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ABSTRACT: Allosteric regulation is a well-established
phenomenon defined as a distal conformational or dynamical
change of the protein upon allosteric effector binding. Here,
we developed a novel approach to delineate allosteric effects
in proteins. In this approach, we applied robust machine
learning methods, including deep neural network and random
forest, on extensive molecular dynamics (MD) simulations to
distinguish otherwise similar allosteric states of proteins.
Using the PDZ3 domain of PDS-95 as a model protein, we
demonstrated that the allosteric effects could be represented
as residue-specific properties through two-dimensional prop-
erty-residue maps, which we refer to as “residue response
maps”. These maps were constructed through two machine learning methods and could accurately describe how different
properties of various residues are affected upon allosteric perturbation on protein. Based on the “residue response maps”, we
propose allostery as a residue-specific concept, suggesting that all residues could be considered as allosteric residues because
each residue “senses” the allosteric events through changing its single or multiple attributes in a quantitatively unique way. The
“residue response maps” could be used to fingerprint a protein based on the unique patterns of residue responses upon binding
events, providing a novel way to systematically describe the protein allosteric effects of each residue upon perturbation.

■ INTRODUCTION

Allostery has been an evolving concept.1 The traditional
definition considers the allosteric proteins as two-state switches
that are concertedly2 or sequentially3 affected by an effector
molecule. Some modern definitions consider allosteric proteins
as conformational ensembles whose populations are shifted
upon binding to an effector.4−6 From a mechanistic viewpoint,
binding to an effector propagates a signal through changing
properties of a network of residues, including their conforma-
tional dynamics7 and nonbonding interaction attributes,8

which may not accompany observable conformational
changes.9 Therefore, it has been proposed that all proteins
are intrinsically allosteric10 because even for a classically
considered nonallosteric protein, subtle conformational or
dynamical changes can occur upon binding to a ligand.
Recently, Berezovski and co-workers proposed that allosteric
residues could be considered as a result of the allosteric
communication induced via ligand binding and developed
methods to detect allosteric sites based on per-residue
energetic perturbation upon ligand binding, suggesting ligand

binding may perturb the free energy of each residue.11,12 Based
on these insights, we hypothesize that the ligand-binding
changes multiple attributes of a network of residues. Our
hypothesis raises the question of whether the different
attributes are perturbed to the same extent in all affected
residues or each residue is affected differently. In other words,
could different allosteric residues “sense” effector binding in
different ways? With this broader view, we further hypothesize
that all residues in a given protein are potentially allosteric with
various responses and extents of response upon perturbation.
Here, we tested these hypotheses in the PDZ3 domain of

PSD-95. PDZ3 is a well-known model for analyzing allosteric
effects.8,13−20 Two crystal structures of PDZ3 in bound and
unbound states are available.21 The bound structure includes a
five-residue peptide ligand, which is bound in a groove walled
with a helix (αB) and a sheet (βB). Petit et al. used isothermal
titration calorimetry (ITC) and nuclear magnetic resonance
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(NMR) to highlight dynamic allostery relative to an α-3 helix
in PDZ3.14 Gerek and Ozkan highlighted residues involved in
allosteric pathways using perturbation response scanning
(PRS).16 McLaughlin et al. identified different mutational
routes that could affect the binding specificity in PDZ3 via a
high-throughput single mutation analysis.17 In another work,
Murciano-Calles et al. reported the allosteric effects of post-
translational modifications of residues in PDZ3.19 Recently,
computational methods have been employed by multiple
research groups to study the allosteric effects in PDZ3. Among
these works is a Monte Carlo path generation simulation by
Kaya et al., which revealed potential propagation routes of the
allosteric signals in some proteins including PDZ3.18 Kalescky
et al. used molecular dynamics (MD) simulations to perform a
rigid residue scan in the bound and unbound PDZ3 and
identified allosteric residues that matched with previous
experimental observations.20 A more recent study by Kumawat
and Chakrabarty revealed of the electrostatic interactions as
the most significant hidden basis of dynamic allostery in PDZ3
using MD simulations.8

Besides PDZ3, MD simulations have been widely used to
study allosteric effects. In one of the MD-based works by Van
Wart et al., dynamical network analysis22 was used to identify
correlations among residue positions in MD trajectories to
track down the allosteric networks between residues.23 This
approach implemented a graph theory on protein MD
trajectories that assumes a time-dependent variable of protein
residues as “nodes” and connects them with “edges”. It was
later employed and further developed by the same group to
identify suboptimal paths that potentially convey allosteric
messages among residues and was presented as an online
program called weighted implementational of suboptimal paths
(WISP).24 Using this approach, they successfully identified
allosteric signaling paths in an amidotransferase called HisH-
HisF. The same theory was implemented in calculating the
correlations in the MD trajectory and identifying the allosteric
networks in thrombin.25

Kokh et al. investigated the local communication among
residues to identify transiently formed binding pockets from
MD trajectories and developed a program named TRAPP.26 It
analyzes the correlated pocket variations via principal
component analysis (PCA), and calculates average deviations
of the structure in the trajectory from a reference structure,
followed by clustering the transient pockets into subpockets.
As a result, the shape of the transient pockets can be
recognized, and their similarity to other known pockets and
their druggability can be analyzed. La Sala et al. have also
presented another method for pocket detection and allosteric
pocket−pocket communications via MD simulations.27 They
used the solvent-excluded surface to detect pockets in each
MD snapshot and then track the exchange of atoms between
adjacent pockets along the trajectory. A sequential tracking of
pocket changes along the trajectory leads to the recognition of
allosteric pathways between distantly located pockets.
Conformational dynamics (or entropic allostery) have also

been studied via MD simulations as a mechanism for allosteric
regulation.7 In one such work, Guo, Pang, and Zhou have
reported that binding of an effector to the WW domain of a
protein called Pin1 changes the dynamics of the loops around
the catalytic site, which is located in another domain of the
protein.28,29 This was found through performing MD
simulations with artificial restraints on the WW domain,
which led to similar effects on the catalytic domain as the

effector binding. They also differentiated between fast time
scale local dynamics and slow time scale global dynamics in
allosteric signaling of this protein. Interestingly, they showed
that binding the substrate to the catalytic site does not have the
same dynamics effect on the WW domain where the effector
binds. In contrast, Hertig et al. have described allostery as a
bidirectional phenomenon.30 In β2AR, they also showed that
changes in one direction propagate at a different speed from
the changes in the opposite direction.31 However, in a previous
case, the researchers in the same group have introduced
“artificial perturbations” as a technique to track down the
allosteric signals with MD simulations.32 They used steering
MD as a means of artificial perturbation in fibronectin to allow
force-based transitions to happen faster than a real biological
system. This led to the discovery of allosteric signaling that had
not previously seen in experimental studies.
Although many research works in the past tried to

