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ABSTRACT: Proteins are the molecular machines of life. The
multitude of possible conformations that proteins can adopt
determines their free-energy landscapes. However, the inherently
high dimensionality of a protein free-energy landscape poses a
challenge to deciphering how proteins perform their functions. For
this reason, dimensionality reduction is an active field of research
for molecular biologists. The uniform manifold approximation and
projection (UMAP) is a dimensionality reduction method based on
a fuzzy topological analysis of data. In the present study, the
performance of UMAP is compared with that of other popular
dimensionality reduction methods such as t-distributed stochastic
neighbor embedding (t-SNE), principal component analysis
(PCA), and time-structure independent components analysis
(tICA) in the context of analyzing molecular dynamics simulations
of the circadian clock protein VIVID. A good dimensionality reduction method should accurately represent the data structure on the
projected components. The comparison of the raw high-dimensional data with the projections obtained using different
dimensionality reduction methods based on various metrics showed that UMAP has superior performance when compared with
linear reduction methods (PCA and tICA) and has competitive performance and scalable computational cost.

1. INTRODUCTION

Proteins are molecular engines present in all life forms on
Earth. Protein structures have been described hierarchically as
protein primary, secondary, and tertiary structures. Main
protein functional information is expected to be derived from
this structural information.1−4 However, protein molecules are
in constant dynamics, which also is a key factor in the
regulation of the protein functions.5

Molecular dynamics (MD) simulations provide dynamical
information on protein conformations to map the protein
conformational space and thus rationalize protein function.6−8

The sampling of the protein conformations collected during
the simulations compose the protein conformational space.
The high degrees of freedom of protein molecules present

challenges also referred to as the curse of dimensionality. To
face this challenge, various dimensionality reduction methods
have been applied to MD simulations under the assumption
that a few degrees of freedom through coordinate projections
could account for the majority of the protein functions.9−20

The projections obtained can then be used as collective
variables (CVs) to build a Markov state model (MSM). MSMs
have been applied to identify protein functional states on the
free-energy surface and to describe the transitions among
them.21−27

Dimensionality reduction methods can be broadly catego-
rized into two groups: linear and nonlinear.28−30 Linear
methods, such as principal component analysis (PCA) and
time-structure independent component analysis (tICA),
construct new CVs by performing linear combinations of the
input variables. On the contrary, nonlinear methods, such as
the t-distributed stochastic neighbor embedding (t-SNE)
method and autoencoders, construct new CVs by mapping
the input variables to a nonlinear function. Ultimately, because
of the highly curved shape of protein free-energy landscapes,
nonlinear dimensionality reduction methods should be more
beneficial to process MD trajectories, as compared with linear
methods.11,16,19

All dimensionality reduction methods have their own
advantages and limitations. Zhou et al.19 compared several
algorithms widely used for the analysis of MD simulations and
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demonstrated the overall superior performance of the t-SNE
method. In their study, the t-SNE method was found to be able
to correctly reproduce the kinetic barrier and structural
similarity of different clusters. However, the relatively high
computational cost of the t-SNE method forces the user to
significantly reduce the sampling of protein trajectories to
obtain results in a reasonable time frame. Furthermore,
because of the intrinsic property of the Kullback−Leibler
(KL) divergence as its loss function, t-SNE is not guaranteed
to always preserve distances correctly among data points in the
low-dimensional space when the distances among these data
points are large in the high-dimensional space.
In 2018, McInnes et al.31 developed a new fuzzy topology-

based dimensionality reduction method named uniform
manifold approximation and projection (UMAP), which
could serve as an alternative method to t-SNE. UMAP has
been used to process data from single-cell experiments as a
dimensionality reduction method with either equal or better
quality than t-SNE.32−35

In the present study, we aim to demonstrate the applicability
and efficiency of UMAP in the computational studies of
biomacromolecules. Using a well-studied protein as the model
system, we performed a comparative study along with other
popular dimensionality reduction tools including PCA, tICA,
and t-SNE to investigate the applicability of UMAP in the
context of analyzing and processing data obtained from MD
simulations of biomacromolecules to gain insight into their
structure−function relations.
In this study, VIVID (VVD), which is a well-characterized

circadian clock protein as a member of the light oxygen voltage
(LOV) domain family,36 is used as the model protein. VVD is
an allosteric protein and could be activated upon photo-
excitation. It has two distinct functional states: dark and light
states. The VVD dark state could be excited by blue light to
form a covalent bond with its flavin cofactor and undergoes a
global conformational change, mainly in its N-terminus region,
leading to a cascade of circadian-clock-related signaling
events.37−39

2. MATERIALS AND METHODS
2.1. Dimensionality Reduction Methods. 2.1.1. Princi-

pal Component Analysis. PCA reduces the dimensionality of
the data by projecting each data point onto a few principal
components as a lower-dimensional representation of the
original data while preserving the data’s variation.39 The
components in PCA are linear combinations of input variables
and are orthogonal to each other. Given two variables, x and y,
their sample covariance measures how these two variables
deviate from their averages x̅ and y̅ in relation to each other
based on n observations

