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Unraveling the energetic significance of chemical
events in enzyme catalysis via machine-learning
based regression approach
Zilin Song 1, Hongyu Zhou1, Hao Tian 1, Xinlei Wang 2 & Peng Tao 1✉

The bacterial enzyme class of β-lactamases are involved in benzylpenicillin acylation reac-

tions, which are currently being revisited using hybrid quantum mechanical molecular

mechanical (QM/MM) chain-of-states pathway optimizations. Minimum energy pathways

are sampled by reoptimizing pathway geometry under different representative protein

environments obtained through constrained molecular dynamics simulations. Predictive

potential energy surface models in the reaction space are trained with machine-learning

regression techniques. Herein, using TEM-1/benzylpenicillin acylation reaction as the model

system, we introduce two model-independent criteria for delineating the energetic con-

tributions and correlations in the predicted reaction space. Both methods are demonstrated

to effectively quantify the energetic contribution of each chemical process and identify the

rate limiting step of enzymatic reaction with high degrees of freedom. The consistency of the

current workflow is tested under seven levels of quantum chemistry theory and three non-

linear machine-learning regression models. The proposed approaches are validated to pro-

vide qualitative compliance with experimental mutagenesis studies.
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Bacteria resistance to β-lactam antibiotic drugs poses severe
threat to the global health1. One of the major causes of
antibiotic resistance is the bacteria-produced enzymes, β-

lactamases, which could effectively hydrolyze many types of β-
lactam antibiotics2,3. Numerous studies have provided great
insights into the mechanism behind the hydrolysis reaction of β-
lactamases against β-lactam substrates. β-Lactamases are gen-
erally classified into four groups (Classes A, B, C, and D) based on
their sequence similarity4. Class A, C, and D are serine-based β-
lactamases (SβLs), and class B is zinc-based β-lactamases.

Class A β-lactamases is the dominant group and poses serious
threat against a wide range of substrates5. TEM-1 is a repre-
sentative class A SβL and the most common β-lactamase among
Gram-negative bacteria strains. Numerous experimental studies
have been carried out to delineate the functions of the residues at
the catalytic binding site6–15. Based on these studies, one widely
accepted mechanism was proposed that Glu166 acts as a general
base during the acylation process of benzylpenicillin hydrolysis
(Fig. 1a)7. The hydroxyl group of Ser70 first attacks the β-lactam
carbonyl carbon to form a tetrahedral intermediate, with its
proton delivered to the bridging catalytic water. The bridging
water in turn donates a proton to the deprotonated carboxyl
group of Glu166. Upon the formation of the tetrahedral inter-
mediate, the fully protonated Lys73 activates the nearby Ser130 to
protonate the β-lactam nitrogen, which cleaves the β-lactam
scissile bond and completes the acylation half of β-lactam
hydrolysis. Other residues including Asn170 and Ser235 were also
validated to contribute hydrogen bonding interactions that are
critical for the formation of the Michaelis complex between TEM-
1 and the benzylpenicillin substrate8,9.

Computational methods have been employed to further illus-
trate the detailed TEM-1 catalytic mechanism16–23. Hybrid
quantum mechanics/molecular mechanics (QM/MM) and
molecular dynamics (MD) studies have validated the acylation
mechanism and provided reaction pathways on the potential
energy surface (PES)16–18. However, limitations persist as well as
other computational efforts focusing on biochemical catalytic
reactions in geometrical spaces with high degrees of freedom. As
a single pathway within a fixed external MM potential may not

well represent the overall enzymatic reaction mechanism, a
comprehensive description using multiple potential pathways
under various MM potential fields is generally preferred. In
addition, free energy simulations have provided accurate ener-
getic barrier profiles for similar β-lactamases systems24.

Chain-of-states (CoS) pathways optimization methods could
provide minimum energy pathways (MEPs) at a reasonable
computational cost. Using this method, reoptimizing the reaction
pathway under modified external MM potential fields is feasible.
However, further analysis on this collection of reaction pathways
is hindered by the massive correlations between the geometrical
degrees of freedom along the reaction progress. Machine-
learning-based techniques have been shown to be the plausible
methods to model the systems with high dimensionality. It has
also been successfully employed in various subjects, including
protein allosteric analysis25–28, drug discovery29,30, and accel-
erating QM/MM calculations31–34. In this regard, machine-
learning-based regression algorithms could be utilized to predict
reaction pathway energetic profiles with sufficient training data.
As a predictive PES model could be trained on structural
descriptors as input features, the resulted model should reflect the
underlying correlations among those features. Therefore, the
model could be used to quantify the functional importance of
chemical properties associated with the structural descriptors.
Many generalized methods for quantifying feature importance or
variable contribution were proposed for linear models, but few
are available for non-linear models35.