distinguish different mechanisms of allosteric response, it is
still interesting to reveal whether different residues have the
same or different contributions to the allosteric response. It is
also not clear whether a certain property or a set of properties
of each residue involved in an allosteric response changed
upon a perturbation such as a ligand binding. Also, the
potential capabilities of machine learning in identifying
responses of each residue are not yet well explored. In this
study, we use snapshots from MD simulations to characterize
the response of each residue to a ligand-binding event. To
determine the attribute/residue-specific responses upon ligand
binding, we used hybrid models to calculate the extent of
property responses in different residues upon ligand binding.
These hybrid models would enjoy the sampling power of MD
simulations in combination with predicting capabilities of
machine learning methods. One set of models uses deep
learning neural networks to compare the prediction accuracies
of PDZ3 binding status using different residue attributes as
descriptors. These models reveal whether residue attributes,
such as position, nonbonding interaction, or dynamics, have
different abilities to predict the binding status and hence are
affected upon binding at different extent. The other set of
models uses random forest to rank the residues based on their
contribution to distinguish the PDZ3 binding state. These
models assign significance indices to each residue in terms of
its different attributes and show whether the attributes are
perturbed to the same extent in all affected residues. We
present the significance indices as two-dimensional diagrams
called residue response maps. These maps fingerprint each
protein in terms of its interaction with a specific binding ligand
in a visually easy-to-follow fashion.
Machine learning models have been used widely to study the

structures and interactions among biomolecules.33,34 However,
one of the challenges in using these methods, especially the
deep learning neural networks is the requirement of large data
set needed to train them. What empowers the machine
learning models in our approach is that we integrate them with
MD simulations, which provide a sufficient sampling pool of
snapshots to train and validate the deep neural networks and
the random forest models. The scheme of this approach is
represented in Figure 1.
As shown in Figure 1, the modeling approach presented here

starts with two sets of MD simulations. One set is initiated
from the crystal structure of the unbound PDZ3 (ligand-free),
whereas the other set is from the structures with PDZ3
complexed with the ligand (ligand-bound). Multiple residue-
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specific attributes are calculated for each MD snapshot. Each
snapshot is also labeled based on whether it originated from
the ligand-bound or ligand-free MD trajectories. With data of
each residue-specific attribute, we generated a data set that
contains records of MD snapshots from these two sets of MD
simulations. We used each data set with a specific attribute to
train deep neural networks and random forest models to
predict whether each MD snapshot is from ligand-free or
ligand-bound simulations. The accuracy of the prediction
shows the prediction power of each attribute. We further
ranked the residues based on their contribution to the
prediction to identify residues with the strongest response
using the feature weight values of the random forest models.

■ METHODS
MD Simulations and analysis. Molecular dynamics

(MD) simulations were performed for the PDZ3 protein in
its bound and unbound forms. To set up the MD simulations,
residues 306−415 in the crystal structures of the bound and
unbound PDZ3 (PDB codes: 1BE9 and 1BFE, respectively)
were used as initial structures, respectively, and the rest of the
amino acids were removed. The bound peptide was retained in
the bound structure. tLEaP of Ambertools 1635 was used to
solvate the structures in octahedral boxes of TIP3P waters36

with chloride ions to neutralize the system and 150 mM excess
NaCl with Joung−Cheatham parameters37 to resemble the
physiological conditions. The Amber FF14SB force field was
used to parametrize the protein atoms. Two copies of each
simulation were provided. The starting structures were
equilibrated with nine steps of minimization followed by the
equilibration protocol described in a previous work.38

Hydrogen mass repartitioning39,40 was used to facilitate a 4
fs time step in the production phase, and SHAKE41 was used
to constrain bonds involving hydrogen atoms.
Each simulation copy was run for 1 μs as production using

pmemd.cuda of Amber 16.35 The production phase was done
in 300 K with a Langevin thermostat42,43 at constant pressure
with a Monte Carlo barostat44 with 5 ps pressure relaxation
time. Particle mesh Ewald conditions45,46 with a 9.0 Å cutoff
were used for calculating the long-range interactions. The

snapshots were saved to trajectories in every 1 ps. Snapshots
with a minimum distance of more than 12.5 Å between the
peptide and protein atoms were filtered out from the peptide
bound trajectories. One in every 10 snapshots of the remaining
frames (total of 338,538 bound and unbound frames) were
used for further analysis, from which 59% were unbound
structures and 41% were bound structures. The program
cpptraj47 of Ambertools 1635 was used to analyze the
trajectories.

Generating Descriptors. Different types of descriptors,
defined as follows, were generated using a combination of
cpptraj and python scripts for 110 residues (306−415) of each
MD simulation snapshot:

(1) Cα descriptor was defined to describe the backbone
position of the residues. It is the distance between the
Cα atoms to the geometric center of the protein in each
snapshot.

(2) GEOM descriptor was also defined to describe the
position of the residues. It is the distance between the
residues’ geometric centers and the geometric center of
the protein in each MD snapshot. This descriptor
includes the side-chain positions in the calculations.

(3) FLUCT descriptor was defined to represent the
projection of the residue fluctuation on each MD
snapshot. To calculate the FLUCT values, we calculated
the average protein structure by fitting all protein
snapshots on the first MD snapshot, fitted all protein
snapshots to this average structure, and calculated the
FLUCT value of each residue at each snapshot as the
root-mean-square distance (RMSD) between its struc-
ture in the snapshot and the protein average structure.
The RMSD was calculated as follows:

∑=
=N

dRMSD
1

i

N

i
1

2

(E1)

where di is the distance between atom i in a given
snapshot and the average structure, and N is the total
number of atoms (hydrogen atoms are ignored here).
FLUCT shows how far the structure of each residue at
each snapshot is from its average structure.

(4) VDW descriptor represents the van der Waals
interaction between each residue of the protein and all
other residues at each MD snapshot. The VDW value for
each residue (r) at each MD snapshot was calculated as
follows:

= − −∼E E EVDW vdw
t

vdw
r

vdw
r

(E2)

where Et
vdw is the total van der Waals interactions

between all the atom pairs (ligand not included if exists),
E∼r

vdw is the total van der Walls interactions between all
the atom pairs except atoms of residue (r), and Er

vdw is
the total van der Waals interactions between the atom
pairs in the residue (r). The cutoff for these calculations
was set to 999 Å.