∑σ =
−

− ̅ − ̅
=

x y
n

x x y y( , )
1

1
( )( )

i

n

i i
1 (1)

In PCA, a p × p covariance matrix, C, is constructed for a given
data set with p variables, in which each element Cij is
represented by the covariance between two variables, as
expressed in eq 1. In this symmetric matrix, each element is a
sample covariance between two variables, xi and xj, expressed
as Cij = σ (xi,xj). The eigenvectors of C are the components of
PCA. The eigenvalues of C measure the contribution of each
component in the data set. The larger the magnitude of
eigenvalue, the higher the contribution of its corresponding

component, that is, the eigenvector. In general, the
eigenvectors with the largest eigenvalues are designated as
principal components to form 2D or 3D space for data
projection. The PCA was performed using scikit-learn
implemented in Python.40

2.1.2. Time-Structure Independent Component Analysis.
The tICA method aims to identify the slowest degrees of
freedom and therefore in preserving the kinetic information
present in the MD trajectories by maximizing the autocorre-
lation function.41−43 Given a time series of molecular
coordinates provided by the MD trajectories, x(t) = (x1(t),
..., xn(t)), tICA aims to reduce the dimensionality of the
trajectories and to identify hidden key structural changes by
decomposing the generalized eigenvalue problem C̅F = CFK,
where K = diag(k1, ..., kn) and F = ( f1, ..., f n) are the eigenvalue
and eigenvector matrices, respectively. C and C̅ are the
covariance matrix and the time-lagged covariance matrix of the
coordinate vector, respectively

= ⟨ − ⟨ ⟩ − ⟨ ⟩ ⟩C x t x t x t x t( ( ) ( ) ) ( ( ) ( ) )t
(2)

̅ = ⟨ − ⟨ ⟩ + − ⟨ ⟩ ⟩C x t x t x t t x t( ( ) ( ) ) ( ( ) ( ) )t
0 (3)

where ⟨...⟩ denotes the average. To obtain a symmetric time-

lagged covariance matrix, ̅ +C C( )t1
2

is calculated. The latter

step assumes the time reversibility of the process, which is
satisfied in MD simulations. The projected vectors of the MD
are

= =a t a t a t Fx t( ) ( ( ), ..., ( )) ( )n
t t

1 (4)

The featurization and dimensionality reduction were
performed using the MSMBuilder package.44

2.1.3. t-Distributed Stochastic Neighbor Embedding
Method. t-SNE is an unsupervised nonlinear dimensionality
reduction method.45 t-SNE builds its reduced representation
first by constructing a probability distribution of distances
between any two observations i and j in the high-dimensional
manifold as

=
∑

σ

σ|

−|| − ||

≠
−|| − ||

p
e

ei j

x x

k i
x x

/2

/2

i j i

i k i

2 2

2 2

(5)

and a Student’s t probability distribution in the lower
dimensional space. Let yi and yj be the unknown lower
dimension representations of observations i and j, respectively.
The Student’s t distribution in t-SNE is used to avoid
overcrowding of data points in the lower dimensional space.

=
∑|

−|| − ||

≠
−|| − ||

−

−q
e

ei j

y y

k i
y y

i j

i k

1

1

(6)

The aim of t-SNE is to maximize the similarity between
these two density distributions over yi values. The metric used
to assess the dissimilarity between the high- and low-
dimensional distributions is the KL divergence

∑ ∑|| = |
|

|

P Q p
p

q
KL( ) logi i

i j
i j

i j

i j (7)

The optimization of the low-dimensional representation is
achieved by the minimization of the KL divergence. One
disadvantage of using KL divergence is that its loss function
mainly preserves only local distances, and there is no guarantee
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regarding the preservation of large high-dimensional distances
in a low-dimensional space. The t-SNE projections were
performed using the scikit-learn package implementation.40

2.1.4. Uniform Manifold Approximation and Projection.
UMAP is a fuzzy topology-based dimensionality reduction
method.31 Similar to t-SNE, UMAP constructs probability
distributions in the high-dimensional manifold as

= σ−p eij
d x x( , )/i j i

(8)

An important difference in the UMAP probability
distributions is the local distance metric, which is unique for
every pair of points. The distance probability in the low-
dimensional space in UMAP is given by

= + − −q a y y(1 ( ) )ij i j
b2 1

(9)

Another main difference between UMAP and t-SNE is the
loss function to be minimized. KL divergence is used as loss
function in t-SNE. In UMAP, cross-entropy (CE) is the loss
function and is defined as
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The CE function provides the advantage of being able to
preserve the correlation between distances in the high and low
dimensions for both small and large distances. UMAP
projections were performed using the Python implementation
available at https://github.com/lmcinnes/umap.
2.1.5. UMAP Hyperparameter Selection. Two crucial

