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Deciphering the protein motion of S1 subunit in SARS-CoV-2 spike
glycoprotein through integrated computational methods

Hao Tian and Peng Tao

Department of Chemistry, Center for Research Computing, Center for Drug Discovery, Design, and Delivery (CD4), Southern Methodist
University, Dallas, TX, USA

Communicated by Ramaswamy H. Sarma

ABSTRACT
The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major worldwide public
health emergency that has infected over 8 million people. Spike glycoprotein, especially the partially
open state of S1 subunit, in SARS-CoV-2 is considered vital for its infection with human host cell.
However, the mechanism elucidating the transition from the closed state to the partially open state
still remains unclear. In this study, we applied a series of computational methods, including Markov
state model, transition path theory and random forest to analyze the S1 motion. Our results showed a
promising complete conformational movement of the receptor-binding domain, from buried, partially
open, to detached states. We also estimated the transition probability among these states. Based on
the asymmetry in both the dynamics behavior and the accumulated alpha carbon (Ca) importance, we
further suggested a relation among chains in the trimer spike protein, which leads to a deeper under-
standing on protein motions of the S1 subunit.

Abbreviations: Ca: alpha carbon; MSM: Markov state model; NTD: N-terminal domain; PCCA: Perron-
cluster cluster analysis; PHEIC: Public Health Emergency of International Concern; RBD: receptor-bind-
ing domain; RMSD: root-mean-square deviation; RMSF: root-mean-square fluctuation; SARS-CoV-2:
Severe Acute Respiratory Syndrome Coronavirus 2; SD: subdomain; S protein: spike protein; TPT:
Transition path theory; WHO: World Heath Organization
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Introduction

As of June 18 2020, there has been over 8 million confirmed
cases and over 440,000 cases of death of the newly discovered
coronavirus, named as SARS-CoV-2, according to the World
Health Organization (WHO). The number of confirmed cases is
still growing with the speed of over a hundred thousand per
day. SARS-CoV-2 is related to bats-derived coronaviruses and
the SARS-CoV reported in the Guangdong province of China in
2002, and identified as a new member of betacoronavirus (Lu
et al., 2020; Wu et al., 2020). Due to its fast spread through
human contacts, the WHO declared it as a Public Health
Emergency of International Concern (PHEIC).

SARS-CoV-2 is known to infect human through the inter-
action between its spike (S) protein and human host recep-
tors (Cavanagh, 1995; Lu et al., 2015; Wang et al., 2016). The
S protein is a trimer (chain A, B and C) and each chain is
formed by S1 and S2 subunits that are related with host
receptors binding and membranes fusion, respectively (Li,
2015, 2016; Walls et al., 2020). The S1 subunit consists of an
N-terminal domain (NTD), receptor-binding domain (RBD)
and two subdomains (SD1 and SD2) (Wrapp et al., 2020). It is
reported that RBD undergoes a conformational change from

stable closed state to dynamically-less-favorable partially
open state in chain A (Bosch et al., 2003; Li, 2016). In the
closed state, the determinants of receptor binding are buried
and inaccessible to receptors. But in the partially open state,
they are exposed and expected to be necessary for the inter-
action with host cells (Gui et al., 2017; Pallesen et al., 2017).
In the cases of SARS-CoV-2 and SARS-CoV, S glycoprotein is
found to inherently sample the closed and open states. This
behavior is suggested to exist in the most pathogenic coro-
naviruses (Shang et al., 2018; Walls et al., 2020). While the
partially open state plays an important role in human cell
infection, little study is done to illustrate this protein motion
at residue level.