(5) ES descriptor represents the electrostatic interaction
between each residue pair in the protein and all other
residues in each MD snapshot. The ES value for each
residue (r) was calculated as follows:

= − −∼E E EES es
t

es
r

es
r

(E3)

Figure 1. Scheme of the approach proposed in this work.
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where Et
es is the total electrostatic interactions between

all atom pairs (ligand not included if exists), E∼r
es is the

total electrostatic interactions between all atom pairs
except atoms in residue (r), and Er

es is the total
electrostatic interactions between atom pairs in residue
(r). The cutoff for these calculations was set to 999 Å.

(6) NONB descriptor represents the total nonbonding
interactions between each residue and all other residues
in the protein. It is the sum of the VDW and ES values.

(7) SURF descriptor represents the contribution of atoms in
each amino acid to the surface area of the free protein in
Å2 using the LCPO algorithm by Weiser et al.48 (ligands
were ignored in ligand-bound snapshots).

(8) DYN descriptors are representations of the dynamics of
the residues in 10 ps, 1 ns, 25 ns, and 100 ns time scales.
The DYN values are calculated as running RMSD in Å
between heavy atoms of each residue at any MD
snapshot and the same residue at a snapshot that occurs
at the length of a given time scale earlier in the trajectory
after the two snapshots were superimposed. For
example, if the trajectories are saved every 10 ps, for 1
ns time scale, the first DYN value for each residue is the
RMSD between its structure at the 100th snapshot and
the initial snapshot, then the RMSD between the 101st
snapshot and second snapshot and so on.

(9) PC descriptors are projections of the principal
components on the trajectory snapshots. The principal
components were calculated for each residue independ-
ently using a combined trajectory that included the
ligand-bound and ligand-free trajectories. For each
residue, the heavy atoms of the residue in all MD
snapshots were fit to the first snapshot, and an average
structure was generated. Then, the residue atoms in all
the snapshots were refit to this average structure, and the
principal components were calculated using the script
presented in the Supporting Information. The first three
components were considered to generate the PC
descriptors (PC-1, PC-2, and PC-3) because these
components were found sufficient to describe 90% of the
residue motions.

Table 1 summarizes all descriptors and their abbreviations as
used throughout the article. The data set containing the values
of each descriptor was saved as a CSV file for all 338,538
snapshots. Sample scripts that were used for the calculation of
descriptors are provided in the Supporting Information.
Deep Neural Networks. Deep neural networks are neural

networks with more than a single hidden layer. We used these
models to classify the protein conformations in each MD
snapshot based on its ligand binding status. To train and test
the neural networks, a combined set of the MD snapshots from
the simulations with and without ligands was used. The
snapshots were characterized by one of the above-mentioned
descriptors of the 110 residues of the protein. The purpose of
the classification in our work was not the prediction itself but
to evaluate the importance of each feature in prediction
accuracy. As a further measure of descriptor qualities, smaller
subsets of the data sets were used to train the neural network,
assuming that a given descriptor can be considered more
efficient if it results in high classification accuracies when
trained with a lower number of training samples. These subsets
of the descriptor data sets were provided with systematic
sieving of the data sets with different intervals of 10 ps

(338,538 records), 100 ps (33,853 records), 1 ns (3385
records), and 10 ns (338 records), respectively.
Feedforward with backpropagation neural networks were

trained and tested using tensorflow 1.149 in 10 iterations of 5-
fold cross-validations in which the records were shuffled in
each iteration, and 80% were used for training, while 20% were
used for testing in each cross-validation iteration. The models
were trained using the Adam Optimizer algorithm50 with a
learning rate of 0.001 and a softmax classifier using cross
entropy loss51 as the cost function. The performance of the
neural networks was measured with classification accuracy,
which was defined as the rate of correctly classified snapshots
in the test set. The accuracies of 5-fold cross-validation steps
were averaged and used as the accuracy for each iteration, and
then, the averaged accuracies of a total 10 iterations were
reported and used to measure performance.
The architecture of the neural networks includes an input

layer containing 110 cells, three hidden layers, and an output
layer of two cells. The number of the cells in the hidden layers
of the networks was optimized with several trial-and-error
attempts targeting the highest consistent accuracies among
many runs. The optimal architectures were found to be 110-
(500)3-2, 110-(500)3-2, 110-(200)3-2, and 110-(50)3-2 for
models fed with 338,538, 33,853, 3385, and 338 records,
respectively. The same neural network models were trained
and tested without considering the 12 pocket residues, which
were defined as the ones that have less than 3 Å distance from
the ligand in the bound crystal structure. These included
residues 323, 324, 325, 326, 327, 328, 339, 372, 373, 376, 379,
and 380. Also for each descriptor, two networks were trained
with only the top 10 residues selected by the random forest
models and a set of randomly chosen nonpocket residues. The
optimal neural network architecture was found to be 10-(40)3-
2 for these models.

Random Forest Models. Random forest models can be
used for classification and feature selection purposes. We used
this method here for both purposes, i.e., (1) to validate the
relative classification accuracies obtained with neural networks

Table 1. Descriptors of Per-Residue Properties (attributes)
Calculated from MD Trajectories and Used to Train
Machine Learning Models

Descriptor
abbreviation Description

Cα Distance between Cα of the residue and the geometric center
of the protein

GEOM Distance between the geometric center of the residue and
the geometric center of the protein

FLUCT Root mean square deviation (RMSD) between the residue
and its average structure in the trajectory

VDW van der Waals interaction between the residue and the rest
of the protein

ES Electrostatic interaction between the residue and the rest of
the protein

NONB Total nonbonding (VDW+ES) interactions between the
residue and the rest of the protein

SURF Contribution of the residue to the protein surface area
DYN-10 ps Dynamics of the residue in 10 ps time scale
DYN-1 ns Dynamics of the residue in 1 ns time scale
DYN-25 ns Dynamics of the residue in 25 ns time scale
DYN-100 ns Dynamics of the residue in 100 ns time scale
PC-1 Projection of the first principal component
PC-2 Projection of the second principal component
PC-3 Projection of the third principal component
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that were trained with 338,538 snapshots with and without the
pocket residues and (2) to rank the residues according to their
contribution to the classification ability.
To perform random forest modeling, we used the random

forest classifier from the Scikit-Learn machine learning
library.52 For each data set, 75% of the 338,538 records with
and without considering the 12 pocket residues were randomly
sampled to train the model, and the remaining 25% records
were used for test purposes. The randomized training and
testing procedure was repeated 100 times, and averaged
classification accuracies were reported. The accuracy was
calculated as the number of correctly classified cases divided by
the total number of test cases. The importance of each residue
with regard to the prediction ability of each model was
recorded, and the overall prediction ability of each residue was
ranked based on the averaged importance level over all 100
models.
Elastic Network Model. Elastic network modeling (ENM)

was performed using the DynOmics ENM 1.0 online tool.53

The crystal structure of ligand-bound PDZ3 (PDB code:
1BE9) without the crystallographic water residues was used as
the input structure. The bound peptide residues were used as
the environment, and the protein residues were used as the
system.