hyperparameters for UMAP usage are the number of neighbors
and the minimum distance. The first parameter balances the
accuracy of the local structure versus global structure of the
data by varying the number of points in the local
neighborhood. Small values of this hyperparameter reflect
high accuracy in the local data structure, whereas large values
reflect high accuracy in representing the global data structure,
at the cost of the local one. The minimum distance parameter
dictates the minimum distance between data points. Small
values allow data clustering, whereas high parameters favor
scattered data and should better preserve the global data
structure.31 The UMAP hyperparameters were selected based
on a benchmarking performed using the Pearson correlation
and the cluster similarity score as criteria. We found that with a
number of neighbors of 1000 and a minimum distance of 1,
UMAP delivered the best performance for our data set, as
shown in Figure S1.
2.2. Molecular Dynamics Simulations. The crystal

structures of VVD in its dark (PDB ID: 2PD736) and light
(PDB ID: 3RH836) states were taken from the Protein Data
Bank (PDB).46 All of the structures were cut to start at residue
37 for consistency. All structures were modeled with the flavin
mononucleotide (FMN). In the light state, FMN was modeled
with the photoinduced covalent bond between the FMN and a
proximal CYS and the protonated N5. The force-field
parameters for the FMN in the dark and light states were
obtained from a previous study.47 In this study, a total of four
systems were simulated: a VVD dark crystal structure with the

FMN modeled in the dark state (native dark state), a VVD
light crystal structure with the FMN modeled in the light state
(native light state), a VVD dark crystal structure with the FMN
modeled in the light state (transient light state), and a VVD in
the light state with the FMN modeled in the dark state
(transient dark state).
The protonation state of the histidine has been confirmed

using the ProteinPrepare tool at playmolecule.com.48 The
preparation of the structures and the heating step were
performed using CHARMM c41b1.49 In particular, hydrogen
atoms were added to the structures. The structures were then
solvated using TIP3P water molecules and neutralized by
adding chloride atoms and sodium cations. After the addition
of the solvent, the size of the simulation box was 64.70 Å3. The
structures were minimized first using the steep descent method
for 200 steps followed by the adopted basis Newton−Raphson
minimization for 1000 steps. The NVT dynamics of 24 ps was
carried out to increase the temperature of the system from 0 to
300 K. For each structure, three 10 ns NPT equilibration
dynamics simulations starting with random initial velocities
were carried out. The final coordinates and velocities were
used to start a production simulation of 1.1 μs trajectory, in
which the first 100 ns was considered as equilibration and
excluded from the final analysis. A total of 12 μs of MD
trajectories was generated. The simulations were carried using
OpenMM 7.3 on a graphics processing unit (GPU).50 A
Monte Carlo barostat was used in the NPT simulations to
maintain constant pressure.51 The NVT simulations were
performed using the Langevin integrator.50,51 For the
integrator, a friction coefficient of 1 ps−1 was implemented.
For all simulations, the covalent bonds containing hydrogen
atoms were constrained using the SHAKE method.52 A step
size of 2 fs was used. Frames were saved every 100 ps for the
simulations. Periodic boundary conditions were applied, and
particle mesh Ewald method was used to calculate the long-
range interactions.53 The cutoff used for the long-range
interactions was 12 Å.

2.3. Analyses. 2.3.1. Root-Mean-Square Deviation. For a
system represented in Cartesian coordinates, the root-mean-
square deviation (RMSD) is calculated to measure the
deviation from a reference structure by taking the square
root of the averaged difference between the atomic coordinates
vectors of a reference structure, ri

0, and the structure in the ith
frame among total of N frames, ri

=
∑ −= r Ur

N
RMSD

( )i
N

i i1
0 2

(11)

Ui is the rotation matrix to superimpose the structure in the
ith frame against the reference structure.

2.3.2. Pearson Correlation Analysis. The Pearson correla-
tion is a measure of linear correlation between two variables.54

In this study, Pearson correlation is applied to evaluate how
well the distances in the high-dimensional manifold are
preserved in the embedded manifold. The distance metric to
evaluate distances between points in both the high- and low-
dimensional manifolds is the Manhattan distance. This type of
distance has been shown to be a better metric of distance in
high-dimensional spaces.55 The first step in building the
Pearson correlation is building the covariance. The covariance
is then divided by the square root of the product of the
variance of each variable.
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ρ
σ

=x y
x y

x y
( , )

( , )

Var( )Var( ) (12)

The Pearson correlation is a dimensionless variable with
values in the range of [−1, +1]. The negative values represent
anticorrelation, and positive values represent correlation
between two variables.
2.3.3. Cluster Similarity Score. The similarity between

clusters in the high and low dimensions is measured using a
cluster similarity score. The cluster similarity score is
computed by comparing the population of the clusters
obtained in the reduced dimensional space with the ones of
the clusters in the high-dimensional space. Two populations
will be compared to check whether the same data point is
present in both high- and low-dimensional clusters. Once the
cluster with the highest similarity in the low dimension is
identified, it will be excluded in the similarity search for the
subsequent clusters. This guarantees the unique pairing
between clusters in the high- and low-dimensional spaces.
For each cluster, the number of points that are allocated in the
same cluster in both the high- and low-dimensional spaces are
summed and given as percentage values to the total number of
data points in the trajectory.