Molecular dynamics (MD) simulations can provide atomic
scale information and are widely used in sampling protein
movement and structure landscape (Prinz et al., 2011). Two
kinds of trajectories of SARS-CoV-2 S protein initiating from
the closed state (PDB ID 6VXX) and partially open state (PDB
ID 6VYB) are available from D E Shaw Research (D. E. Shaw
Research, 2020). However, the timescale (10 microseconds) is
still relatively trivial compared with the timescale of bio-
logical processes in the real world. To gain more information
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from the result of MD simulation, Markov state model (MSM)
is applied to obtain long-time kinetic information given time-
limited simulation trajectories (Adelman et al., 2016; Su�arez
et al., 2016). One advantage of MSM is that it can divide a
large number of protein structures from simulation into sub-
spaces based on the extracted kinetic information. The differ-
ences among those spaces can be calculated and used
for comparison.

Machine learning techniques have achieved great accom-
plishments in chemistry and biology including material dis-
covery (Raccuglia et al., 2016), structure representation
(Faber et al., 2015) and computation acceleration (Botu &
Ramprasad, 2015). The great contributions from machine
learning mainly come from its ability to deal with large scale
data and its accurate and explainable models (Jing et al.,
2018; Kotsiantis et al., 2007), which provide an opportunity
to decipher protein dynamics. In this study, tree-based
machine learning models were used to identify important
residues. Specifically, random forest model was applied as a
classification model to classify different structures and calcu-
late the contribution of each residue and structure import-
ance for the closed-open transition process.

The transition from the closed state to the partially open
state of S1 subunits of SARS-CoV-2 S protein is investigated
in this research through Markov state model, transition path
theory and random forest. Our analyses provided the closed-
open transition probability, showed a complete transition
path from the closed to the open state, and identified a rela-
tionship between the motion of chain A and two
other chains.

Methods

Analysis of simulation trajectories

The root-mean-square deviation (RMSD) is used to measure the
overall conformational change of each frame with regard to a
reference structure in a MD simulation trajectory. For a molecu-
lar structure represented by Cartesian coordinate vector ri
(i ¼ 1 to N) of N atoms, the RMSD is calculated as following:

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1ðr0i �UriÞ2
N

s
(1)

where r0i represents the Cartesian coordinate vector of the ith

atom in the reference structure. The transformation matrix U
is defined as the best fit alignment between the protein
structures along trajectories with respect to the refer-
ence structure.

The root-mean-square fluctuation (RMSF) is used to meas-
ure the fluctuation of each atom in each frame with regard
to a reference structure in a MD simulation trajectory.

RMSFi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

XT
j¼1

ðvji�viÞ2
vuut (2)

where T is the total frames and ri is the average position of
atom i in the given trajectory.

Feature processing

Distances between pairs of backbone Ca were chosen as fea-
tures to represent the protein configuration. The distances
between each Ca and all other Cas were calculated. A pro-
tein contact map is formed by combining the pairwised Ca
distances. Each element in the contact map is normally trans-
formed into 1 if that value is below a threshold or 0 other-
wise (Doerr et al., 2017). However, this feature preprocessing
technique risks to ignore potentially useful spacial informa-
tion forcing a boolean value on the features. Therefore,
inspired by ReLU activation function (Nair & Hinton, 2010) in
neural network, whose equation is shown below, we pro-
posed a revised feature transformation method by transform-
ing each feature value into 0 if that feature is above a
threshold and keep it the same value otherwise. Compared
with reference feature transformation rule, our proposed
technique can still build a protein contact map while can dif-
ferentiate local features with the least local information loss.

fðzÞ ¼ maxð0, zÞ (3)

Random forest model

Random forest is a machine learning technique that can be
used for classification (Liaw & Wiener, 2002; Wang, Shen, et al.,
2019). A random forest is composed of several decision trees
(Utgoff, 1989), which are trained based on given training data.
The final classification output of a random forest model is a
collection of classes predicted by each decision tree model.
The random forest algorithm carried out in this study is imple-
mented in scikit-learn (Pedregosa et al., 2011) program package
version 0.20.1. The number of decision trees used was 50. One
advantage of random forest model over decision tree model is
that employing multiple decision tree models mitigates the
overfitting problem suffered by single decision tree model.