To develop quantitative models that correlate enzyme catalysis
activity with each chemical event, we applied machine-learning-
based non-linear regression methods to analyze multiple mini-
mum energy pathways representing the enzyme catalytic land-
scape. The minimum energy pathways are generated using CoS
approach under various MM external potentials sampled from
constrained MD simulations.

Results
Benzylpenicillin acylation pathways. The roles of active site
residues of TEM-1 have been thoroughly studied by previous

Fig. 1 Acylation mechanism of Class A β-lactamases and the structure of TEM-1/benzylpenicillin Michaelis complex. a Acylation mechanism of TEM-1
and benzylpenicillin with Glu166 acting as a general base. The β-lactam scissile bond is noted in red; b Crystal structure of TEM-1 complexed with
benzylpenicillin and the selection of QM atoms.
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experimental and computational studies8–11,16–18. Accordingly,
we selected a QM region of 92 atoms, including key catalytic
residues as shown in Fig. 1b. In order to obtain MEPs in various
external MM fields, three configurations from an initial pathway
were selected and used as the start points for independent MD
simulations (see “Methods” section, Supplementary Figs. 1 and
2). During each MD run, the QM atoms were fixed in their
position while the MM atoms were allowed to move freely.
Eighteen representative conformations were selected from the
MD trajectories, on which the QM/MM geometry optimizations
were later performed. Based on those representative configura-
tions, 18 reaction pathways were optimized using the RPATh
with constraints36–39 CoS method implemented in CHARMM40.
Two QM levels of theory were adopted for geometry and pathway
optimizations in this study: The Third Order Density Functional
Tight Binding theory (DFTB3) with the mio parameter set
(DFTB3/mio:CHARMM)41,42, and the density functional theory
(DFT) B3LYP hybrid functional with the 6–31G basis set
(B3LYP/6–31G:CHARMM)43,44. The single point energies on the
B3LYP optimized pathways were further refined with three larger
basis sets: 6–31+G*, 6–31++G**, and 6–311++G**. Whereas
the dispersion effect has been validated to play a vital role in
enzymatic reactions45, the empirical dispersion corrected B3LYP
functional46, B3LYP-D3, is also introduced for single point
energy refinement: B3LYP-D3/6–31++G**:CHARMM, and
B3LYP-D3/6–311++G**:CHARMM. A total number of seven
different QM levels of theory were tested in the current study. All
calculated pathway energetic profiles are presented in Fig. 2 and
Supplementary Figs. 3–6.

Two energy barriers separated by an intermediate state are
identified in all calculated pathways. In the acylation mechanism
that Glu166 acts as a general base, a previous debate focuses on
whether the tetrahedral intermediate is more stable than the

Michaelis reactant16–18. According to the B3LYP/6–31+G*:
CHARMM calculations by Hermann et al.17, this intermediate
is lower in energy by 15.5 kcal mol−1 comparing to the reactant.
In Meroueh and coworker’s18 computational study, it was shown
that the tetrahedral is higher by 12.0 kcal mol−1 than the
Michaelis complex.

As highlighted in the black rectangles in Fig. 2, the carbonyl
tetrahedral intermediate state could be obtained from all B3LYP
reaction pathway optimizations. However, 16 out of 18 DFTB3
optimized pathways demonstrated that the intermediates are
lower in energy than the reactant, whereas all B3LYP pathways
show that the energies of tetrahedral states are well elevated from
the reactant. In addition, the tetrahedral intermediates from our
DFTB3 calculations are structurally different from Hermann
et al.17. As shown in Fig. 2, the average distance between Ser70
Oγ and the carbonyl carbon is 2.1 Å, comparing to 1.45 Å
reported by Hermann et al. Also, it is noted that tetrahedral
intermediates from our DFTB3 calculations are accompanied by a
hydronium formed by the catalytic water and negatively charged
Glu166, whereas Hermann et al. observed a neutral catalytic
water and protonated Glu166. Such disagreement could originate
from the fundamental difference between the QM methodologies.
Although the DFTB3/mio:CHARMM optimized pathways pro-
vide acylation barriers that are in good agreements with
experiments, the configurational changes along the chain-of-
replicas may not be reliable. The selection of QM region or the
initial configuration used in the QM/MM calculations could also
lead to a different conclusion. On the other hand, our B3LYP
optimized reaction pathways agree with the results reported by
Meroueh et al.18, showing that the potential energies of the
tetrahedral intermediate are elevated from the reactant. Detailed
barrier results of the acylation are compared with previous
computational and experimental studies in Table 1. Moreover,
albeit our B3LYP/6–311++G** single point energies give the
most realistic average reaction barriers comparing to the
experimental results, they are also shown to have the largest
deviations among individual profiles (Supplementary Fig. 5). We
also note that, the dispersion corrected B3LYP calculations
generally led to 3–5 kcal mol−1 decrease of the activation barriers
during the acylation, which is consistent with previous
observations47.