=
∑

*= s
CS

frames
100c c1

tot

(13)

2.3.4. Silhouette Coefficient. The silhouette coefficient
(SC) is a metric to evaluate the clustering performance.56 This
coefficient is calculated by comparing the mean distance
between a cluster and the points in the nearest cluster (x) and
the mean distance of the points within a cluster (y).

=
−y x

x y
SC

( )
max( , ) (14)

The SC is maximized when clusters are well separated from
each other.
The calculations of the SCs were performed using the

implementation available in the scikit-learn package.40

2.3.5. Machine-Learning Classification: Random Forest.
The random forest method is an ensemble learning method
comprising multiple decision trees for classification.57 In each
step of developing decision tree model, the model uses the
parameters Φ = (j,t) composed of the data features j and a
threshold t to divide the data in two parts based on the
threshold.

θ θ= | ≤ = | ≥Q x y x t Q x y x t( ) ( , ) , ( ) ( , )j jleft right (15)

with x being the training data and y being the training label.
The Gini impurity criterion was used to assess the quality of
the model. The Gini impurity score represents the likelihood
of an incorrect classification of a new random variable of
feature t according to the existing label distribution.

= Σ −G p p(1 )k k k (16)

By constructing multiple random decision trees, the random
forest method minimizes the potential bias toward a certain set
of features in each specific decision tree model.58,59 The
random forest method implemented in the scikit-learn Python
package was used in this study.40

2.3.6. Markov State Model. The MSM is used to estimate
the conditional transition probabilities among nonoverlapping

states.60 The collection of the transition probabilities among n
states is represented as the transition matrix, T, with its

element calculated as = ∑Tij
c

c
ij

k ik
, where cij is the count of the

number of times the trajectories transition from a state i to a
state j within a certain time interval, Δt, called the lag time, τ.
In this study, the first two components of each

dimensionality reduction method were used as CVs to
construct the MSM. The MSMBuilder Python package was
used to build the MSM.44 The default hyperparameters
provided by MSMBuilder were used for the analysis. The
ergodic cutoff was turned on, and the maximum likelihood
method was used to achieve the reversibility of the transition
matrix. A lag time of 30 ns was chosen.

2.3.7. Transition Path Theory. To study the path of the
conformational changes along the allosteric process, the
transition path theory (TPT) was used.61−63 The central
element of TPT is the committor probability, qi

+. The
committor probability represents the probability of the state
i belonging to the macrostate A to transition to the macrostate
B instead of staying in the macrostate A.63 Per definition, qi

+

for state i belonging to A or B is 0 or 1, respectively.64 The
committor probability for the intermediate states can be
calculated as

∑ ∑− + = −+

∈

+

∈

q T q T
i I

ik k
i B

ik1
(17)

with the committor probability increasing along the path. The
transition probability matrix built from the MSM contains all
transitions among different macrostates including the ones that
return to the initial state. The effective flux, f ij, contains the
probability flux that contributes only to the transition A to B

π= − +f q T qij i i ij j (18)

The net flux, which does not account for detours, is
computed by

= { − }+f f fmax 0,ij ij ji (19)

The MSMBuilder implementation of TPT was used in this
study.44

The implementation of the cluster similarity score, Pearson
correlation analysis, clustering RMSD, and grid-search for
random forest is available at https://github.com/
smutaogroup/UMAP_analyses.

3. RESULTS
3.1. Comparison Between UMAP and Other Dimen-

sionality Reductions. 3.1.1. Preservation of the Data
Structure. Protein conformations and dynamics are the key
factors underlying protein functions. Our investigation started
by comparing the preservation of the structure of the data in
the high-dimensional manifold, expressed in Cartesian
coordinates, into a lower dimensional space. The correct
representation of the high-dimensional data structure into a
lower dimension is crucial for the interpretation of biological
information such as reproduction of free-energy barriers,
evaluating transitions between conformations, and so on.
To evaluate the preservation of the data structure in low-

dimensional space, the Pearson correlation analysis was carried
out. Pearson correlation is a measure of linear correlation
between two independent variables, X and Y. In this analysis, X
and Y are the distances in the high- and low-dimensional
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spaces, respectively. The distances in the projected low-
dimensional space should reflect the original distances in the
high-dimensional space. Frames saved every 1 ns were
extracted from the MD trajectories and reduced to a 2D
representation using UMAP, t-SNE, PCA, and tICA.
The Pearson correlation scores for UMAP, t-SNE, PCA, and

tICA are 0.87, 0.90, 0.89, and 0.84, respectively (Figure 1).
Thus the distances between points in the projections obtained
from all methods are highly correlated with the distances in the
high-dimensional Cartesian space (Figure 1A). Figure 1B
shows the distance values for the same pair of data points in
the low- and high-dimensional spaces. We observe that
whereas PCA has a very narrow distribution, indicating high
correlation overall, the deep-blue points for small distances
suggest that this method does not provide an accurate
representation of the local data structure.
3.1.2. Local Structure Assessment via Microclustering