■ RESULTS
Multiple Attributes of Allosteric Residues Are

Affected upon Ligand Binding. Multiple properties can
be calculated for a protein from the molecular dynamics
snapshots at the domain, residue, subresidue, and atomic
levels. These properties describe the system in different ways
and could be considered as different layers of information that
potentially result in a comprehensive picture of the protein
when being combined. From a protein allostery viewpoint, it is
interesting to investigate the fluctuations of such properties at

the residue level. We hypothesize that each one of such layers
of information can differentiate the snapshots taken from the
ligand-bound and ligand-free MD trajectories with different
efficiencies. In other words, multiple residue attributes are
affected upon ligand binding to a different extent. To test the
hypothesis, we described the residues of the PDZ3 protein in 2
μs of ligand-bound and 2 μs of ligand-free MD simulations in
terms of their positions, fluctuation, nonbonding interactions,
surface area, and dynamics. Table 1 summarizes different
residue descriptors that were calculated from MD trajectories
and used to train and test predictive machine learning models.
More details are provided in the Methods section.
We trained and optimized deep learning neural network

models using the descriptors generated and calculated from
MD trajectories based on a 5-fold cross-validation procedure
that randomly separated the data set into 80% for training and
20% for validation in each run. The snapshots, taken every 10
ps in MD trajectories, were used to train models to distinguish
the bound and unbound trajectories. To identify the residue
attributes that have more efficient classification capabilities, we
reduced the snapshots in the data sets by picking one snapshot
in every 100 ps and 1 and 10 ns of MD trajectories as different
snapshot offsets (Figure 2). We further trained random forest
models using the data sets containing maximum data points
(saved with 10 ps intervals). The random forest models
resulted in similar prediction accuracies as the neural networks
(Figure 2, brown solid line). The reported neural network
accuracies were averaged over 10 average accuracies of cross-
validation attempts. The random forest accuracies were
averages of 100 runs of independent random forest models.
Among all the residue descriptors, the projection of the
principal components (PC) of the residues resulted in almost
perfect prediction accuracy, followed by the residue fluctua-
tions (FLUCT), surface area contributions (SURF), and
position descriptors (GEOM and Cα). Comparing the

Figure 2. Accuracies of the neural network and random forest models for each descriptor. The models were designed to predict the classification of
bound and unbound states using different residue descriptors. The accuracies of neural network models fed by data sets with snapshots of 10 ns, 1
ns, 100 ps, and 10 ps intervals are shown in black, red, purple, and green, respectively. The accuracies of the random forest models are shown in
brown. The models trained with and without ligand-binding pocket residues are shown in solid and dashed lines, respectively. Error bars represent
the standard deviation of 10 runs of neural networks and 100 runs of random forest models, respectively.
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efficiency of models trained with GEOM and Cα implies that
incorporating the information about the side chains (GEOM)
slightly improves the prediction accuracy. The nonbonding
interactions generally resulted in poor predictions compared to
other descriptors. However, the electrostatic interactions
distinguished the binding states better than VDW interactions,
implying that the electrostatic interactions are more affected
upon ligand binding. The results showed that the efficiency of
the dynamic properties depends heavily on the time scale of
the dynamics being considered. Slow time scale dynamics
resulted in much better prediction performance than fast time
scale dynamics. It is worth noting that our purpose of using
neural networks is not the prediction itself but to evaluate the
importance of each feature in prediction. Therefore, even bad
predictions have a valuable message. For example, if using a
lower sample size the accuracy of a certain prediction drops
drastically, it may suggest that the feature used for this
prediction is not very informative to prediction binding. In
other words, this feature may not be affected much upon
binding.
To exclude the possibility that the classification capabilities

mostly rely on information from the residues close to the
binding site, rather than allosteric residues in farther distances,
we trained the same neural networks and random forest
models without the data from the pocket residues (Figure 2,

dashed lines). The pocket residues were defined as residues
that are located within a 3 Å distance from the bound peptide
in the crystal structure (PDB code: 1BE9). Such definition
excludes 12 residues (323, 324, 325, 326, 327, 328, 339, 372,
373, 376, 379, 380) from consideration for training the models.
The accuracies of the predictive models of most descriptors did
not drop dramatically when excluding the pocket residues
(Figure 2), suggesting that the ability of the neural networks to
distinguish the bound and unbound states does not mainly
originate from the residues near the binding site. Rather, it
relies on the allosteric residues. However, a higher pocket
residue reliance on model accuracy can be observed when
using the fast time scale dynamics and the projection of the
principal components to train neural networks (Figure 2). The
accuracies of all models that were trained with 10 ps and 1 ns
dynamics data deteriorate significantly when the pocket
residues are ignored. This is reasonable as the bound ligand
is expected to change the fast fluctuations of binding pocket
residues.
To investigate whether shorter simulations provide com-

parable results with the long simulations, we used all snapshots
(saved every 10 ps) of the first 10 ns of bound and unbound
trajectories to train the neural networks. Using these data sets
resulted in prediction accuracies that are even better than using
long trajectories (Figure S1), probably because the less diverse

Figure 3. Schematic representations of how various residues are affected in different ways upon ligand binding of the PDZ3 domain. The crystal
structures of the unbound state (A) and bound state (B−I) are shown. The binding ligand is shown in yellow. The top 15 residues selected by the
random forest models, which were trained with different descriptors, are highlighted in different colors in each of the bound state (B−I). The
descriptors used to identify these residues were marked on the arrow lines using the corresponding color.
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Figure 4. Residue response maps. This map illustrates the per-residue response to the ligand binding. The x-axis is the descriptors, while the y-axis
is the residue number. The color intensity shows the extent of residue response upon ligand binding. The darker red color represents a stronger
response upon binding. (A) Residue response maps calculated from random forest models with ligand-binding pocket residues. (B) Residue
response maps calculated from random forest models without ligand-binding pocket residues. The excluded binding pocket residues are marked in
solid blue. (C) Residue response maps calculated directly from MD trajectories. The color intensity in (C) depicts the absolute differences of the
average property values between bound and unbound states.
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sample size of the shorter simulation increases the accuracies of
the prediction. But the longer simulations provide more
information about the residue responses, as revealed in later
sections.
Allosteric Residues Are Affected in Different Ways