Although previous studies17,18 concluded that the formation of
the tetrahedral intermediate is the rate limiting step during the
acylation, our results do not necessarily comply with such
conclusion. The B3LYP/6–31++G**:CHARMM pathways show
that the Ser70 added tetrahedral intermediates are meta-stable
states (black rectangles in Fig. 2). The total energies of these
intermediates are 0.6(1) kcal mol−1 lower on average than the
transition states of tetrahedral formation. Furthermore, as shown
in Table 1, the optimized B3LYP/6–31++G** energy profiles
present an average tetrahedral collapsing barrier of 3.8(7) kcal
mol−1. Intuitively, such evidence suggests that the acylation is
most likely a concerted one-step reaction.

Regression model training. In order to decompose the energy
contributions to each chemical event and determine the actual
rate limiting step, predictive PES models were trained to bridge
the conformational descriptors of each replica to its corre-
sponding energy, as shown in Fig. 3a. Notably, since the reaction
energy profiles are the relative energies with regard to the reac-
tant, the interatomic distances used as input features are also the
relative values from the corresponding reactant state. An appro-
priate selection of features is critical for the performance of
machine-learning predictions. In our case, a total of 105 pairwise
distances between bonded atoms—either through chemical

Fig. 2 QM/MM chain-of-states pathway profiles. Reaction pathways
calculated from DFTB3/mio:CHARMM, B3LYP/6–31++G**:CHARMM,
and B3LYP-D3/6–31++G**:CHARMM levels of theory. The black
rectangles highlight the tetrahedral intermediates region along the energy
profiles.
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bonding or hydrogen bonding—in the QM region are considered
as initial features. Additionally, we note that some pioneer
studies33,34 combining QM/MM and machine-learning techni-
ques included the configurations of the MM atoms in the feature
vectors as well. In our approach, the endpoints (i.e., the reactant
and the acyl-enzyme product) as well as the chain-of-replicas
were optimized in the selected external MM environment. The
configurational difference between the optimized replica chains
essentially reflects the contributions from the configuration of
MM environments. Therefore, configurations of the MM atoms
were omitted from the feature vector in the current study.

As the size of the dataset (900 replicas) is relatively small
compared to the dimension (105 features), regression models are
expected to fit poorly and unstably. In order to reduce the
dimension of feature vectors, a recursive feature elimination
(RFE) analysis using support vector regression (SVR) model with
linear-kernel function was first performed on both DFTB3/mio:
CHARMM and B3LYP/6–31++G**:CHARMM pathways. A
total number of 15 most critical features were retained according
to the acylation energy profiles from both levels of QM theory, as
illustrated in Fig. 3b. Obviously, the RFE process could
distinguish the key interatomic distances closely related with
the reaction progress. Based on the RFE selected features and our
prior knowledge with TEM-1/Benzylpenicillin hydrolysis, 15
interatomic distances were selected and used to construct the
feature vector (Fig. 3c).

The performance of the regression models on predicting
reaction energetic profiles were evaluated on the RFE and manual
feature selections. Three machine-learning-based non-linear
regression models were applied: support vector regression
(SVR)48, Gaussian process regression (GPR)49, and kernel ridge
regression (KRR)50. In the regression models, the DFTB3
optimized replica geometries were used as input to predict the
DFTB3 replica energies. The B3LYP and B3LYP-D3 single point
energies were predicted with the replica geometries from the
B3LYP/6–31G:CHARMM pathway calculations. A total number
of 18 rounds of cross-prediction are carried out recursively using
17 pathways as the training set and the remaining as the testing
set. The predictive accuracy is assessed by root-mean-square error
(RMSE) between the calculated and predicted energy profiles of

the testing pathway (Fig. 3d), which is defined as:

RMSE ¼
XR
r¼1

EðrÞ
QM=MM � f A rð Þ� �� �2

R

0
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1
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2

; ð1Þ

where R is the total number of replicas on each pathway; EðrÞ
QM=MM

is the QM/MM single point energy of the r-th replica; f is the
trained regression model; A(r) is the input feature vector at the r-
th replica.

The overall prediction quality of regression models on B3LYP
pathways are promising with the RMSE values lower than 2.0
kcal mol–1. The fitting quality on DFTB3/mio:CHARMM path-
ways is worse than that on B3LYP pathways regardless of the
model used. The difference between the performance on B3LYP
and DFTB3 pathways was explored through the analysis of the
training input distribution by two-dimensional (2D) t-distributed
stochastic neighbor embedding (2D t-SNE) method (Fig. 4). The
reduced replica configurations of the 18 pathways from B3LYP
pathways are more uniformly distributed along the reaction
progress than the DFTB3 calculations. This suggests that the
configurational changes along the DFTB3 pathways are more
flexible and diverse compared to the B3LYP pathways. As a
consequence, the variable space of the DFTB3 training sets is
larger. Therefore, extra sampling is needed to achieve compatible
fitting performance as the B3LYP training sets. The worst
prediction comes from the pathway 16/p at DFTB3/mio:
CHARMM level of theory. On this pathway, 2D t-SNE analysis
shows that the training-validation set does not carry information
in the region marked by the black rectangle (Fig. 4). The
regression models are therefore under-fitted in this prediction
space.