Analysis. An accurate representation of the local data structure
through clustering analysis is crucial for further analyses
regarding protein kinetics. The large deviation among
structures within the same cluster could result in inaccurate
free-energy barriers and interfere with consequent analysis
such Markov state modeling. To evaluate the quality of
clustering analyses using various dimensionality reduction
methods, we investigate the preservation of the local data
structure in the following clustering analyses using these
methods.
The 12 μs of VVD trajectories were clustered into 1000

microstates using the k-means clustering method and the CVs
of the different embedding as input variables. The averaged
RMSD of all structures within each microstate was calculated
to measure the structural similarity within each microstate. To
retain structural and dynamical information, each microstate
should contain a similar degree of similarity corresponding to
the cluster in the high-dimensional manifold. Figure 2 shows
the comparison of the different 2D representation in terms of
the averaged RMSD with the nonreduced Cartesian
representation. UMAP outperforms other dimensionality
reduction methods in terms of the similarity within each
microstate, achieving a high degree of similarity to the

nonreduced Cartesian representation. The second best method
in this aspect is t-SNE, followed by PCA and tICA. Both
UMAP and t-SNE methods consistently have RMSD values <1
Å, which is desired for an ideal dimensionality reduction
method and has been proposed as a threshold of structural
dissimilarity within a macrostate needed to avoid the presence
of energy barriers within the structural cluster.64,65

3.1.3. Division of the Conformational Space into Macro-
states. The protein conformational landscape is characterized
by a series of low free-energy basins comprising low-energy
conformations. To correctly cluster different structures into
metastable states, the k-means clustering method was used to
build clusters with the mean RMSD within the cluster smaller
than 1 Å. As previously mentioned, structures with an RMSD
smaller than 1 Å are expected to belong to the same free-
energy basin and therefore the same metastable state. This
procedure ensures that no artificial free-energy barriers are
hidden within each cluster. In this study, a total of 16 clusters
were found to be the lowest number of clusters that had a
mean intracluster RMSD within 1 Å and a maximal intercluster
difference (Figure 3). These 16 clusters are hereby referred to
as macrostates.
To evaluate how well the clustering in the low-dimensional

space represents the original data in the high-dimensional
space, we calculated a similarity score by comparing the

Figure 1. Pearson correlation analysis of UMAP, t-SNE, PCA, and tICA calculated based on the 2D reduced representations. (A) Pearson
correlation values between projected and high-dimensional trajectories. (B) Scatterplots where the X axis represents the distance in the high-
dimensional space and the Y axis represents the distance in the low-dimensional space. The coloring represents the agreement between the original
and projected distances. Red and blue represent agreement and disagreement, respectively.

Figure 2. Averaged RMSD of 1000 microstates for various 2D
representations and Cartesian coordinates. Microstates were sorted
based on the average RMSD values.
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population of each cluster in the reduced embedding with the
corresponding cluster in the high-dimensional manifold. The
first step was the assignment of the clusters in the low-
dimensional embedding to the corresponding high-dimen-
sional clusters. After the assignment was made, for each pair of
clusters, one in the high-dimensional space and one in the low-
dimensional space, the number of points shared by both
clusters was counted. The total number of these shared points
was summed and converted to the percentage to the total
number of data points. Figure 4 shows that UMAP improves

the t-SNE performance and outperforms PCA and tICA in the
similarity score. This demonstrates that UMAP could
appropriately assign protein structures into their corresponding
functional metastable states (macrostates) for further analyses.
Another important criterion for the dimensionality reduction

method is cluster separation. Specifically, an adequate low-
dimensional projection should retain the separation that these
macrostates have in the high-dimensional space. The
projection of the macrocluster is plotted in Figure S2.
To quantitatively assess the quality of clustering projections,

we employed the SC. As described in the Materials and
Methods section, the SC is a clustering quality assessment

criterion that evaluates the separation distances between
clusters. SCs range from −1 to +1, where positive values
indicate better separation between clusters and negative values
indicating their overlap. The SC for each method and in the
Cartesian space are listed in Table S1. In Figure 5, we plot the

difference between the SC of each dimensionality reduction
method and the SC of the original Cartesian space. In this
comparison, a negative value indicates that a projection using a
certain dimensionality reduction method increases the overlap
among the macrostates compared with the results in Cartesian
space. A positive value indicates a higher separation, possibly
an overseparation, among macrostates in the projection
compared with the results in Cartesian space. When only
one dimension is used to project the conformational space,
UMAP and t-SNE offer a more faithful projection of the
macroclusters, demonstrated by the small values of the SC
difference. When two dimensions are considered, a similar
amount of divergence in different directions is observed for the
projection for all methods. Interestingly, the nonlinear

Figure 3. Selection of the number of macrostates based on the cluster RMSD. (A) Heatmap of the RMSD within each state. (B) Violin plot of
RMSD values within states (blue) and interstates (orange).

Figure 4. Similarity, expressed in percentage, between cluster
populations in low-dimensional representations and high-dimensional
Cartesian space.