upon Effector Binding. Considering the interdependence
between properties of protein residues and ligand binding
events, residues may change the protein affinity to a ligand and
be affected by the binding ligand at the same time. The
residues with a better ability to “sense” ligand binding have
been considered as potential allosteric residues.12 Various
experimental and computational approaches have been used to
identify such potential allosteric residues in model proteins
such as PDZ3.14−20 However, it is still unclear whether
different allosteric residues sense the ligand binding in the
same way (i.e., being affected through the changes in the same
residue properties) or they respond to perturbations through
changes of different residue properties. On the other hand,
from a more practical viewpoint, it would be beneficial to know
whether the changes in the same or different properties of
these residues result in allosteric effects.
To answer these questions using the PDZ3 domain as a

model protein, we used the random forest models, which is a
well-established method with the inherent capability to
quantitatively rank the contributions of features for prediction
purpose. Here, we ranked the contribution of each residue to
distinguish the bound and unbound snapshots of the MD
trajectories. Figure 3 schematically represents the top 15
residues contributing most to the random forest models using
different descriptors. The results show that the affected
residues have different contributions to model accuracies
when different residue properties are used to train the models,
which essentially indicates that not all protein residues are
affected in the same way.
Residue Response Maps. To quantitatively represent the

per-residue contribution values to the random forest models,
we presented the “residue response maps” showing the per-
residue contribution values as color intensities (Figure 4). The
residue response map quantitatively illustrates the changes of
multiple properties of each residue upon the ligand binding,
providing a novel and effective way to present the per-residue
response to the perturbation. We hypothesize that the binding

pocket residues undergo higher changes of their properties,
hence contribute more to the random forest accuracies and
mask the importance of other residues in allosteric positions in
the response map. Thus, we prepared the maps from weights of
random forest models (raw data presented in Tables S1 and
S2) that were trained both with and without the data from the
binding pocket residues (Figure 4A vs B, respectively). It is
clear that excluding the pocket residues highlights the
importance of some residues (darker red color) that were
not important (lighter color) when pocket residues were
considered.
To better interpret and evaluate the reliability of the maps,

we calculated the uncertainty for each feature (Table 2). These
uncertainties are the average of variation coefficients (standard
deviations divided by averages) of residue importance values in
100 random forest runs. The lower average uncertainty
indicates a more reliable residue descriptor because the
selected set of residues with that descriptor is more consistent
and reproducible during multiple runs. Among different
descriptors, the lowest uncertainties belong to the short time
scale dynamics, followed by the nonbonding interactions,
making the residues suggested by these descriptors the most
reliable ones. These residue properties are more converged in
the simulation time scale than other residue properties,
therefore suggesting more reproducible sets of important
residues. In contrast, residues selected with the projections of
the principal components suffer from dramatic uncertainty,
making us hesitate to rely on the residue sets suggested by
modes trained with these descriptors.
To investigate whether the same residues could be selected

with shorter simulations, we prepared the residue response
maps with the random forest models that are trained with 10
ns chunks of one bound and one unbound trajectory (Figure
S2). Although these models result in almost perfect prediction
accuracies, the uncertainties in the selection of the residues
were much higher for these models comparing to models
trained with longer simulations, and different residues were
selected (Table 2). Therefore, we conclude that the residue
sets suggested by the models trained with longer simulations
are more reliable. The high binding prediction accuracies of
the shorter simulations might be due to the overfitting of the
models to limited sample size. Longer simulations sample the

Table 2. Average Uncertainties of Per-Residue Contribution Values to Random Forest Modelsa

Descriptor
Average uncertainty with
pocket residues (%)

Average uncertainty without
pocket residues (%)

Average uncertainty with pocket
residues with short simulations (%)

Average uncertainty without pocket
residues with short simulations (%)

Cα 21.06 19.36 93.11 81.5
GEOM 20.69 18.62 100.35 80.89
FLUCT 20.87 19.85 289.68 261.08
VDW 6.52 5.82 68.4 60.88
ES 10.96 9.85 110.98 97.22
NONB 11.75 10.68 118.8 106.47
SURF 15.58 14.78 158.32 148.09
DYN-10 ps 3.39 2.54 34.45 29.96
DYN-1 ns 3.96 3.03 54.22 48.69
DYN-25 ns 7.61 6.47 not applicable not applicable
DYN-100 ns 13.54 12.44 not applicable not applicable
PC-1 176.68 169.23 189.27 160.75
PC-2 210.06 202.74 418.32 403.92
PC-3 230.73 217.54 316.75 288.96

aThe average uncertainties are averages of variation coefficients (standard deviation divided by the average over 100 runs) calculated for each
random forest model over 110 residues. Short simulations include only the first 10 ns chunks of one bound and one unbound trajectory.
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conformational spaces more realistically and provide random
forest models with a more diverse set of sample cases, which
might make the predictions more complicated, but the selected
residues more reliable.
Among different residue features, the projections of the

principal components resulted in the selection of residues that
have a poor agreement with both the list of experimentally
known important residues and residues selected with other
models. There are significant uncertainties for PC models in
ranking the residues regarding their importance in ligand
binding (Table 2), although these models result in almost
perfect binding prediction. In other words, models that were
trained with residue principal components data can predict the
binding with any set of residues. This can also be inferred from
the very busy PC columns on the maps that were calculated
directly from the trajectories (Figure 4C).
To validate the random forest results, we prepared the

residue response maps directly from the classical analyses of
MD trajectories. To do this, the absolute difference of the
property values between bound and unbound trajectories were
mapped again with and without considering the pocket
residues (Figure 4C). Comparing the maps from classical
analyses of MD trajectories (Figure 4C) and from random
forest model including the binding pocket residues (Figure
4A), it is clearly demonstrated that (1) most of the random
forest models selected top residues (Figure 4A with darker red
color) are also identified by MD trajectories (Figure 4C with
darker red color), validating the random forest results and (2)
random forest models identified much fewer top residues than
MD analyses. Given that random forest models only consider
top residues contributing to distinguish the bound and
unbound state, the fewer identified top residues of the random
forest model might result from removing noises from the MD
analyses by excluding the property changes not directly related
to binding. The random forest model by its feature selection
nature selects the most important residue responses upon
ligand binding, rather than highlighting all differences between
the bound and unbound trajectories. Therefore, one of the
advantages of the random forest approach is that it highlights
the residue−feature pairs that are related to binding among
many pairs that could be identified with the classical MD
analyses approach. This advantage of random forest models
stands out in PC descriptors (three columns on far right of the
maps), where a small set of pairs are recognized as important
by random forest models (Figure 4A) among many that were
observed to be different by MD analyses (Figure 4C),
demonstrating the capability of random forest models to
exclude false-positive residues identified by MD analyses for
certain properties. Another advantage of the random forest
model is that it could exclude the binding pocket residues and
highlight relevant allosteric residues. For example, residues
Val386 and Glu395 were not picked by MD analyses (Figure
4C) or random forest models including the binding pocket
residues (Figure 4A). However, these two residues stand out in
random forest models excluding the binding pocket residues
with the DYN-25 ns descriptor (Figure 4B). The mutation of
Val386 or GLu395 has been reported to affect ligand binding
experimentally,54,55 demonstrating the capability of the
random forest model to identify false-negative residues from
MD analyses.
Experimentally Known Important Residues Glow in