Intrinsic energy contribution. Before assessing the energy con-
tribution in the predictive models, the features are first grouped
into feature subsets to reflect the joint contribution from critical
chemical events (Fig. 3c). A detailed explanation of the chemical
events is provided in Supplementary Table 1. One universal cri-
terion to measure variable contribution is the decrease in

Table 1 Comparison of acylation energy barriers of the current and previous works.

Sourcea Energy barriers (kcal mol−1)b Methodc

MC-TI TI-AE Overall

This study 3.6(3) 11.4(1) 11.4(1) DFTB3/mio:CHARMM, CoS
This study 4.4(5) 3.3(1) 7.1(5) B3LYP/6–31G:CHARMM, CoS
This study 7.9(7) 3.8(2) 10.9(4) B3LYP/6–31+G*:CHARMM, CoS
This study 8.6(9) 3.8(7) 11.9(4) B3LYP/6–31++G**:CHARMM, CoS
This study 5.7(8) 3.4(3) 8.0(3) B3LYP-D3/6–31++G**:CHARMM, CoS
This study 9.1(3) 3.9(7) 12.7(3) B3LYP/6–311++G**:CHARMM, CoS
This study 6.2(4) 3.6(8) 9.0(1) B3LYP-D3/6–311++G**:CHARMM, CoS
Pitarch et al.16,d 18.2(9) 12.9(1) 18.2(9) AM1:CHARMM, IRC
Hermann et al.17 19.6 16.4 19.6 AM1:CHARMM, PESs
Hermann et al.17 8.7 7.1 8.7 B3LYP/6–31+G*:CHARMM, PESs
Meroueh et al.18,d 22.0 N/De 22.0 MP2/6–31+G*:AMBER, PESs
Gibson et al.12 N/A N/A 12.6(7) 293.15 K, Exp
Sirot et al.13 N/A N/A 13.0(5) 310.15 K, Exp
Cheong et al.14 N/A N/A 12.7(0) 293.15 K, Exp

aComputational acylation reaction profiles are constructed for the mechanism with Glu166 as a general base. The computational result with the best experimental compliance is marked in bold.
bMC-TI: Michaelis complex to tetrahedral intermediate; TI-AE: tetrahedral intermediate collapsing to acyl-enzyme product;
cCoS chain-of-states calculation, the reported barrier is the average value over 18 pathways; IRC intrinsic reaction coordinate calculation, PESs potential energy surface scan, Exp derived from experimental
kcat under the specified temperature;
dThis study uses penicillanic acid instead of benzylpenicillin, the experimental acylation barrier of penicillanic acid is estimated to be 16–17 kcal mol−1;
eBarrier was reported to be “inconsequentially small”.
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Fig. 3 Description of the predictive PES models, the results of feature selection, and the benchmark of the regression models. a Schematic
representation of the input/output data of the predictive PES models; b Features selected from RFE process with linear-kernel SVR and from manual
selection, see also Supplementary Figs. 7 and 8; c Representations of interatomic distances used as the input feature vectors and the notation of chemical
events; d Precision benchmark of regression models trained on datasets from various QM levels of theory. The “M” and “R” labels note the manual and RFE
feature selected feature sets, respectively. Each box contains n= 18 prediction cases, the interquartile range (IQR) noted by the boxes are divided by the
median (black lines), and the whiskers marks the first datum that are larger than 1.5 * IQR.

Fig. 4 2D t-SNE dimensionality reduction of pathway geometries. 2D t-SNE dimensionality-reduced results of feature vectors from DFTB3/mio:
CHARMM and B3LYP/6–31G:CHARMM optimized pathway geometries.
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prediction performance when a certain feature is dropped out
from the model. Practically, we measure the joint contribution of
feature subset by the difference between the fitting performance
of a predictive model trained from full input feature set and the
same model trained with the target feature subset set to zero. In
this regard, the intrinsic energy contribution is defined as the
RMSE between the predicted energetic pathway profiles of the
two models:

Ia;intrinsic ¼
XR
r¼1

ðf ðAðrÞÞ � fa¼0ðAðrÞÞÞ2
R

 !1
2

; ð2Þ

where R is the total number of replicas on each pathway; f is the
trained regression model; fa= 0 is the same model trained from
input data with the target feature subset set to zero; A(r) is the
input feature vector at the r-th replica. For numerical compar-
isons between different regression models, the measurement used
is the percentage of each intrinsic contribution over the sum of all
feature subgroups (see also Supplementary Fig. 9).