Figure 5. Comparison of the silhouette coefficient for UMAP, t-SNE,
PCA, and tICA projections versus Cartesian space results. Bar heights
represent the deviation in the coefficient from the Cartesian case.
Positive values represent the higher separation of the clusters in the
projected space. Negative values represent the overcrowding of the
clusters in projected spaces.
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methods UMAP and t-SNE tend to overseparate the clusters,
whereas the linear PCA and tICA tend to increase their
overlap. When three dimensions are used, both UMAP and t-
SNE still lead to higher separation than the Cartesian results.
PCA method results in a slightly higher separation. tICA still
results in a higher overlapping than the Cartesian results.
3.1.4. Machine-Learning Classification. In our previous

studies, it was demonstrated that machine-learning-based
classification for the macrostates is an effective approach to
delineate protein allosteric mechanism related to individual
residues.27,66−68 To build effective machine-learning classi-
fication models, it is desired to have dimensionality reduction
methods that could enhance the quality of classification
models. We used the random forest method as a machine-
learning classification model. The best combination of
hyperparameters for the input data from each dimensionality
reduction method was identified using grid searches (Table
S2). Using UMAP and t-SNE, the machine-learning classi-
fication models for the macrostates generated using the two
most dominant dimensions reached 95% accuracy (Figure 6).

As a comparison, the similar prediction accuracy was much
smaller for PCA and tICA, 66 and 70%, respectively. This is in
the agreement with their performance of the projections of the
16 macrostates (Figure 5), in which macrostates generated
using PCA and tICA methods had more overlaps than those
from UMAP and t-SNE methods.
3.1.5. Kinetics. Proteins are in constant motion, whether

when carrying out their biochemical functions or not. One
common approach to probe protein dynamics is building
MSMs to estimate probabilities for protein transition among
different macrostates. To build an effective MSM, it is
important for a dimensionality reduction method to retain
information about how proteins transition among these
macrostates. To evaluate the retaining of such information,
we analyzed the relaxation time scales in MSM, also referred to
as implied time scales, using different dimensionality reduction
methods with comparison to the results using Cartesian
coordinates.19 The relaxation time scale can be interpreted as
the time needed for a system to change its state.69 Because
protein functions are presumed to be strongly correlated with
protein slow motions, a well-behaving dimensionality reduc-
tion method is expected to preserve slow degrees of freedom of

protein simulations for the accurate description of protein
kinetics related to their functions.
Overall, all methods behaved well to produce the implied

time-scale ranges close to the Cartesian coordinate results,
except for PCA (Figure 7). UMAP produces implied time

scales that were the closest to the Cartesian coordinates results,
especially with the lag time longer than 60 ns. The t-SNE
method was the second best, and its implied time scales also
converged to the Cartesian coordinates results with the lag
time longer than 70 ns. Although tICA also produced a result
close to the one of Cartesian coordinates, it overestimated the
implied time scales of the system, and its results did not
converge to the Cartesian coordinate results. This comparison
demonstrates that UMAP could retain protein dynamics
information to describe the kinetics of the target system.
The transition matrix produced in each MSM provides

transition probability between each pair of macrostates as
detailed kinetics information on the system. To further
evaluate the performance of each dimensionality reduction
method to retain kinetics information on the system, we
implemented a transition matrix error analysis by comparing
the transition matrices from different dimensionality reduction
methods with the Cartesian coordinate results as the reference.
For this comparison, we used a total of 16 macrostates
identified in Section 3.1.3. The absolute value for the
difference of each transition matrix element is listed and
illustrated as heatmaps (Figure 8). To quantify the deviation
from the high-dimensional transition matrix, the deviation sum
was calculated for each method as 8.26, 9.33, 14.06, and 9.39
for UMAP, t-SNE, PCA, and tICA, respectively. UMAP
outperforms the other dimensionality reduction methods. This
result indicates that UMAP well captures the system kinetics,
related to the free-energy surface. Moreover, tICA performs
similarly to t-SNE and UMAP.

3.2. How Many Dimensions Are Needed? Ideally, a
good dimensionality reduction method should retain both
structural and kinetic information on a trajectory using a
minimal number of dimensions possible. Therefore, the
amount of information that could be retained by the most
dominant components generated in each method was
evaluated. One of the goals of this analysis is to determine
how many dimensions are optimal for retaining the structural
and kinetic properties of the model system using each method.
Both the Pearson correlation and the transition matrix error for
each method were used to evaluate the structural and kinetic
information retention. The Pearson correlation is used to
identify the structural similarities between the original data in
the high-dimensional space and the low-dimensional embed-
ding using various numbers of dimensions.

Figure 6. Machine-learning prediction accuracy of the different
macrostates based on the 2D input of the low-dimensional
representation using random forest.