Feature importance

In a random forest model, a quantitative evaluation of the
importance for each feature used for training is calculated
through training process. This feature importance is calcu-
lated using Gini impurity:

Gini impurity ¼
XC
i¼1

�fið1�fiÞ (4)

where fi is the frequency of a label at a node of being picked
to split the data set and C is the total number of unique
labels. A random forest model is a collection of several deci-
sion tree models. The importance of node i in decision tree
is calculated as:

ni ¼ wiCi �
Xm
1

wmðiÞCmðiÞ (5)

where wi is the weighted number of samples reading node i,
Ci is the impurity value of node i and m is the number of
child nodes. The feature importance of feature i is calculated
as
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fi ¼
Ps
1
njP

k2all nodes nk
(6)

where s is the number of times of node j split on feature i.
Feature importance within a decision tree is further normal-
ized by:

norm fi ¼ fiP
j2all features fj

(7)

The feature importance in random forest is the averaged
importance of feature i in all decision tree models:

Fi ¼
P

j2all decision trees norm fj
N

(8)

where norm fi is the normalized feature importance of one
single decision tree and N is the number of decision trees
(Breiman, 2001).

Feature importance of all pairwise Ca distances were cal-
culated using the above methods. The feature importance of
an amino acid is the summation of importance of features
that are related with that amino acid. The relative accumu-
lated feature importance of each amino acid shows the dis-
tinguishability and contribution of that amino acid among all
amino acids in differentiating states.

Markov state model

Markov state model (MSM) is used to construct long-time-
scale dynamics behavior (Wang, Zhou, et al., 2019).
MiniBatch k-means clustering was used to classify each simu-
lation frame to microstates. Macrostates were clustered
based on the Perron-cluster cluster analysis (PCCA)
(Deuflhard & Weber, 2005). Macrostates are considered as
equilibrium or steady states. Transition matrix and transition
probability were calculated to quantitatively show the transi-
tion dynamics among macrostates. A specific time interval,
referred to as lag time, needs to be determined to construct
transition matrix. The value of the lag time, as well as the
number of macrostates, is selected based on the result of
estimated relaxation timescale (Bowman et al., 2009).
MSMBuilder (Harrigan et al., 2017) version 3.8.0 was
employed to build Markov state models in this study.

Transition path theory

Transition path theory (TPT) (Metzner et al., 2009; No�e et al.,
2009) is used to calculate the probability of transitioning
from one state to another within the framework of a MSM.
In the current study, macrostates 2 and 8 were chosen as
closed and open states, respectively. All other states are
treated as intermediate states. Possible transition pathways
from the closed to the open state were explored. The com-
mittor probability qþi is defined as the probability from state
i to reach the target state rather than initial state. Based on
definition, qþi ¼ 0 for all microstates in initial state and qþi ¼
1 for all microstates in target state. The committor probabil-
ity for all other microstates are calculated by the following
equation:

�qþi þ
X
k2I

Tikq
þ
k ¼ �

X
k2target state

Tik (9)

where Tik is the transition probability from state i to state k.
Sequentially, the effective flux is calculated as:

fij ¼ piq
�
i Tijq

þ
j (10)

where pi is the equilibrium probability of state i in the nor-
malized transition matrix T , and q�i is the backward-commit-
tor probability calculated as q�i ¼ 1�qþi : However, backward
flux fji should also be considered and subtracted when calcu-
lating net flux. Therefore, the net flux fþij ¼ maxð0, fij�fjiÞ:
Total flux can then be calculated as:

F ¼
X

i2 initial state

X
j =2 initial state

piTijq
þ
j (11)

The flux from initial state to target state can be decomposed
to individual pathways pi. Dijkstra algorithm is implemented
in MSMBuilder for pathway decomposition. A set of path-
ways pi can be generated along fi, which provides a relative
probability by:

pi ¼ fiP
j fj

(12)

Results

Simulation trajectory analysis shows dynamical activity

Two 10 microseconds simulation trajectories of the trimeric
SARS-CoV-2 S glycoprotein were treated as reference and
backbone Ca of the trimer were chosen and extracted as
representative features of structures.