Residue Response Maps. Interestingly, most of the PDZ3
residues that were highlighted in the residue response maps

have been reported previously as allosteric residues. Reading
the maps (Figure 4) from the N-terminal residues, the initial
three residues are located in a very flexible unstructured region,
and the next region (residues 311−316) is a silence region, in
which the residues are not highlighted in the maps. The
following region includes a flexible loop (residues 317−322).
The positions, nonbonding interactions, middle to long time
scale dynamics, and some modes of motions of residues in this
loop are highlighted in the maps.
The next region in the sequence is a flexible loop consisting

of residues 329−335. Several residues in this loop are
highlighted. These contributions are more significant when
the pocket residues are ignored from random forest
calculations (Figure 4B). Gly329 has high importance in
models using total nonbonding interaction (NONB) and short
time scale dynamics (DYN-10 ps and DYN-1 ns) as predictive
descriptors. This residue has been reported to have the largest
mutational effect17 and relatively high allosteric response ratio
as calculated by Grerek and Ozkan.16 Our finding implies that
the Gly329 probably experiences different dynamics in bound
and unbound states. As this residue is relatively close to the N-
terminal of the binding peptide, it is reasonable to expect that
its short-range nonbonding interactions and low time scale
vibrations are affected by ligand binding.
The negatively charged residues Glu331 and Asp332 are

recognized by models utilizing van der Waals interactions
(VDW) or the longer time scale dynamics (DYN-25 ns and
DYN-100 ns) as the descriptor. It has been reported that
succinimide cyclation of the Asp332 side chain alters peptide
binding in PDZ3.19 Although this residue does not interact
with the binding ligand directly, it was proposed that this
residue affects the local conformation of the loop; thus, the
electrostatic interaction between the neighboring Glu331 and
the ligand is disrupted.19 Our results suggested that Asp332
senses the ligand binding as a change in its short-range
nonbonding interactions and long time scale dynamics. It is
reasonably expected that the change in such properties of this
residue could affect binding as well. It has also been reported
that mutation of Asp332 to proline, which has different
flexibility and nonbonding interaction properties, affects ligand
binding in PDZ3.19

Gly335 has also been shown to be sensitive to its deletion in
the 15N relaxation experiments.14 Our results suggested that
Gly335 is affected by the ligand through nonbonding
interactions (according to VDW, ES, and NONB models).
This fluctuation in nonbonding interactions might be related
to the changes in the short time scale dynamics of Glu395 (a
residue located in an α3 helix close to Gly335 and highlighted
in the map), as it is expected that the fluctuations of the
negatively charged side chain of Glu395 affect its surrounding
environment through nonbonding interactions.
Residues 336−341 form the βG sheet. The long time scale

motions of Ile336 show a significant contribution in
distinguishing the bound state according to the map in Figure
4A and B. It has been reported that this residue is sensitive to
mutation.17 Here, our results showed that the dynamics of
Phe340 at different time scales, especially at 100 ns, are
affected by ligand binding. Phe340 is one of the residues that
gave the highest fluctuation response upon perturbation by the
perturbation scanning response (PRS) analysis.16 Being
highlighted in PRS experiments means that the random forces
put on Phe340 cause a response in all protein residues. Our
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results suggested that limiting the dynamics of this residue
might also have an allosteric effect on ligand binding.
Moving down the sequence on the residue response map,

Val362 is another highlighted residue that is part of the βD
sheet. Val362 has been shown to have a relatively high
response in PRS analysis as one of the highly weighted residues
in the allosteric pathway of PDZ3.16 Our results showed this
residue has a high impact on distinguishing the bound and
unbound protein conformations using fluctuations (FLUCT)
or dynamics at 1 ns time scale (DYN-1 ns) as the descriptor.
Also, its position is important in the prediction of the binding
state, especially when its side chain is taken into account
(GEOM), implying that its side chain is probably more
affected upon ligand binding than its backbone. Another
residue in this region is Val386 for which the dynamics at 25 ns
time scale (Dyn-25 ns) are important according to our results.
There are also other hydrophobic residues that directly or
indirectly interact with valine residues (Figure 5C), which are
highlighted in the residue response maps. These residues seem

to make a network of hydrophobic interactions, and their
different time scales are affected upon binding (Figure 5C).
The other region in the structure that has been reported as

allosterically important in binding14 is the α3 helix that
includes residues 394−399. Our results showed that the
dynamics of Glu395 at the 1 ns time scale is affected by
binding. The residue close to Glu395 in space is Gly335. These
residues interact with each other through nonbonding
interactions. As noted before, Gly335 has been shown to be
sensitive to its deletion in the 15N relaxation experiments,14

and its nonbonding descriptors are highlighted in the residue
response map. This fluctuation in nonbonding interactions
might be related to the changes in the short time scale
dynamics of Glu395, as the fluctuations of the negatively
charged side chain of Glu395 may affect its surrounding
environment through nonbonding interactions. In the crystal
structure,21 Gly335 is close to Gly329 in space, which is in turn
close to the ligand as mentioned above. This implies that the
ligand affects short time scale vibrations and nonbonding

