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Abstract

Machine learning methods have helped to advance wide range of scientific and tech-

nological field in recent years, including computational chemistry. As the chemical

systems could become complex with high dimension, feature selection could be criti-

cal but challenging to develop reliable machine learning based prediction models,

especially for proteins as bio-macromolecules. In this study, we applied sparse group

lasso (SGL) method as a general feature selection method to develop classification

model for an allosteric protein in different functional states. This results into a much

improved model with comparable accuracy (Acc) and only 28 selected features com-

paring to 289 selected features from a previous study. The Acc achieves 91.50% with

1936 selected feature, which is far higher than that of baseline methods. In addition,

grouping protein amino acids into secondary structures provides additional interpret-

ability of the selected features. The selected features are verified as associated with

key allosteric residues through comparison with both experimental and computa-

tional works about the model protein, and demonstrate the effectiveness and neces-

sity of applying rigorous feature selection and evaluation methods on complex

chemical systems.
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1 | INTRODUCTION

Proteins are important macromolecules in biological systems to

carry out wide range of biological functions in all forms of lives on

earth. It is critical to understand protein functions as basic knowl-

edge and for potential bioengineering applications. Protein struc-

tures form the foundation of the understanding in protein function.

However, proteins carry out their functions through constant

dynamical processes.1–4 Quantitative characterization of protein

dynamics remains as the focus of structural and computational biol-

ogy. Protein allostery is one of dynamical phenomena in which sig-

nals or regulation are transmitted from distal perturbation sites to

functional sites in proteins.5–16 Many computational and experi-

mental techniques were developed to probe protein allostery.17,17–

33 Molecular dynamics simulations are the main computational

method to explore protein dynamics thanks to the increasing com-

puting powers. Accordingly, effective and efficient analysis

methods are indispensable to interrogate simulations data to delin-

eate protein functions and their relations with structures, especially

individual residues.34,35 Dimensionality reduction methods are

effective means to inspect and visualize overall distribution of the

simulations.36–41 However, there is an urgent need for analysis

method to shed lights on the relations between the protein func-

tions and individual residues. Recently, we introduced machine

learning methods to develop classification models to differentiate

protein's allosteric states with high accuracy (Acc). In addition toFangyun Bai and Kin Ming Puk contributed equally to this work.
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the prediction power, the machine learning methods also provide

feature importance for each feature, which is directly related to

individual amino acid residues, employed for the model

development.

In this regard, applying machine learning and feature selection to

identify the allostery related residues are a relatively new research

direction. Recent literature42–44 shows that the use of efficient

machine learning algorithms such as random forest,42,44 support vec-

tor machine43 and neural network43,45 allows promising learning result

in terms of classification result in chemistry. For example, Zhang

et al.46 applied the convolutional neural networks method to identify

the DNA-protein binding sites. Li et al.47 proposed an improved artifi-

cial bee colony algorithm to optimize protein secondary structure. As

some of the classifiers such as lasso,48 decision tree49 and support

vector machine50 are built-in feature selector at the same time, fea-

tures used to build the learning model can be further analyzed for

meaningful interpretation.

Furthermore, there are three categories of supervised feature

selection: (1) wrapper method, (2) filter method, and (3) embedded

method. Wrapper method uses a predictive model to score feature

subsets. Each new subset is used to train a model, which is tested

on a hold-out set. Counting the number of mistakes made on that

hold-out set (the error rate of the model) gives the score for that

subset. Subset of features with the best performance are selected.