To probe the dynamical stability of two structures, the time
evolution of the RMSD were plotted in Figure 1(A). All RMSD
values were calculated with reference to the first frame of each
trajectory. The average RMSD values in two states are 5:9Å and
10:6Å, respectively. The plot suggested that the closed state is
relatively stable while the partially open state is dynamically
active and undergoes significant conformational changes after
1 microsecond. However, the simulation of open state after 6
microseconds suggested a convergence in the RMSD value
and a relatively stable structure, which corresponds to the
detached S1 subunit from S2 fusion machinery.

RMSF results were plotted in Figure 1(B). The asymmetry
in protein motion was noticed by comparing the individual
dynamics behavior among three chains. Corresponding to
the RMSD results in chain A, the RMSF results showed a simi-
lar high-degree conformational change in the RBD domain.
However, the detachment in chain A, chain B, and C showed
different movements that both NTD and RBD in chain B are
more dynamically active than those in chain C, while in
closed state the chains B and C displayed similar dynamics.

Markov state model and transition path theory
elucidates the closed-open transition

Simulation trajectories were projected onto a two-dimensional
(2D) plot in RMSD of Ca atoms with reference to the closed and
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open state structures, respectively (Figure 2(A)). To apply MSM
analysis, MiniBatch k-means clustering was applied to divide
the simulation sampling space into 300 microstates based on
the reduced-dimension plot, shown in Figure S1. The estimated
relaxation timescale was plotted in Figure 2(B). The trend of
implied relaxation timescale showed that the estimated time-
scale was converged after 15 ns, which was chosen as the lag
time for MSM.

The number of macrostates were determined based on
the band gap in estimated relaxation timescale plot. Total of
8 macrostates were chosen to divide simulations into kinetic-
ally separate macrospaces. PCCA was applied to map micro-
states onto macrostates based on the eigenfunction
structure of transition probability matrix. The resulting mac-
rostates with transition probability are shown in Figure 3(A).
Closed state and open state were equally divided into 4

macrostates, as states 2, 3, 4, 7 belonging to the closed state
and states 1, 5, 6, 8 belonging to the open state. The closed
state is stable with 95.5% probability to stay within closed
macrostates. Macrostate 2 was found important due to its
high probability of 9.9% to transfer from itself to open mac-
rostates. The average transition probability from closed mac-
rostates to open macrostates is 4.5%.

Macrostate 2 was selected as the representative closed
states based on the similarity with its corresponding crystal
structure. However, it is not reasonable to apply this rule
when choosing the representative macrostate of open states
since the open states undergo a dramatic conformational
change. Instead, it should be chosen based on the transition
probability. There is a probability of 97.9% in macrostate 8
to stay within itself and therefore was selected. Transition
path theory was applied to calculate possible transition

Figure 1. Simulations of SARS-CoV-2 S glycoprotein. (A) RMSDs of the trajectories in the closed (red) and open (blue) states. (B) RMSFs of simulation trajectories in
the closed (red) and open (blue) states. The protein is divided into three chains separated by grey dashed lines. Atom number was counted from 0.

Figure 2. Distribution of SARS-CoV-2 S glycoprotein simulations. (A) 2D protein conformation space using RMSD values with references both closed and partially
open states. (B) Implied relaxation timescale of top 20 variables based on the data coordinates in the reduced map regarding with the different lag times
as interval.
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pathways connecting these two states. Total of 2,317 path-
ways were generated and divided as 51 distinct channels
floating from state 2 to state 8. The probability of each chan-
nel was calculated based on net flux from initial state to the
target state. Overall, the probability of top 5 channels was
listed in the Table 1, with the contribution from the top 10
channels accounting for 88.7% of total population. The most
probable path was state 2 ! state 3 ! state 5 ! state 6 !
state 8, and the corresponding representative structures
were plotted in Figure 3(B) to show a series of transi-
tion processes.