The intrinsic contribution provides a quantitative insight into
the energy contribution of each chemical event to the overall
energetic profile. The intrinsic energy contribution is calculated
for all testing pathways from each level of QM theory and plotted
in Fig. 5 and Supplementary Fig. 10. Generally, all regression
models give the same statistical rankings of the energy
contributions from each chemical event: P2 and P3 are the
decisive processes during the reaction; P0, P1, B0, and B1 pose
less impact to the overall energetic; Hydrogen bonds (H0, H1,
and H2) are considered to be the least critical events. The
intrinsic energy contribution measured using the GPR model is
the most numerically stable, whereas the SVR model gives the
largest deviation among the testing cases. As for pathway profiles
decomposed at different QM levels of theory, the intrinsic
contributions are compatible to each other.

Reaction pathway geometry analysis. For the model system in
this study, previous computational studies17,18 have demon-
strated the detailed energetic landscape of the two concerted dual-
proton transfer processes before and after the tetrahedral for-
mation. Yet those works have reported different data on the
height of stepwise activation barriers or the thermal stability of
meta-stable intermediates. Herein, we revisited the acylation of

TEM-1/benzylpenicillin catalysis and attempt to provide an
explanation to the origin of this deviation. We have shown that
the DFTB3/mio:CHARMM optimized reaction pathways gave
unreliable configurational changes during the acylation pathway;
thus the following analysis focus on the B3LYP optimized
pathways.

Upon the initial reactant state, the hydroxyl group of Ser130 is
positioned within hydrogen bonding distances of the β-lactam
nitrogen and the penicillin carboxylate group, with an average
distance of 1.8 and 2.7 Å, respectively (Fig. 6a). During Ser70

Fig. 5 Intrinsic energy contribution. Intrinsic energy contribution measured
on DFTB3/mio:CHARMM and B3LYP/6–31++G**:CHARMM reaction
pathway profiles. The “S”, “G”, and “K” labels represent results from SVR,
GPR, and KRR models, respectively. Each box contains n= 18 testing cases,
the IQR noted by the boxes are divided by the median (black lines), and the
whiskers mark the first datum that are larger than 1.5 * IQR. Joint
contributions are measured for feature subgroups as defined in
Supplementary Table 1. See also Supplementary Figs. 9, 10, and 143.

Fig. 6 Interatomic distances averaged over all B3LYP/6–31G:CHARMM
optimized pathways at each state. a Michaelis complex reactant;
b Tetrahedral intermediate; c Acyl-enzyme product. Spheres in white, cyan,
red, and blue represent H, C, O, and N atoms, respectively. The β-lactam
scissile bond is marked by the yellow solid line and its bond length are
noted in blue.
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addition (Fig. 6b), the hydroxyl group on Ser130 is also activated
and moves closely to the thiazolidine nitrogen. The Ser130 proton
that migrates to β-lactam nitrogen is then readily activated and
eventually cleaves the scissile β-lactam bond (Fig. 6c). The
conformational changes evidently show that the proton transfer
from Ser130 hydroxyl group to the β-lactam nitrogen is also
concerted to the formation of the tetrahedral intermediate.
Omitting this reaction coordinate (RC) from the PES scan during
the tetrahedral formation would consequently yield different
results, which depend on the starting configurations where the
PES calculations were initialized.

The reaction pathways from the chain-of-states calculations
demonstrate that the acylation mechanism with Glu166 as a
general base undergoes a concerted four-proton transfer process.
The energy barriers during the acylation are correlated and
inseparable. Previous high-level QM/MM calculations showed
that the rate determining step of the hydrolysis takes place during
the acylation20, enabling the comparison between the acylation
reaction energy barriers with the experimental rate of hydro-
lysis51. Despite its barrier-underestimating nature, our CoS
B3LYP/6–31++G**:CHARMM calculated energy barriers give
the best agreement with experimental values (Table 1). It should
be pointed out that the exclusion of correlated RCs will not
impact the general mechanistic insights from the above-
mentioned studies16–18, as it will be shown that these pioneer
works actually built their PES based on the chemical events with
the highest energetic contribution at each stage of the acylation.

Dynamic energy contribution. The intrinsic energy contribution
reflects the overall energetic contribution of a certain chemical
process to the energetic profile. Alternatively, a dynamic energy
contribution along the reaction progress could be determined by
the partial derivatives with respect to each feature subset. In this
measurement, all 18 pathways were used as the training-
validation set, and the dynamic contribution was computed at
each replica. Such numerical importance is not chemically
interpretable, since the dynamic energy contributions would
actually be the correlation between the distance variance and the
energy profile. In this case, disregarding the differences among
the domain sizes of distance variables could misestimate the
contribution measurement of those features with small variance.
Practically, dynamic energy contributions on static hydrogen
interactions (H0, H1, H2) would be significantly higher than
those events with larger variable variance, such as proton trans-
fers (P0, P1, P2, P3) or bond formation and cleavage (B0, B1).
Therefore, the partial derivative must be scaled by a weighting
factor w that balances the domain size of each feature in the
variable space. In addition, the correlation among the features
must also be considered to ensure that the perturbation is applied
parallelly to the progress of the reaction profile, which is descri-
bed by a local correlation matrix Γ.