Figure 7. Comparison of implied time scales of different methods.
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Using the Pearson correlation analysis, the correlation
between the original data and the new data projected onto
different numbers of components starting with one was
calculated and plotted for the selected methods (Figure 9A).
For UMAP, t-SNE, and PCA, the Pearson correlation is >0.80
when the original data are projected onto the most dominant
dimension and >0.90 with the top two dominant dimensions
being used. Both PCA and t-SNE display the best Pearson
correlation when using one or two components. For tICA, the
Pearson correlation is much lower compared with the other
three methods, making it less ideal for the analysis of the
protein conformational space.
To evaluate the kinetic information retention using various

numbers of dimensions, the transition matrix error analysis was

carried out for each method when using different numbers of
components for data projection. The total of absolute
transition matrix error for each case is plotted for comparison
(Figure 9B). When using only one or two components for data
projection, PCA displays the highest errors, probably due to its
linearity nature. tICA also displays significant errors when
using only one or two components for data projection.
Surprisingly, t-SNE also displays significant errors when using
only one or two components for data projection. UMAP
consistently displays the lowest transition matrix error when
using one, two, or three components for data projection.
Overall, the above analyses ensure the applicability of UMAP
with a minimal loss of structural and kinetic information, two
critical aspects in the study of protein biology.

Figure 8. Heatmap representation of the divergence of the different transition matrices obtained using different dimensionality reduction methods
from the high-dimensional transition matrix.

Figure 9. Performance of different methods regarding the number of components used in the projection. (A) Pearson correlation between the
high-dimensional representation and the reduced representation of the data at varying numbers of projected dimensions. (B) Transition matrix
error between the high-dimensional representation and the reduced representation of the data at varying numbers of projected dimensions.

Figure 10. Benchmark using different dimensionality reduction methods. (A) Time in seconds required for dimensionality reduction at various
numbers of projected dimensions. (B) Time in seconds required for 2D projections using different number of frames as data points.
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3.3. Benchmark. From a practical point of view, another
crucial factor in choosing a dimensionality reduction method is
its computational cost. We carried out some benchmark
calculations to compare the computational cost of UMAP, t-
SNE, PCA, and tICA for various numbers of components for
projection (Figure 10A). For PCA, tICA, and UMAP, the
computational cost remains close to constant regardless of the
number of components used for projection. However, the
computational cost increases exponentially with the number of
components used for projecting when using t-SNE. In our
benchmark calculation, we could perform the calculation only
up to five dimensions with t-SNE method. The computational
cost with only one or two components for data projection is
also significantly higher than that of all of the other methods by
factors of 5 to 8. This greatly limits the applicability of t-SNE
for protein dynamics analyses. Although the computational
cost for PCA and tICA is close to negligible as linear methods,
the computational cost for UMAP as a nonlinear dimension-
ality reduction method is not much higher, making UMAP a
very feasible option for dimensionality reduction analysis. All
benchmark calculations were performed with NVIDIA GPUs,
which were configured with dual Intel Xeon E5-2695v4 2.1
GHz 18-core “Broadwell” processors and 256 GB of DDR4-
2400 memory.
The benchmark calculations were also carried for two

components projection with different numbers of data points
used, as 2D is the most widely used for protein dynamics
analyses. Regarding the speed for varying the number of points,

the number of data points was varied by progressively
increasing the stride between consecutive frames in the
trajectories. Figure 10B shows that UMAP achieves similar
speed performance as PCA and tICA. Whereas its computa-
tional time increases with the increase in the sample number,
its speed remains close to the linear methods. The time
required by t-SNE significantly exceeds the time required by
tICA, PCA, and UMAP.

3.4. Leading to Insight into Protein Function
Mechanism. The purpose of using dimensionality reduction
methods for protein dynamics analyses is providing mecha-
nistic insights into protein structures and functions. Because
there is no universal standard to evaluate such performance,
some demonstrative analyses were carried out for the model
system used in this study. VVD is a well characterized circadian
clock protein that has been shown to undergo conformational
changes depending on the light condition. Following the
rational of the sections previously discussed, the conforma-
tional space of this protein sampled in the MD simulations has
been clustered in 16 macrostates projected onto the 2D surface
using the top two components from UMAP analysis (Figure
11A). In this plot, blue is used to indicate the dark state, lighter
blue is used to indicate the transition dark state, red is used to
indicate the light state, and lighter red is used to indicate the
transition light state. The light (red) and dark (blue) states in
the UMAP projections are well separated (Figure 11A), which
is ideal for studying proteins with distinct functional states.

Figure 11. Demonstration of the protein function analysis using the UMAP method. (A) UMAP 2D projection. Reduced space was clustered in 16
macrostates according to the previously presented criteria. The clusters were color-coded based on their population. Dark states are blue, and light
states are red. The dashed line represents the division between dark and light areas. Arrows represent the pathway for allosteric conversion from
fully dark to fully light states. (B) Population state analysis of the macrostates involved in the VVD allosteric process. (C) Visualization of the four
representative states involved in the allosteric process.
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With a well-separated representation of functional states in
the reduced dimensions, the TPT could be used to provide
detailed kinetics of transitions among different macrostates.
Using TPT, it was identified that the major transition pathway
from the dark state (State 6) to the light state (State 12)
gradually transitions via the transition pathway through State 4
belonging to the transient dark state and State 7 belonging to
the transient light state (Figure 11B).
The α-helix movement and undocking of the N-terminus as

key changes are illustrated in the representative structures
(Figure 11C). These movements were recognized to be crucial
steps in VVD allostery in the comprehensive mechanistic study
done on this system by Zhou et al.27 This analysis not only
demonstrates the ability of UMAP to capture the fundamental
biological properties of the system but also showcases that
UMAP can be used as a visualization tool for the protein
conformational space.

