore, the PRE values among these communities account for
94.8% of total PRE values related to protein allostery. The total PRE value between
communities 2 and 4 accounting for 19.0% and the one between communities 4 and 5
accounting for 18.0%. Actual total PRE value for each community pair is listed in Table S3,
and the residues in each community are listed in Table S4. The community 4 (residues 66–

Zhou and Tao Page 9

Mol Phys. Author manuscript.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



80) is potentially the most important, and contains β5/α3 loop (66–70) and entire α3 helix
(71–79).

The community analysis is further evaluated through comparison with the principal
component analysis (PCA). First, the simulations of the PDZ2 unbound and bound states are
projected onto the two main components (PC1 and PC2) from PCA (Figure 3a). Clustering
analysis reveals that two states of PDZ2 are significantly different in the PC1/PC2 space.
Consequently, all community pairs (including self pair) from different states are also
projected onto the principal component space (Figure 3b-3p). It should be noted that for
each community pair including self-pairs, PCA was carried out separately to construct
PC1/PC2 surface for projection specifically for that community pair. All community self-
pairs do not show significant distribution changes between two states (Figures 3b, 3g, 3k, 3n
and 3p). Other community pairs generally show significant differences between two states
with the most significant changes coming from pairs including 1:3, 2:3, 2:4, 3:5, and 4:5.

Through this community analysis, the distribution shifting upon peptide binding as PDZ2
allostery can be quantified as the correlation among the allosteric communities. This
community analysis provides a quantitative tool with statistical significance to quantify the
distribution changes induced by allosteric perturbation from different regions in the protein.

Discussion
The REDAN model approaches protein allostery based on the population shift concept
through relative entropy measurement, and can quantitatively measure difference between
two probability distributions[15]. Based on MD simulations, a distribution could be obtained
for many collective variables to represent their free energy profile. Relative entropy could be
calculated to measure the response of any collective variables with regard to allosteric
perturbations. Higher relative entropy indicates larger change of distributions upon
perturbations, and could be closely related to allostery. Therefore, the relative entropy could
be considered as the amplitude of allosteric effect.

The REDAN method could be used to identify the most affected residues and residue pairs
upon allosteric perturbations. In PDZ2 domain, the Cα pair distance with the highest PRE
reveals that the distance distribution between β1/β2 loop and α3 helix is significantly
affected by the peptide binding. The significance of β1/β2 loop has been identified in many
studies related to PDZ2 allostery [28,41]. In a dynamical interaction correlation analysis
conducted by Karplus and coworker [28], the loop β1/β2 is referred to as a key part in the
allosteric pathway. Another study also emphasized the importance of β1/β2 loop through
structural network and elastic network analysis [41]. For each individual residue, the
summation of all PRE values between this particular residue and all other residues can be
considered as a metric to measure the total amount of information passing through this
residue upon perturbation. The residues with the highest total PRE values also have
significant agreement with those network or experimental studies [28,29,40,41].

Comparing with individual residues, potential allosteric pathways are more informative to
demonstrate the allosteric mechanisms. The shortest pathway algorithms were applied to
identify the pathways between two distal residues with significant PRE. Through pathway
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decomposition analysis, the large allosteric effect between two distal residues could be
decomposed into several short-range residue pairs with smaller PRE values. These short-
range residue pairs may provide structural information important for allostery. This is also
supported by other studies, which indicate that multiple pathways may coexist and be
responsible for the allostery effect between two distal residues [42]. Using cutoff value for
pathway searching, the REDAN model provides flexibility to explore the allosteric
pathways at different scales.

The distribution shift upon allosteric perturbation can be represented as the allosteric
communities in the REDAN model. The allosteric communities are constructed through the
minimization of total PRE values within each community. As shown in Figure 3, the
distribution changes within each community are insignificant, and the majority of
distribution differences come from across communities. Therefore, the amount of
distribution changes upon allosteric perturbation is quantified as the interactions among
different communities.

The construction of allosteric communities is not a trivial task since searching communities
with minimum total relative entropy is known as an NP-Hard problem. In this study, widely
applied GN and KL algorithms are shown to be suitable for the purpose of allosteric
community analysis. The GN algorithm[36] can determine the optimal number of
communities based on the modularity of remaining network after decomposition, without
explicitly minimizing the total PRE in each community. As comparison, the KL algorithm is
an explicit minimization algorithm, which can obtain a local minimum value of the total
relative entropy within each community. But the computational cost of the KL algorithm is
significantly higher than the one of the GN algorithm, and the number of communities needs
to be pre-determined. The hybrid GN-KL algorithm was developed to take advantage of
both algorithms by applying GN algorithm to select communities as an initial guess, and KL
algorithm to optimize the partitions. The detailed comparison of these three algorithms is
provided in Table S5. Among five allosteric communities identified for PDZ2, the
community 4 has a total PRE correlated to the rest of protein as more than 50%, indicating
that the peptide binding can significantly alter the interaction of the residues in community 4
(L66 to N80) with the rest of protein. Community 4 also includes all the residues in β5/α3
loop and α3 helix, which consists of the binding pocket of peptide. This highlights the
importance of the peptide binding pocket in the allosteric processes. In general, allosteric
community analysis could be utilized to divide the protein residues into different allosteric
communities to investigate the allosteric mechanism from a global point of view.