The advantages of wrapper method are that the performance score

is easy to compute and it identifies an optimal subset to build the

learning model without specifying the number of features required

beforehand. However, it is relatively slower than the other two

methods. Examples include sequential forward selection and

sequential backward selection. Filter method uses a proxy measure

instead of the error rate to score a feature subset. This measure is

chosen to be fast to compute, while still capturing the usefulness of

the feature set. A performance score will be assigned to each fea-

tures, and features with the highest score will be chosen. Filter

method is fast and intuitive, but the number of features needs to

be specified. Examples include minimum redundancy maximum

relevance,51 Pearson's correlation, linear discriminant analysis, and

ANOVA. Embedded method combines the qualities of filter and

wrapper methods. It is implemented by algorithms that have their

own built-in feature selection methods. Examples include lasso,48

support vector machine and sparse group lasso (SGL) as applied in

this work. The advantages of using embedded method include

(1) the measure of learning performance (e.g., Acc, specificity [Spe])

can be used for parameter tuning instead of using a proxy measure

or a measure which is not relevant to the learning performance

(as in wrapper and filter methods), and (2) sparse learning can be

easily achieved in the embedded method to achieve effectively

learning model, thus reducing the possibility of over-fitting. For

example, Li et al.52 proposed an adaptive SGL which can effectively

perform grouped gene selection.

Continued from Zhou et al.,45 this work aims at selecting and ana-

lyzing the function-related residue for protein-state recognition with

sparse group learning. In this study, to differentiate protein's allosteric,

we use SGL to select important features, and use the selected feature

to train a classifier to achieve high performance. The experimental

results demonstrate that our method achieves a high-prediction per-

formance through using minor features and outperforms baseline

methods.

The main contributions in this paper can be summarized as

follows:

1. The large number of atomic distances from protein be grouped into

relatively small number of structures.

2. We use SGL to develop classification models to differentiate pro-

tein's allosteric states with high Acc. In addition to the prediction

power, the SGL method also provide feature importance for each

feature, which is directly related to individual amino acid residues.

The highly ranked features have high likelihood to play important

role in protein allostery.

3. Bayesian hyperparameter optimization is used to tune the parame-

ters of SGL model and support vector machine algorithm to

achieve a higher performance.

4. To evaluate the classification performance of our method, it is

compared against baseline algorithms. The experimental results

demonstrate that the used approach outperforms other algorithms

in terms of identification of protein-states.

The remainder of this paper is organized as follows. Section 2

introduces the data materials and the methodology. Section 3 pre-

sents the experimental result to verify the effectiveness of the pro-

posal method, and then analyze the selected features, followed by a

discussion. Finally, the conclusions are drawn in Section 5.

2 | DATA COLLECTION AND
METHODOLOGY

In this section, we first introduce the data sources. Subsequently, the

details of methods of this paper are given. By using the SGL, the fea-

tures are selected during the training phase, and then the selected

features are used as training feature set to train the classifier. Next,

the whole experiment process is presented. Finally, the baseline

methods are introduced.

2.1 | Data collection using molecular dynamics
simulation

In this study, we employed the second PDZ domain (PDZ2) in the

human PTP1E protein as the data source to develop feature selection

and prediction models. The PDZ2 protein is a typical dynamics-driven

allosteric protein upon binding with its allosteric effectors. This type

of protein has extensively experimental and computational investiga-

tions in protein research. We adopted the PDZ2 protein as a test case

to develop and evaluate the proposed structured sparse learning

based feature selection and classification model to identify key
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features that potentially drive the allostery of the PDZ2 protein. As

the developed machine learning method is a general approach, it can

be conveniently used as an effective machine learning tool for other

protein research studies.

The initial structures for PDZ2 protein are 3LNX and 3LNY for

unbound and bound states, respectively. Both unbound and bound

states are immersed in explicit water boxes using TIP3P model (ref),

and sodium cations and chloride anions were added to the simulation

boxes to neutralize the simulation boxes. Total of 13 independent sets

simulations each with length 34 ns were carried out for both state and

subjected to machine learning model analysis. The canonical ensemble

(NVT) Langevin MD simulations were used for the production run. For

all simulations, 2 femtosecond (fs) step size was used and bond for

hydrogen atoms were constrained. Frames were saved every 10 ps.