Figure 5. Structural information on the top selected residues by the random forest model. (A) Ribbon representation of the crystal structure of the
PDZ3 protein (PDB code: 1BE9) highlighting some important residues recognized by random forest models. Residues in gold are considered as
binding pocket residues and were not fed into the random forest models. (B) Residues 317−322 in the ligand-bound crystal structure (cyan) and
unbound crystal structure (pink) of PDZ3, as the backbones of complete structures, are superimposed. Hydrogen atoms are not shown. (C)
Localization of a network of hydrophobic residues of PDZ3 and the C-terminal of the peptide ligand. The green dashed line represents the key salt
bridge between the peptide ligand and the backbone of Leu323.
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interactions of Gly329, which affects Gly335 and the α3
residues sequentially through nonbonding interactions. This
nonbonding effect on the α3 helix has not been recognized in
our models, although some residues in the helix show response
to binding as perturbations in their longer time scale dynamics.
An interesting qualitative comparison of the predictions

suggested by the residue response maps come from comparing
these maps with the similarly presented high-throughput
mutation sensitivity maps by McLaughlin et al.17 Of course,
a one-by-one agreement should not be expected between two
maps at residue levels as they convey two messages that are
different although related. McLaughlin et al. have mapped the
cost of mutation of each residue on the protein to other amino
acids (Figure 2b in McLaughlin et al.17). Two major sensitive
regions that are highlighted in their work, are highlighted in
our maps as well.
Validation of Residue Response Maps. To further

validate our random forest results, we used the top 10 residues
recognized by random forest models to retrain neural networks
and compared them with the networks that used all nonpocket
residues. As a control, we also trained the same networks with
10 randomly selected residues that did not contain any of the
top 10 residues nor any of the residues in the binding site. The
results show that the top 10 residues in each model predict the
binding state significantly better than the 10 randomly selected
residues, validating the significance of the top 10 residues in
their contribution to the model accuracy. However, for many
attributes, using the whole data set results in significantly better
predictions than using only the top 10 residues (Figure S3),
suggesting that more than 10 residues contribute significantly
to the model accuracy. In other words, the top 20 or 30
residues may also be important for the model prediction
capability.
Principal components, on the other hand, can result in the

perfect prediction of binding status by using all residues as well
as the top 10 residues and even randomly selected residues.
Besides the high average uncertainties associated with these
descriptors (Table 2) and very busy residue response maps
calculated directly from the trajectories (Figure 4C), this
insensitivity of the neural network accuracies to residues
suggested that principal components may be a good descriptor
to distinguish bound and unbound states, but the contribution
differences among residues may not be significant.
We performed a quantitative and direct comparison between

the random forest feature weights and the experimental results
to check whether these weights add more insight into the MD
simulations compared to the traditional MD analysis methods.
To do this, we calculated the 10 ps and 1 ns dynamics values of
methyl groups whose NMR order parameters have been
reported by Lee.56 We trained two random forest models that
use these two data sets to determine the ligand binding states
of MD snapshots. The random forest models could predict the
binding states with accuracies of 58% and 61% with 10 ps and
1 ns dynamics data, respectively, suggesting that our machine
learning model could reach reasonable accuracies based on the
dynamics of key methyl groups. The relative low accuracies of
these two models are expected, as the dynamics of methyl
groups alone should not represent all the protein dynamics
changes upon ligand binding. The average uncertainties for the
suggested feature weights are 1.23% and 1.63% for prediction
models using 10 ps and 1 ns dynamics data, respectively,
suggesting the high fidelity of our machine learning model.
These suggested weights from both models (Table S3)

correlated with the experimental order parameters with a
0.40 coefficient. As a benchmark for the machine learning
models, we calculated the difference between the root-mean-
square fluctuations (RMSF) of the methyl groups in bound
and unbound trajectories as a traditional method for
representing the experimental order parameters (Table S3).
The calculated RMSF values correlated with the experimental
order parameters with a much lower coefficient of 0.12
compared to the random forest feature weights as 0.40. This
benchmark demonstrates that the random forest feature
weights, which are represented in this work as residue response
maps, can improve our insight into the MD trajectories.
We further performed elastic network modeling (ENM) to

verify whether the residues that are predicted to have slow
dynamics based on the slow modes qualitatively agree with the
residues that are highlighted in our DYN-100 ns residue
response map. The average 10 slow modes from ENM are
presented in the same way as random forest weights are
presented in residue response maps (Figure S2C). A qualitative
comparison between the two sets shows that residues 306−
309, 320, 321, 331, and 332 and most residues in the 406−415
region are highlighted in both maps. However, some
experimentally significant residues that are highlighted by
random forest model are not identified by ENM. There are
also some residues highlighted in ENM but missing in DYN-
100 ns analysis. This is reasonable as the slow modes in ENM
do not represent exact time scales and can point to time scales
longer than 100 ns. For example, it is reasonable to consider
the whole C-terminal region of the protein between residues
395 and 415 fluctuating at low frequency (probably in
microsecond time scales) as the ENM modes suggest.

■ DISCUSSION AND CONCLUSION
It is well known and well described that protein residues
located far from a binding site are affected upon ligand binding,
and changes in the conformation of these residues upon
binding to allosteric ligands can potentially regulate binding
affinity of the protein with its major ligands. To gain more
insight into these distal allosteric residues, it is important to
know whether allosteric residues communicate with the
binding site in similar or different ways. For any given
allosteric protein, if all allosteric residues communicate with
the binding site through the same main interactions (residue
attributes in this study), such as the electrostatic interactions,57

one just needs to focus on this main interaction and the
location of allosteric residues when designing allosteric ligand.
On the other hand, if all allosteric residues communicate with
the binding site through different interactions, one should
expect more complex behaviors in allosteric sites and will need
to take more rational and systematic strategies in designing
allosteric ligands because different properties of different
allosteric sites might be needed to induce desired changes to
regulate the protein binding to its ligand. Upon ligand binding,
the internal energies of the protein redistribute58 to respond to
this binding perturbation, and this energetic redistribution may
affect multiple properties for each residue. Therefore, we aimed
to use hybrid models that benefit from the advantages of both
MD and machine learning methods to reveal how different
properties of each residue respond to ligand binding in the
PDZ3 domain of PSD-95.
The neural networks trained with different properties of MD

snapshots of ligand-bound and unbound states trajectories
show that different properties have different potencies for
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distinguishing the bound and unbound states snapshots.
Among tested properties, position, fluctuations and long time
scale dynamics of residues are more efficient in distinguishing
the binding status in PDZ3. Having various potencies in
predicting the binding state of PDZ3 shows that various
residue properties are affected to different extents upon ligand
binding. Therefore, we can describe different properties of
residues as different layers of information about the protein
when it is bound to a ligand. Each of these layers has a unique
contribution to predicting the binding status of the protein.
The information hidden in position, surface area, and
nonbonding interactions layers might be inherited from the
subtle differences in the initial structures because the
simulations were initiated from the bound and unbound
crystal structures independently. But the dynamics and
fluctuation layers of information extracted from the molecular
dynamics simulations are more representative of the differ-
ences induced by ligand binding during the simulations.
Neural networks and other modern deep learning models