Random forest identifies important residues
and structures

To better understand the shift between closed and open
states in S1 subunit, the pairwised Ca distances of S1 were
extracted as features representing the character of protein
configurations. There are 540 residues on each chain, residue
ID from 27 to 676, and total of 1, 620 � 1, 619=2 ¼ 1, 311, 390
Ca distances were collected as features. Before further ana-
lysis, features were transformed into contact map with our
proposed feature transformation technique described in the
Methods section. Considering the non-bonded chemical
interactions length, we pick 10:0Å as threshold for feature
transformation.

Supervised machine learning model was applied to extract
the key residues that are vital during allosteric process and

study the structural differences among macrostates. For each
simulation trajectory, frames were saved for every 1.2 nano-
seconds (ns), resulting in 8,334 frames. Therefore, 16,668 sam-
ples with 1,311,390 features were extracted from the
trajectories. Each sample was labeled based on the above
macrostate result. Full dataset was further split into training
set (70%) and testing set (30%). After the preparation of data,
random forest model was applied to distinguish the intrinsic
conformational differences among macrostates. Training
scores and testing scores were plotted in Figure 4(A). 7 was
chosen for the depth with corresponding testing accuracy of
92.18%, which indicated that the random forest model was
able to catch the conformational characteristics of each mac-
rostate only using pair-wised Ca distances. To further investi-
gate the relationship between chain A and two other chains,
the original Ca distances related with chain A were excluded
and applied to another random forest model. Training and
testing results are shown in Figure 4(B). The top 500 features
accounted for 74.8% percent of the overall feature import-
ance, shown in Figure S2. The testing accuracy with reduced
features reached 88.04% at depth 8.

The top five important Ca distances were listed in Table
2. In order to identify key residues along the transition from
the closed to the partially open state, the feature importance
of each Ca distance was added and accumulated to the two
related residues. S1 subunit structure was plotted in Figure
5(A) as reference. Top 20 important residues on chain B and
C, with corresponding structure and accumulated structure
importance under each figure, were plotted in Figure 5(B, C).
Full results of residue importance on chain B and C are
shown in Figure S3.

Discussion

The significance of the partially open state of receptor-bind-
ing domain in SARS-CoV-2 for interacting with the host cell

Figure 3. Markov state model based on the simulation. (A) Macrostates and estimated transition probabilities among them. (B) Representative structures of macro-
state 2 (blue), 3 (red), 5 (green), 6 (orange) and 8 (yellow).

Table 1. The probability of top 5 channels.

Channels Probability

2,3,5,6,8 23.7%
2,3,4,7,5,6,8 15.8%
2,5,6,8 11.0%
2,3,7,5,6,8 9.6%
2,3,4,7,8 8.0%
Top 10 channels 88.7%
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receptor has been extensively studied (Walls et al., 2019;
Yuan et al., 2017). Specifically, the opening of S1 subunit,
thus exposing RBD, is necessary for engaging with ACE2 and
following cleavage of S02 site (Kirchdoerfer et al., 2018). While
the RBD exhibits inherently flexibility enabling itself recog-
nized by the receptor (Kirchdoerfer et al., 2016), the motion
of this closed to open state shift still needs in-depth study.

It is reported that the SARS-CoV-2 S trimer shows a C3
symmetry at closed state and asymmetry with chain A at
open state (Wrapp et al., 2020). Through the RMSF result, we
noticed the asymmetry in dynamics at both closed and open
states. The S1 subunit in chain B and the S2 subunit in chain
C are more dynamically active than their corresponding
structures in the closed state. The S1 domain in chain B is
also more flexible than that in chain C in the open state.
Above results implies the asymmetrical biological functions
among the three chains.