Periodic boundary condition was applied in the simulations. All simula-

tions were carried out using CHARMM simulation package version

40b1 and the CHARMM22 force field. For all the 34 ns simulation, the

initial 4 ns were treated as equilibrium. Therefore, each simulation set

subjected to analysis is 30 ns with 3000 frames extracted. Among

13 simulations of each state, 10 simulations were randomly selected as

training sets, and remaining three simulations were used as testing sets.

In previous work,45 there are 60,000 training observations and

18,000 testing observations. The training and testing observations

were combined together as a single dataset for better evaluation with

cross validation (as introduced later). The total number of features is

4743: the 1st� 4371th features are the inter-distance among the

94 residues, the 4372nd� 4464th features are the sine values of Phi

angles along the protein backbone, the 4465th� 4557th features are

the cosine values of Phi angles along the protein backbone, the

4558th� 4650th features are the sine values of the Psi angles along

the backbone, and the 4651st� 4743th features are the cosine values

of the Psi angles along the backbone. Detail can be found in Table 1.

To summarize, each residue can be assigned to one of the 19 groups,

as shown in Table 2. PDZ2 structure with these 19 groups is illus-

trated in Figure 1. In this study, the features are grouped into feature

groups. The details of the 189 inter-residual groups can be found in

Table 3.

2.2 | Machine learning methods

2.2.1 | Feature selection by SGL

Under this context, sparse learning refers to the use of L1-norm

βk k1 ¼
P

i βij j� �
on the learning model (β), whereas group learning53

refers to the use of group norm βkk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2k1þ…þβ2kGk

q
,

�
where

k refers to the kth group in the group structure) on the learning

model.

Least absolute shrinkage and selection operator (Lasso),48 as the

basis of sparse learning, was originally developed as a regression anal-

ysis method. It minimizes the usual sum of squared errors, with a

bound on the sum of the absolute values of the coefficients. A L1-

norm penalty in the formulation is an effective way to alleviate the

problem of over-fitting. In addition, lasso involves solving an easy con-

vex optimization problem. The formulation of the lasso optimization

problem with least-square loss is as follows, where N is the number of

observations, M is the number of features, A�ℝN�M, y�ℝN�1,

β�ℝM�1 and λ�ℝ:

min
β

y�Aβk k2þλ βk k1, ð1Þ

Lasso was later generalized to many variants such as elastic nets54

and group lasso.55 Group lasso consists of predefined groups of

covariates regularized by an L2-norm, where βkk k2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
β2k1þ…þβ2kGk

q

and pg �ℝ:

min
β

y�Aβk k2þ λ
XG

g¼1

ffiffiffiffiffi
pg

p
βg

�
�

�
�
2
, ð2Þ

As for group learning, the group lasso with L2-norm penalty was

extended to the one with L∞ - norm penalty,56 where

βkk k∞ ¼max βk1jβk2j…,βkGk

� �
:

min
β

y�Aβk k2þλ
XG

g¼1

ffiffiffiffiffi
pg

p
βg

�
�

�
�
∞ ð3Þ

Both the L2-norm and L∞ - norm of βg become zero when βg = 0;

hence when λ is appropriately tuned, the penalty term can effectively

remove unimportant groups. However, the limitation of using the L2-

norm and L∞ - norm penalties is that, when one variable in a group is

selected, all other variables in the same group tend to be selected,

better known as an “all-in-all-out” property.57 Once a component

of βg is nonzero, the value of the two norm functions are no

longer zero.

To select variables inside a group (instead of choosing all in a

group as in group lasso), SGL55,58 has an additional L1-norm penalty

(See Equation 4 for details). The resulting model of using both L1-norm

and group norm is better known as sparse group learning,53,58–60 with

SGL using the least square loss (see Equation 4 for details).