are very powerful predictive models that could be used for
recognizing patterns and predicting states. However, the
connections between their nodes and layers are mostly unclear.
Specifically, the internal weights in these deep learning models
cannot be easily used to select top features contributing to the
prediction. Conversely the random forest model is a well-
known feature selection model, using weighting methods for
their predictions that can directly rank the features based on
their importance. Therefore, we used this advantage of the
random forest model to rank the contributing residues and
used deep neural networks to validate our predictions. Using
the random forest predictive models, we represented residue-
specific allostery using residue response maps. Based on these
maps, we demonstrate that all residues can be considered
allosteric, and each of them “senses” the bound ligand in a
unique way. Some residues are affected in many different ways,
while others are affected in a certain way. Some residues
change in their nonbonding interactions; some change in their
dynamics properties. More residues are affected in a
combination of these properties. Also, some residues are
affected significantly and are likely the residues being identified
as allosteric residues in experimental studies, while other
residues are affected only slightly. This can be considered as
analogous to social stress that results in different behavioral
and emotional reactions in individuals living in society. As
occurs in social stress, some reactions to the stress of ligand
binding in a protein are more common and descriptive of the
event, while some are less common. Among the common
responses to the binding event in PDZ3 are the perturbation of
residues’ fluctuations and long time scale dynamics, and among
the less common responses is the change in short time scale
dynamics, which is more likely to be experienced by residues
close to the binding site.
Although using different residue features gives us a more

comprehensive perspective of the binding event, it should be
noted that each of these different features has its pros and cons,
thus should be considered with a weight. Some of these pros
and cons can be inferred from the feature definitions. For
example, positional features (Cα and GEOM) might have
noises that are results of the translational degrees of freedom of
the whole protein. In other words, the geometric center of the
protein, which is the reference point for calculating these
properties, may move upon binding, resulting in the noise in
the values or washing out some important positional data. Also,

the consistency of feature selection by the random forest
models and certainty of feature weights can help us as an
axillary tool to interpret the residue response maps. We
reported these uncertainties as the mean variation coefficient of
the importance values suggested by the random forest models
in Table 2. The models with the least uncertainty are the most
reliable models, and the residues selected by them should be
considered the most meaningful. These include the non-
bonding interactions and dynamics. On the other hand, the
principal component models have the maximum uncertainties,
and the residues suggested by them have the least agreement
with the experiments. Initially, one would expect that the DYN
and PC would convey similar meanings about the dynamics of
the residues. However, our analyses here show that for training
the machine learning models, PC descriptors result in high
uncertainty. Considering such uncertainty issue, and also the
easier physical interpretation of DYN descriptors, we believe
that DYN descriptors are better descriptors for generating
residue response maps.
The remaining question would be why are different

responses observed among protein residues upon ligand
binding to the protein? A hypothetical answer would interpret
unique residue responses based on the unique position in the
sequence, space, and chemical properties of the residue.
Residues closer to the binding site are more likely to be
affected by short-range nonbonding interactions directly from
the ligand. The cascade of perturbation in such short-range
interactions might fade with increasing distance from the
binding site. But polar and charged residues at far distances
from the binding site can be directly affected by the ligand
through the electrostatic forces initiated by polar and charged
moieties of the ligand. This would result in consequent
perturbation in the position and dynamics of these ligands,
which can start their own cascade of perturbations in their
neighboring residues in time and space. If future experiments
support this view about the allosteric effects in proteins, one
might expect that in addition to their sequence and
conformation proteins can potentially be described with
“residue response maps” such as the one seen in Figure 4A,
which represent the extent of specific changes in residue
attributes. Supposing that every ligand is unique in its chemical
properties, this description of proteins would also be ligand
specific, and residue response maps can also be considered as
fingerprints that uniquely describe a protein when it interacts
with a specific ligand. We expect that residue response maps
could give researchers useful guidance when they design drugs
that target allosteric binding sites. These maps may provide
useful information about the properties of allosteric binding
sites. Furthermore, there can be some mechanistic speculations
from the residue response maps. The top residues in Cα and
GEOM models might be considered as residues involved in
allosteric mechanisms based on the structural changes, while
top residues in DYN models might be considered as residues
involved in dynamics-driven allosteric mechanisms (Table S4).
However, more evidence for these mechanistic speculations
should be obtained from other experimental and computa-
tional approaches that focus on studying allosteric mecha-
nisms.
In this work, we chose a well-studied allosteric ligand−

protein system to test our hypothesis and evaluate the
feasibility of our novel approach in analyzing protein residue
characteristics related to an allosteric perturbation, which is the
ligand binding in this case. There are some limitations in our
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approach. We only tested one model protein in this study,
which raises the question of whether this approach could be
applied to other or larger proteins. We are in the process of
testing larger proteins such as GPCR proteins and the
CRISPR/Cas9 complex using this approach and will report
our findings in separate publications.
Another limitation is the descriptor selection. In this work,

we tried to choose a set of residue-specific parameters that
could simply and efficiently describe the structure and
dynamics of each residue per simulation frame. The more
sophisticated or descriptive parameters can be used in future
works to include residue−residue interactions and generate
more comprehensive residue response maps. Here, we only
tested very limited descriptors and demonstrated which
descriptors could be more reliable to predict allosteric residues
for one model protein. Whether these descriptors could be
applied to other proteins remains unclear. Our exploration of
descriptors is far from comprehensive, and it would be
interesting for future studies to test more descriptors in other
protein systems. In this work, we mainly focused on the
response of individual residues. It is worthwhile for future
studies to generate more comprehensive residue response
maps to include the response of functionally important regions.
A third limitation lies in the machine learning algorithms

that we used. The random forest model has been known to be
a good algorithm for feature selections. However, testing other
machine learning algorithms, such as information gain and
decision tree, may provide more insights into the performance
of machine learning algorithms on allostery studies. Another
potential limitation of this method is that the reliability of
machine learning outcomes depends on the convergence level
of the MD simulations. This is similar to any other judgments
done based on the MD simulations that the more converged
the simulations are the more reliable the outcome will be. The
protein system that we tested here is a relatively small one
(110 residues), so we can expect relatively good sampling
within 1 μs of simulation time (Figure S4). However, for larger
systems, longer MD simulations should be performed.
Despite the above limitations, the results obtained in this

study showed that combining machine learning models with
atomistic descriptive models is a promising approach in
computational structural biology and could give us new insight
into the hidden structure−activity relationships in biological
macromolecules. Such combinatorial approaches inherit the
benefits of each developing component and are anticipated to
lead to new important applications for these models. In this
work, we demonstrated the usages of these approaches to (1)
introduce a novel method for analysis of MD simulations to
characterize the responses of each residue upon perturbation
and (2) to introduce the residue response maps which can
redefine allostery as a residue−property specific phenomenon.
Such combinatorial approaches can be used in the future to
analyze the effects of ligand binding, mutation and post-
translational modifications in macromolecules.
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