In the present study, the dynamic energy contribution is
defined as:

IðrÞa;dynamic ¼ wðrÞ � IðrÞa;dynamic*

¼ ðf ðAðrÞ þ EðrÞΓðrÞÞ � f ðAðrÞ � EðrÞΓðrÞÞÞ�� ��; ð3Þ

where

wðrÞ ¼ DðAðrÞ þ EðrÞΓðrÞ;AðrÞ � EðrÞΓðrÞÞ ð4Þ

IðrÞa;dynamic* ¼ f AðrÞ þ EðrÞΓðrÞ
� �� f AðrÞ � EðrÞΓðrÞ

� �� ��� ��
D AðrÞ þ EðrÞΓðrÞ;AðrÞ � EðrÞΓðrÞ
� � ð5Þ

w(r) and A rð Þ are the weighing factor and the feature vector at the
r-th replica, respectively; D(A, B) is the Euclidean distance

between feature vectors A and B; ΓðrÞ, the local correlation matrix
at r-th replica, is defined as

ΓðrÞ ¼
γ rð Þ
1 � � � 0

..

. . .
. ..

.

0 � � � γ rð Þ
n

2
664

3
775; ð6Þ

γ rð Þ
i ¼

�1;
∂f A rð Þð Þ
∂a rð Þ

i

< 0 and a rð Þ
i 2 a rð Þ

0;
∂f A rð Þð Þ
∂a rð Þ

i

¼ 0 or a rð Þ
i =2a rð Þ

1;
∂f A rð Þð Þ
∂a rð Þ

i

> 0 and a rð Þ
i 2 a rð Þ

8>>>>>><
>>>>>>:

; ð7Þ

where a(r) is the subset of features whose contribution is to be
measured at r-th replica. The perturbation at r-th replica, E(r), is
defined as

EðrÞ ¼ ε rð Þ
1 � � � ε rð Þ

n

h i
; ð8Þ

ε rð Þ
i ¼

0; a rð Þ
i =2a rð Þ

p a rþ1ð Þ
i � a r�1ð Þ

i

� �
; a rð Þ

i 2 a rð Þ

8<
: : ð9Þ

The p value stands for the amount of perturbation applied. In
this study, p is set as 0.01.

The derived dynamic energy contribution could decompose the
energy contribution from each chemical event with regard to the
reaction progress. The reaction coordinates of the pathways are
normalized using three anchor points: reactant as 0.0, tetrahedral
intermediate as 1.0, and product as 2.0. It is noted that the
dynamic measurement depends on the level of QM theory
applied in the pathway optimizations. We therefore focus on the
energetic profiles calculated at B3LYP/6–31++G**:CHARMM
level of theory (Fig. 7).

The acylation is initialized by the proton transfer between
Ser70 and the catalytic water (P0). During the first transition to
the tetrahedral intermediate, the bond formation between Ser70
Oγ and carbonyl carbon (B0) is deemed to be the most energetic
dominant event. Notably, the protonation of the thiazolidine
nitrogen (P3) is concerted in this process. The rate determining
events of the acylated product formation are the dual protonation
of Ser130 (P2) and the β-lactam nitrogen (P3) together with the
cleavage of the β-lactam scissile bond (B1). In addition, the

Fig. 7 Dynamic energy contribution. The dynamic energy contribution
measured from SVR, GPR and KRR regression models trained on energetic
profiles calculated at B3LYP/6–31++G**:CHARMM level of theory. The
values provided are the average over the reaction progress.
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dynamic contribution measurement is also regression model-
dependent, which in turn reflects the difference among the
predictive PES of the regression models. Despite the differences
among regression models, different levels of QM theory generally
lead to the same conclusion, as illustrated in Supplementary
Figs. 11–16.

During the formation of tetrahedral intermediate, the rate
determining event is shown to be the bond formation between
Ser70 hydroxyl oxygen and the β-lactam carbonyl carbon. As for
the formation of acyl-enzyme product, the dual-proton transfer
from Lys73 to β-lactam nitrogen, bridged by the Ser130 hydroxyl
group, becomes the rate determining event. The dynamic energy
contributions are consistent with the intrinsic contribution
measurements as they identify the same critical chemical events
during the acylation. Generally, the dynamic energy contribution
qualitatively reveals the time windows and spans of chemical
events and quantitatively reflects their underlying correlations.

Discussion
In this study, we presented machine-learning-based theoretical
models to predict the energetic profiles for enzymatic reactions.
Two numerical measurements based on chemical events were
developed and provided insights into the underlying mechanisms
of the reaction.