As sparse group learning considers the inherent group structure

of the data (e.g., the kth group of pairwise distances of different

TABLE 1 Features in this study

Features Type

1–4371 Pairwise distance between the 94 residues

(i.e., 1–2, 1–3, …, 93–94)

4372–4464 Inter-residue Phi angle (sin) between 94 residues

(i.e., 1–2, 2–3, …, 93–94)

4465–4457 Inter-residue Phi angle (cos) between 94 residues

(i.e., 1–2, 2–3, …, 93–94)

4458–4650 Inter-residue Psi angle (sin) between 94 residues

(i.e., 1–2, 2–3, …, 93–94)

4651–4743 Inter-residue Psi angle (cos) between 94 residues

(i.e., 1–2, 2–3, …, 93–94)
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residues45), learning models are trained according to the entire group

of features - if a particular group of features is irrelevant to the

learning performance, group norm - which is essentially to apply a

L2-norm on the pre-defined group of features - will force its norm

and thus every element the entire group vector (βk) to be zero,

according to the singularity of L2-norm when parameters are appro-

priately tuned. On the other hand, the presence of L1-norm ensures

sparsity of the model vector β. Thus, both group-norm and L1-norm

ensure inter-group and within-group sparsity of the model vector β.

Moreover, features selected in the model vector can be analyzed in

groups - all features in the irrelevant group tend not to be selected

as a whole, whereas only a small amount of features are selected in

the relevant group, as seen in the later section of this work and

others. This is why the use of sparse group learning has gained

traction in various application areas of research (particularly in

bioinformatics) in recent years, and why SGL is proposed for

feature selection as a continuance of the meaningful protein-state

recognition project.45

SGL58,61 was used to select the important features among the

entire set of 4743 features. The formulation of SGL is as follows:

min
β

y�Aβk k2þλ1 βk k1þλ2
XG

g¼1

βg
�
�

�
�
2
, ð4Þ

where y represents the categorical response, A is the observed feature

vector. Implementation by Matlab-based SLEP toolbox61 was used.

TABLE 2 A list of all 94 protein residues and the group assignment

Group no Group Residue Group no Group Residue Group no Group Residue

1 Loop 1 P1 6 Alpha-helix 1 H32 13 Loop 7 G63

K2 G33 14 Beta-strand 5 V64

P3 7 Loop 4 G34 S65

G4 8 Beta-strand 3 I35 15 Loop 8 L66

D5 Y36 E67

2 Beta-strand 1 I6 V37 G68

F7 K38 A69

E8 A39 T70

V9 V40 16 Al pha-helix 3 H71

E10 9 Loop 5 I41 K72

L11 P42 Q73

A12 Q43 A74

3 Loop 2 K13 G44 V75

N14 10 Alpha-helix 2 A45 E76

D15 A46 T77

N16 E47 L78

S17 S48 R79

L18 D49 17 Loop 9 N80

G19 11 Loop 6 G50 T81

4 Beta-strand 2 I20 R51 G82

S21 I52 Q83

V22 H53 18 Beta-strand 6 V84

T23 K54 V85

G24 G55 H86

5 Loop 3 G25 D56 L87

V26 12 Beta-strand 4 R57 L88

N27 V58 L89

T28 L59 E90

S29 A60 19 Loop 10 K91

V30 V61 G92

6 Alpha-helix 1 R31 13 Loop 7 N62 Q93

S94
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SGL by SLEP toolbox was implemented with accelerated gradient

descent (AGD),62 a computationally efficient mathematical optimiza-

tion algorithm. For a given function f(x), the idea of AGD is that

instead of updating the gradient directly as in gradient descent (xi+

1 = xi� γif
'[xi], where γi is the step size in each iteration of the optimi-

zation), AGD attempts to update the gradient through a proximal

operator s (si = xi+ αi(xi� xi� 1), xi+ 1 = si� γif
'(si)). The convergence

rate of AGD is O(1/N2) as opposed to O(1/N) for gradient descent,

which is more favorable in terms of computational efficiency. This is

the main reason why SLEP toolbox is used. After solving Equation 4,

the intersection set of features with nonzero value in feature vector x

from each fold will be chosen for model building and evaluation as

illustrated in Figure 2.