Two random forest models were applied with different
input features. The first model reached high accuracy in pre-
dicting macrostates based on all pair-wised Ca distances on
S1 subunit. The second model with reduced features that
does not include the motion of chain A also had comparable
prediction accuracy. This indicates that chain B and C contain
information of the closed-open transition in chain A.
Combined with the finding of asymmetric dynamics in RMSF
result, we hypothesized that there is a correlation between
the chain A and two other chains. The correlation among
chains may come from the chain B and C’s contribution to
the protein motion in chain A. This could also originate from

the protein-protein interaction along the opening movement
of chain A. Further investigation of this mutual influence is
warranted for a detailed clarification. Moreover, in order to
understand the important structures on the tertiary level, the
importance of Ca distances was accumulated to residues on
S1 domain structure and we numerically identified key struc-
tures as RBD in chain B, NTD in chain C, RBD in chain B and
NTD in chain B in descending order.

The result of Markov state model showed a great differ-
ence in the probability of macrostates to transition within
themselves with macrostate 2 (closed state) of 78.0% and
macrostate 1 (open state) of 54.0%. This result implies that
S1 subunit is more likely to stay in closed state, which agrees
with the experimental finding that the closed state is more
dynamically stable than the partially open state (Wrapp
et al., 2020). Moreover, a possible dynamically stable state
followed by the partially open state of the RBD was found
and could be important in the closed-open transition.
Specifically, macrostate 8 (open state) exhibited a high prob-
ability (97.9%) to stay within itself, where the RBD is
detached from the S2 fusion machinery. Transition path the-
ory further provided potential channels from macrostate 2 to
8 with the most probable channel (2-3-5-6-8) of 23.7% prob-
ability. This channel is considered important in representing
the transient shifting and can be treated as the typical pro-
tein movement.

Conclusion

The spike protein is essential for SARS-CoV-2 as it destabilizes
the trimer structure, causing the detachment of S1 subunit
and exposing the RBD domain to host cell membrane. In this
study, we used publicly available simulation trajectories of
spike protein and studied the asymmetric dynamics nature
of the trimer structure. Markov state model was applied to
divide the conformational space into 8 macrostates. The

Figure 4. Random forest classification model using pair-wised Ca distances in S1 subunit. (A) Classification accuracy using different depths of trees. Depth 7
(shown in grey dashed line) was chosen with 92.18% accuracy. (B) Classification accuracy regarding different depths of trees using pair-wised Ca distances within
chain B and C. Depth 8 (shown in grey dashed line) was chosen with 88.04% accuracy.

Table 2. Top 5 Ca distances.

Ca distances Importance

Chain C Phe 342, Chain C Asp 442 0.86%
Chain C Ala 419, Chain C Tyr 423 0.83%
Chain B Thr 323, Chain B Thr 333 0.76%
Chain C Cys 136, Chain C Gly 142 0.71%
Chain B Leu 390, Chain B Gly 545 0.60%
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representative structures of each macrostate in the most
probable channel are shown to present a clear route from
the closed state to the partially open state. Transition matrix
was calculated to determine the probability of the 8 macro-
states with maximum of the summed probability of 9.9%
from the macrostate 2 (closed state) to open macrostates. In
order to represent the protein motions, the pairwised Ca dis-
tances from the amino acid residues located on the S1 sub-
unit were extracted from each frame of simulations. Random
forest models were applied to identify the key residues for
the structural changes between macrostates based on these
Ca distances. The little difference between prediction accur-
acy results from two random forest models, where one
includes the movement of chain A and the other does not,
implied a correlation between chain A and two other chains.
Yet, whether this correlation originates from the mutual
influence among chains or the intrinsic asymmetry in bio-
logical functions needs further investigation. Overall, our
study quantitatively analyzed the S1 subunit with important
Ca distances and residues, which contributes to the research
on the states transitions in S protein.
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