Via the intrinsic energy contribution, the proton transfer
between Lys73 and Ser130 and the protonation of the thiazolidine
nitrogen are deemed to be the most energetically significant
chemical events, while the Glu166 proton accepting is revealed to
be less essential. In this regard, there are two major factors that
determine whether the investigated acylation pathway is viable:
the presence of the fully protonated Lys73 as the proton source to
re-protonate Ser130; and the existence of the hydroxyl group in
Ser130, which serves as the proton bridge during the tetrahedral
collapsing. Such evidence could be connected to experimental
mutagenesis studies. It has been shown that Lys73 mutant of
TEM-1 deactivated the enzyme for hydrolysis10, indicating that
acylation pathway is turned off in the absence of a proton source
to Ser130. Based on our analysis, it is obvious that the acylation
pathway is prohibited as its energetic determining event (P2) is
no longer accessible in the reaction space. In the case of
Ser130Gly mutant of TEM-1 (or namely TEM-76), Thomas
et al.11 demonstrated that the enzyme was still hydrolysis-active
as the Ser130 hydroxyl group is substituted by a crystal water. Of
course, the catalytic rate of the mutated TEM-1 is decreased due
to the relatively lower reactivity of water molecule. Moreover,
the important role of Glu166 has been emphasized in many
experimental studies for the hydrolysis. Mutations on this residue
could turn class A β-lactamases into a penicillin-binding-protein
(PBP)5,6, suggesting that the acylation process is still thermo-
dynamically favorable. Our analysis also aligns with this evidence,
as the only process (P1) that involves Glu166 is deemed to be
non-essential.

No direct experimental measurement could be adopted to
validate the dynamic energy contribution measurements as any
chemical process could not be simply isolated from the reaction.
However, qualitative agreement with the intrinsic contribution
assessment is observed. The underlying correlations between the
proton transfers are validated in the dynamic energy contribu-
tion. Notably, the protonation of Ser130 hydroxyl group and the
thiazolidine nitrogen are found to be concerted with the forma-
tion of tetrahedral intermediate, indicating that the acylation
reaction is a one-step 4-proton-transfer process. Isolating such
proton transfers from the tetrahedral formation process has led to
conflicted estimations on the overall reaction barrier or the
stepwise activation energy (Table 1). Moreover, dynamic energy

contributions reveal that the rate limiting events of the acylation
are the proton transfers from Lys73 to β-lactam nitrogen via the
bridging Ser130 hydroxyl group, opposing to previous QM/MM
calculations17,18, in which the tetrahedral formation is concluded
to be the rate limiting step.

It should be emphasized that the present study serves as a
further complement, not criticism, to previous high-level
insightful QM/MM computational studies16–18 on the mechan-
isms of β-lactamases driven antibiotic resistance (see also Sup-
plementary Note 1).

Owing to the complexity and high degrees of freedom of
reaction environment, entropy inevitably plays an important role
in enzymatic functions52,53. There are many different entropic
contributions and penalties in enzymatic catalysis54. It is gen-
erally accepted that the translational and rotational entropy
penalties for the ligand binding have already been paid upon the
formation of enzyme-ligand complex53,54. The remaining entro-
pic factors for enzymatic catalysis should mainly stem from
the intrinsic properties of the catalytic systems. In principle, the
current theoretical model could include significant part of the
catalytic entropy effects. The current model was built based on a
total of 18 MEPs starting from 18 representative protein con-
formations from the sampling in different functional states. The
consideration of multiple pathways in the catalytic mechanism
covers major entropic effects of actual transition being distributed
among multiple possible pathways. In addition, this model should
partially account for the entropic factors of the protein-ligand
“snug fit” binding, in which the ligand is locked at the binding
pocket of enzyme with reacting groups of ligand and enzyme in
the right position and orientation for reactions. There are cer-
tainly many more important entropic factors for enzymatic
reactions that the proposed model in this study could not fully
account for. For example, some proteins may carry special
entropic property under extreme circumstances, such as psy-
chrophilic and thermophilic proteins55,56. With continuous
efforts from the methodology developing community, searching
for novel robust and accurate enhanced sampling approaches that
appropriately account for the entropic contribution to catalysis
from protein flexibility and other factors remains an active
field57,58.

Further comments are noted on the transferability and exten-
sibility of the proposed approach. Whereas the proposed energy
contribution measurements are derived without introducing any
model-dependent precondition, they are naturally transferable to
other enzymatic processes as well. It should be noted that for
many complex systems, such as transition metal-based enzymes,
significant developments may be necessary to apply the proposed
approaches on these systems effectively.

As for the methodology aspect, any configuration space sam-
pling method that could cover the overall reaction progress
should be suitable for the regression models. The constraints or
restraints applied to control the replica distribution in the CoS
methods should not affect the regression performance. Different
regression models, including high-level ensemble-based machine
learning methods (e.g., neural networks, regression trees, boosting
methods, etc.) are also viable, as the proposed energy contribution
decomposing approaches are universal measurements. A diverse
choice of input features that could bridge chemical properties
with reaction progress should also be suitable for the proposed
models, including other generalized coordinates systems.