2.2.2 | Classification with support vector machine

The selected subset of features with SGL were used to train the clas-

sification model. Among various classification model, SVM model has

been frequently used because its classification performance is very

high.63–65 The goal of SVM classification is to create decision bound-

aries in the feature space that divide data points into multiple classes.

Its aim is to make an ideal separating hyperplane among multiple clas-

ses in order to decrease generalization error and increase margin. The

unique difference between L1-norm regularized SVM and L2-norm

SVM is that the regularization term of L2-SVM is the square sum of

slack variables. L2-SVM is differentiable and imposes a bigger loss for

points which violate the margin.66 The related researches demon-

strated that training the classifier using the L2-SVM objective function

outperforms L1-SVM.67 In this paper, we choose the L2-regularized

support vector machine by Matlab-based LIBLINEAR package.68 Its

formulation is as follows. The outcome variable is binary variable,

which represents whether a protein is bound or unbound.

min
w

1
2

wk k2þC
XN

n¼1

max 0,1�yiw
Txi

� ��
�

�
�
2, ð5Þ

The L2-regularized support vector machine was solved via a trust

region Newton method. The kernel function is linear kernel. The

parameter C is optimized in the cross validation under different

parameters and find the best one. For details of optimization method,

please refer to the LIBLINEAR Practical Guide.68

2.3 | Bayesian hyperparameter optimization

Bayesian hyperparameter optimization is used to tune the hyper-

parameters of SGL model and SVM. Comparing with the random or

grid search, Bayesian hyperparameter optimization can efficiently con-

duct a search of a global optimization problem at finding the

hyperparameters.

In the SGL model, the parameter λ1 control the within-group spar-

sity of model vector, the parameter λ2 control the between-group

sparsity of model vector. It means that the sparsity of feature groups

to be chosen can be controlled by adjusting this number. The parame-

ters λ1 and λ2 are adjusted by the Bayesian hyperparameter optimiza-

tion method with the training dataset using a five-fold cross

validation to provide a realistic estimation of prediction errors and to

prevent over-fitting. By adjusting the parameters(λ1, λ2), the number

of features to be chosen in each group and the number of groups to

be chosen can be controlled respectively while maintaining similar

classification Acc to the most optimal result. After running all possi-

ble combinations of parameters, the combination with the highest

Acc would be chosen. It can be a powerful application for chemists

to design and consider different new design regarding protein

residues.

2.4 | Experimental design

As shown in Figure 3, we conduct standard 5-folds cross-validation

on the entire dataset. In each time, the 4 folds were used as training

set which is used for feature selection conducted by the SGL method.

The training set can be further split into 5 folds to adjust the parame-

ter λ1 and the λ2 by Bayesian hyperparameter optimization method.

Based on the selected features by the SGL method, the SVM classifi-

cation model are trained on the training set to make the final classifi-

cation. The remaining one fold of the data set was used as testing set

to calculate the classification Acc, the sensitivity (Sen) and the Spe

with the trained SVM model.

2.5 | Comparison with baseline methods

To illustrate the advantages of the proposed method, the method

in the previous work45 was compared. Feature selection using an

F IGURE 1 PDZ2 structure with 19 groups highlighted
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TABLE 3 A list of 189 groups of inter-residual groups used in sparse group lasso for feature selection. Please note that duplicated groups
such as 1–2 and 2–1 have been consolidated as one. The name of each residual group can be found in Table 2