4. DISCUSSION
MD simulations have been used as indispensable approaches
for the studies of protein functions within the dynamics
framework. Although the time scales affordable for the MD
simulations have been increasing significantly in recent years,
they are still far from being comparable to the actual time
scales for the protein biological functions. Even with this
limitation, the curse of the dimensionality still prevents direct
analyses of many properties of protein dynamics. Therefore,
dimensionality reduction methods have been serving as
essential tools to process protein MD simulations to gain
insight into protein dynamical properties including both
conformational space and kinetics information.
RMSD is a simple and effective measurement of conforma-

tional deviation between two structures. Using this quantity,
the ability of each dimensionality reduction method to
represent the conformational space sampled from the
simulation could be accurately evaluated. The reason that
the nonlinear dimensionality reduction methods, including
UMAP and t-SNE, could produce much better clustering
results than the linear methods, including PCA and tICA, is
probably because most protein conformational changes have
intrinsic nonlinearity, such as bond bending, dihedral angle
rotations, and global motion of protein structures. UMAP
produces better results than t-SNE when compared with the
Cartesian coordinate results as the benchmark (Figure 2),
suggesting that this method is approaching methodological
limit of dimensionality reduction methods in general. This is
also supported by the highest similarity score of UMAP among
all four methods (Figure 4). It should be noted that the
comparison presented here is by no means complete or
exhaustive. Therefore, it should not be concluded that UMAP
is the best option to represent the conformational space
sampling in all cases.
In addition to representing conformational changes well, it is

more important and challenging to retain the kinetics
information on protein dynamics when projecting the
simulation trajectories onto reduced dimensional space.
Because this is an active research area, a universal standard
to evaluate kinetics information is yet to be determined.
Therefore, the convergence test of implied time scales in MSM
is used as the benchmark for kinetics information retention.
Although it is not surprising that tICA demonstrates a closer
trend to the results of Cartesian coordinates, as tICA was
developed to capture the slow and global motion of proteins, it

is somewhat suspicious that the tICA results do not converge
to the Cartesian coordinate results with longer lag times.
Overall, UMAP is demonstrated as a more balanced option
than both the tICA and t-SNE methods. With smaller lag
times, UMAP results are also close to the Cartesian coordinate
results, similar to tICA (Figure 7). With longer lag times,
UMAP results display better convergence to the Cartesian
coordinates results than t-SNE (Figure 7). The superiority of
UMAP for kinetics information retention is also supported by
the high accuracy of the machine-learning-based prediction
model using UMAP projections (Figure 6). The fact that
UMAP results are better than other methods in both
conformation and kinetics representations is promising.
Although there is no direct evidence, the satisfactory
performance of UMAP to preserve protein kinetics information
could be partially due to the good representation of protein
conformational space.
Because of the limitation of the human perception of

dimensionality, the dimensions of graphical representation of
protein dynamics analysis have been limited to two. This is
validated by the evaluation of the Pearson correlation between
the projected data in low-dimensional spaces and the original
data and transition matrix error analyses (Figure 9). Both t-
SNE and PCA methods display high Pearson correlation with
one or two dimensions for data projection. As a linear method,
PCA is not always suitable for protein dynamics simulations,
leaving t-SNE as a better choice in this regard. UMAP
produces comparable Pearson correlations with one or two
dimensions for data projection. Interestingly, the UMAP
method produces much lower transition matrix error than all
of the other three methods, making it a well-balanced method
for low-dimensional space projection. Considering the almost
constant computational cost of the UMAP method, which is
similar to those of PCA and tICA and much lower than the
exponentially increasing computational cost of t-SNE (Figure
10), UMAP clearly serves as a viable option for dimensionality
reduction analyses of complexed biomolecular systems,
including proteins.

5. CONCLUSIONS
In this study, the suitability and performance of the UMAP as a
new fuzzy topology-based dimensionality reduction method for
the simulation of macromolecules was systematically evaluated
and compared with other widely used dimensionality reduction
methods, including PCA, tICA, and t-SNE. Using the
Cartesian coordinates representation as the benchmark, it
was demonstrated that UMAP could well retain the protein
conformational information after the projection of original
data. More importantly, the UMAP could also retain the
protein kinetics information, which is critical to gain insight
into protein functions within the dynamics framework. The
balanced performance of UMAP to preserve protein kinetics is
achieved through building an MSM based on the UMAP
projection with well-preserved conformational space informa-
tion. As a nonlinear dimensionality reduction method, UMAP
displays similar overall performance and is more balanced
between conformational and kinetics information retention
than t-SNE. In addition, the computational cost of UMAP
remains close to constant regardless of the number of
dimensions being used for data projection. As a comparison,
t-SNE requires exponentially increasing computational cost
regarding the number of dimensions for the target data
projection. Overall, the UMAP method is a well-behaving and
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balanced dimensionality reduction method for in-depth
biomacromolecule simulation analyses to gain insight into
both structure−function and dynamics−function relations.
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