Conclusion
The current study introduced a new method named related entropy-based dynamical
allosteric network (REDAN) model to quantitatively characterize protein allosteric effects
upon external perturbations. Relative entropy was applied to quantify the allosteric effects
for pair-wised residues based on the distribution differences. Because the population
distribution is directly linked to the free energy, any changes of population distributions
essentially reflect the changes of free energy surface due to external perturbations. Adapting
the shortest pathway searching algorithms, multiple potential allosteric pathways connecting
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two distal allosteric residues could be identified. The flexibility of using different cutoff
values and identifying multiple allosteric pathways could provide deep insight into protein
allostery. The allosteric community analysis could further identify the communities, which
hold significant contribution to overall relative entropy among them but have minimum
relative entropy within each community. Both GN and KL algorithms, and the hybrid GN-
KL algorithm were implemented for community identification. The application of the
REDAN model on allosteric PDZ2 protein demonstrates its effectiveness and efficiency for
protein allostery analysis. Overall, this method could be applied on any two different protein
states upon perturbations, and quantify the impacts from the perturbation on the internal
dynamics and function related residues.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1:
The significance of distribution changes and free energy surface changes quantified by
perturbation relative entropy (PRE). (a) Residue pair (N14:A74) with the highest PRE in the
protein; (b) The free energy surface of the N14:A74 distance distribution; (c) The residue
pair (D56:V64) with the lowest PRE; (d) The free energy surface of the D56:V64 distance
distribution; (c) Residues N14 and A74 illustrated in PDZ2; (d) Pathway decomposition: the
distributions for decomposed residue pairs; (e) Pathway decomposition analysis of N14:A74
pair with cutoff value as 12Å; (f) Pathway decomposition analysis of N14:A74 pair with
cutoff value as 5Å. These results demonstrate that the PRE is an effective measurement to
quantify allosteric effect as residue pair level.
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Figure 2:
Comparison of different community detection algorithms. (a) Total PRE within and between
communities using Kernighan-Lin (KL) algorithm; (b) Minimization of total PRE within
allosteric communities using different algorithms; (c) Communities constructed using KL
algorithm (residues in different community are colored differently, same as for d and e.); (d)
Communities constructed using Girvan-Newman (GN) algorithm; (e) Communities
constructed using the hybrid GN-KL algorithm. The GN algorithm is effective to determine
the suitable number of communities, but could be trapped in local minimum. The KL
algorithm could optimize the communities significantly with high computational cost. The
hybrid GN-KL algorithm is both computationally efficient and rigorous with the results
similar to the KL algorithm.
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Figure 3:
Projection of PDZ2 unbound and bound states and communities using principal component
analysis (PCA). (a) Projection of unbound and bond states onto PC1 and PC2 surface; (b-q)
Projections of different community pairs onto pair-specific PC1/PC2 surfaces. The unbound
and bound states are well separated on PC1/PC2 surface. None of community self-pairs is
well separated using PCA. Most different community pairs are well separated using PCA,
indicating that the community analysis projects the major part of allosteric effect among
different communities.
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Table 1:

Top 15 residues with the highest residue specific PRE

Rank Residue Total PRE Rank Residue Total PRE Rank Residue Total PRE

1 T70b 54.99 6 Q73b 46.70 11 V75b 37.07

2 V26a,b 54.86 7 A69a,b 46.67 12 K72 35.88

3 N27a,b 52.62 8 R31a 45.32 13 H32 34.75

4 H71a,b 50.49 9 T28a,b 43.28 14 V30a,b 32.03

5 A74b 46.76 10 S29b 38.14 15 G68 30.76

[a]
Residues identified through an NMR study[40]

[b]
Residues identified through two network analyses[29,41]
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Table 2:

Different pathways with different cutoff values

Cutoff value (Å) Shortest allosteric pathway Cutoff value (Å) Shortest allosteric pathway

5 N14, K13, A12, Q83, G82, T81, N80, R79, L78, T77, E76, V75,
A74

13 N14, R79, N16, V75, S21, A74

6 N14, N16, K13, Q83, G82, T81, N80, T77, A74 14 N14, R79, S17, A74

7 N14, A45, K13, Q83, N16, R79, T81, L78, A74 15 N14, R79, S17, A74

8 N14, A45, K13, G44, S17, R79, T81, T77, Q73, T70, G25, A74 16 N14, L78, K13, A74

9 N14, G44, I20, V22, H71, G25, A74 17 N14, L78, K13, A74

10 N14, G44, S17, V75, G25, A74 18 N14, L78, K13, A74

11 N14, G44, S21, H71, V22, A74 19 N14, L78, K13, A74

12 N14, R79, S17, V75, S21, A74 20 N14, A74
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