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

1 1 1–1 2 9 2–9 12 13 12–13 6 17 6–17

2 2 2–2 3 9 3–9 1 14 1–14 7 17 7–17

3 3 3–3 4 9 4–9 2 14 2–14 8 17 8–17

4 4 4–4 5 9 5–9 3 14 3–14 9 17 9–17

5 5 5–5 6 9 6–9 4 14 4–14 10 17 10–17

6 6 6–6 7 9 7–9 5 14 5–14 11 17 11–17

7 7 7–7 8 9 8–9 6 14 6–14 12 17 12–17

8 8 8–8 1 10 1–10 7 14 7–14 13 17 13–17

9 9 9–9 2 10 2–10 8 14 8–14 14 17 14–17

10 10 10–10 3 10 3–10 9 14 9–14 15 17 15–17

11 11 11–11 4 10 4–10 10 14 10–14 16 17 16–17

12 12 12–12 5 10 5–10 11 14 11–14 1 18 1–18

13 13 13–13 6 10 6–10 12 14 12–14 2 18 2–18

14 14 14–14 7 10 7–10 13 14 13–14 3 18 3–18

15 15 15–15 8 10 8–10 1 15 1–15 4 18 4–18

16 16 16–16 9 10 9–10 2 15 2–15 5 18 5–18

17 17 17–17 1 11 1–11 3 15 3–15 6 18 6–18

18 18 18–18 2 11 2–11 4 15 4–15 7 18 7–18

19 19 19–19 3 11 3–11 5 15 5–15 8 18 8–18

1 2 1–2 4 11 4–11 6 15 6–15 9 18 9–18

1 3 1–3 5 11 5–11 7 15 7–15 10 18 10–18

2 3 2–3 6 11 6–11 8 15 8–15 11 18 11–18

1 4 1–4 7 11 7–11 9 15 9–15 12 18 12–18

2 4 2–4 8 11 8–11 10 15 10–15 13 18 13–18

3 4 3–4 9 11 9–11 11 15 11–15 14 18 14–18

1 5 1–5 10 11 10–11 12 15 12–15 15 18 15–18

2 5 2–5 1 12 1–12 13 15 13–15 16 18 16–18

3 5 3–5 2 12 2–12 14 15 14–15 17 18 17–18

4 5 4–5 3 12 3–12 1 16 1–16 1 19 1–19

1 6 1–6 4 12 4–12 2 16 2–16 2 19 2–19

2 6 2–6 5 12 5–12 3 16 3–16 3 19 3–19

3 6 3–6 6 12 6–12 4 16 4–16 4 19 4–19

4 6 4–6 7 12 7–12 5 16 5–16 5 19 5–19

5 6 5–6 8 12 8–12 6 16 6–16 6 19 6–19

1 7 1–7 9 12 9–12 7 16 7–16 7 19 7–19

2 7 2–7 10 12 10–12 8 16 8–16 8 19 8–19

3 7 3–7 11 12 11–12 9 16 9–16 9 19 9–19

4 7 4–7 1 13 1–13 10 16 10–16 10 19 10–19

5 7 5–7 2 13 2–13 11 16 11–16 11 19 11–19

6 7 6–7 3 13 3–13 12 16 12–16 12 19 12–19

1 8 1–8 4 13 4–13 13 16 13–16 13 19 13–19

2 8 2–8 5 13 5–13 14 16 14–16 14 19 14–19

3 8 3–8 6 13 6–13 15 16 15–16 15 19 15–19

4 8 4–8 7 13 7–13 1 17 1–17 16 19 16–19

5 8 5–8 8 13 8–13 2 17 2–17 17 19 17–19

(Continues)
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extra-trees classifier in Scikit-Learn package69 of Python was first

applied on all 4743 features. After that, two other baseline prediction

models were built and evaluated.

• Decision tree: Often referred to as CART or classification and

regression trees, decision tree is a nonparametric machine learning

algorithm. It uses a decision tree (as a predictive model) to go from

observations about an item (represented in the branches) to con-

clusions about the item's target value (represented in the leaves).

• Artificial neural network (ANN): An ANN is based on a collection of

connected units or nodes called artificial neurons which loosely

model the neurons in a biological brain. The word “artificial” was

added to differentiate the human neural network from the neural

network for machine learning. In essence, ANN can be considered

as a black-box learning algorithm. When appropriately tuned, ANN

can outperform other machine learning algorithms if vast amount

of data is available.

More details of the baseline methods can be found in the previ-

ous work.45

3 | EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we first introduce the details of evaluation criterion.

Next, we present the performance of our proposed method, followed

the performance comparison with baseline methods. Then, we analyze

the selected features by SGL. Lastly, the significance of the results of

the study is discussed.