In summary, we presented novel regression models with
machine-learning component to quantify the energetic con-
tributions from, as well as the correlations among, individual
chemical process during enzyme catalysis with high degrees of
freedom. Such quantitative measurements serve as a useful
energetic-decomposing analysis to the enzymatic reaction
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pathway and reflect the detailed underlying mechanism. This
study also serves as a proof of the concept for extending the
application of machine-learning techniques to probe complex
enzymatic reaction mechanisms in high degrees of freedom
configurational space.

Methods
QM/MM calculations. All hybrid QM/MM multiscale calculations in the pre-
sent study were conducted by interfacing CHARMM40 with SCC-DFTB41,42 or
Q-Chem 5.059. All MD simulations were performed by OpenMM 7.3.160. The
acyl-enzyme product of TEM-1 with benzylpenicillin was obtained from the X-
ray crystal structure (PDB id: 1fqg)6 and the mutant residue Asn166 was
modified to Glu166 as in the wild type TEM-1. The residues were then proto-
nated according to previous studies15. The system was solvated in a 77 Å cubic
water box. Sodium and chloride ions were added to balance the total charge of
the system. In order to fully relax the system, classical mechanic minimization
and equilibration were performed with the CHARMM36 force field61 for pro-
teins, CHARMM general force field (CGenFF)62 for the penicillin molecule and
TIP3P model63 for water. The structure of the QM/MM initial pathway calcu-
lation was taken from the trajectory of a 10 ns MD simulation at 300 K, as
included in the Supplementary Data 1. The chain-of-states method, RPATh with
constraints36,37 as implemented in CHARMM, was applied for reaction pathway
calculations. All the pathway calculations were carried out with 50 replicas. The
parallel-distributed replica (REPDSTR) computational framework64 imple-
mented in CHARMM was employed in the B3LYP pathway optimizations to
accelerate the calculation.

Reaction pathway sampling. The initial pathway was calculated from DFTB3/
mio:CHARMM level of theory with any residue in the outer 15 Å of QM region
selected as the unfrozen MM region (Supplementary Fig. 1). Based on the initial
pathway, multiple reaction pathways were sampled. Firstly, three replicas
representing reactant (r), transition (t), and product (p) states were selected. In
all, 200 ns MD simulations were performed on each of the selected replicas.
During the MD runs, all the atoms in the QM region were fixed and snapshots
were taken every 0.1 ps. 2-Dimensional principal component analysis (2D-PCA)
was performed on the MD trajectories with the pairwise Cα distances as input.
The 2D-PCA result was grouped into 6 clusters by the Agglomerative Clustering
method, and the snapshots that are the closest to the centers of each cluster were
chosen as the representative structures (Supplementary Fig. 2). A total of 18
representative structures were then selected. In order to retain the consistency
among the QM/MM pathway’s energetic profiles, a common MM region was
used, and was selected to be the union set of residues within the outer 10 Å of all
representative QM regions. Geometry optimizations were then performed on the
selected representative structures. Lastly, based on those representative struc-
tures, 18 RPATh with constraints calculations were carried out to obtain the
MEPs. The coordinates of initial QM/MM configurations, the initial pathway,
and the optimized pathways (denoted in “ID/state”) are included in the Sup-
plementary Data 1.

Machine-learning protocols. The scikit-learn package65 was employed for various
machine-learning protocols, including dimensionality reduction, clustering, and
regression. The hydrogen bonding interactions are identified via the Baker-
Hubbard criteria as implemented in MDTraj 1.9.366. The radial basis function
(RBF) was used as the kernel function for all regression models: support vector
regression (SVR)48, Gaussian process regression (GPR)49, and kernel ridge
regression (KRR)50. The training and testing datasets used for prediction perfor-
mance benchmarking, intrinsic and dynamic energy contribution measurements
are summarized in Supplementary Table 2. For the training-validation process of
models, the leave-one-group-out cross-validation (LOGO CV) regression analysis
was employed in the validation step; the hyper-parameters of the models were
tuned via a grid search (GS) strategy. In addition, as GPR is prone to overfit on
small datasets, the noise level α, which is enclosed in a white kernel function, is also
refined to obtain a reasonable model. The calculated pathway and the predicted
pathway profiles are included in Supplementary Figs. 17–142.

Data availability
The authors declare that all data supporting the findings of this study are available within
the paper and its Supplementary Information files.

Code availability
CHARMM c42b2 (with REPDSTR support) and Q-Chem 5.0 are commercial software
and are accessible from their distributor. SCC-DFTB is distributed as a build-in module
of CHARMM c42b2. MDTraj 1.9.3, OpenMM 7.3.1, and scikit-learn are freeware and are
accessible from the reference provided in the text. The Python codes developed to derive
the intrinsic and dynamic energy contributions in this study are available on GitHub at
github.com/smutaogroup/tem1_acylation_pathfitting.
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