3.1 | Evaluation criterion

There are four evaluation indexes used in this regard. (1) Acc refers to

the ratio between the number of correctly classified number of pro-

tein states and total number of protein states; (2) Sen stands for the

proportion of positives that are correctly identified; (3) Spe refers to

the proportion of negatives that are correctly classified number of

protein states; and (4) density of model vector β (or feature vector) is

defined as the ratio between the number of nonzero elements of the

feature vector and that of the length. Model is deemed to be good if

Acc, Sen, and Spe are high and density of feature vector is low (but

not too low that the necessary features are not included in the selec-

tion result).

Sen, Spe, and Acc are calculated according to the following

formulate:

Sen¼ TP
TPþFN

, ð6Þ

Spe¼ TN
TNþFP

, ð7Þ

Acc¼ TPþTN
TPþFNþTNþFP

, ð8Þ

where TP refers to the number of true positives, TN stands for the

number of true negatives, FP refers to the number of false positives,

FN stands the number of false negatives.

TABLE 3 (Continued)

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

Group

1

Group

2

Final

group

6 8 6–8 9 13 9–13 3 17 3–17 18 19 18–19

7 8 7–8 10 13 10–13 4 17 4–17

1 9 1–9 11 13 11–13 5 17 5–17

F IGURE 2 Visualization of how features are selected with SGL.
First, 5-fold cross validation was run. In each run, there would be a
model vector built for the particular fold. After that, if a particular
feature is selected across all 5 folds (i.e., coefficient of that feature is
nonzero for all 5 folds), then that feature is selected for the final

model building. In this example, the nth feature is not selected
because the coefficient value of model vector at fold 2 is zero

1348 BAI ET AL.



For an example of understanding what overall density and group

density of model vector is, it is assumed that there are 10 features in

2 groups for differentiating an apple from an orange, and the selection

result (in the form of model vector β) is as follows:

β ¼ β1,β2½ �
β1 ¼ 0,0,0,0,0½ �
β2 ¼ 0:1,0,0,0:3,0½ �

, ð9Þ

Since all elements in feature vector of group 1 (β1) are all zero,

feature group 1 is deemed to be irrelevant in differentiating an apple

from an orange. On the other hand, feature group 2 deserves more

attention as two elements out of the total five in the feature vector of

group 2 (β2) are not zero. Feature density of group 1 is 0, whereas fea-

ture density of group 2 is 2/5 = 0.4 (2 out of all 5 elements are

nonzero). Last but not least, overall density is 2/10 = 0.2. The same is

applied to the problem of protein-state recognition.

3.2 | Performance of different features

Using the proposed method, we use the Bayesian optimization search

method to adjust the parameter λ1 and λ2 in different range to control

the sparsity and thus obtain various number of selected features.

Given a certain range of the parameter λ1 and λ2, we can obtain the

number of feature density and the corresponding Acc, Sen, and Spe.

The results are summarized in Table 4. According to Table 4, as the

number of features go up, the Acc is higher. It can be observed that

28 selected features achieve 81.04% for classification Acc, 79.90%

for Sen and 82.18% for Spe. Furthermore, the classification Acc

F IGURE 3 Flowchart of the
experimental design
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achieves 91.50% when the number of selected features is 1936, and

the corresponding Sen is 91.68%.

3.3 | Performance comparison with baseline
methods

We compare our proposed method against the previous work.45 As

shown in Table 5, we can see that the proposed SGL method can

achieve better classification Acc with less selected features comparing

with baseline methods. When the number of selected features is

28, the Acc of our method is improvement of approximately 1.04%. In

addition, the Acc of our method improves 11.5% when the number of

selected features is 1936.

3.4 | Feature analysis

In these studies, feature selection is more or less an implicit procedure

to ensure the prediction quality and accuracy. Due to the large size of

proteins with much more atoms in small molecules, including all the

atomic distances as features for machine learning models is not feasi-

ble. Although in some special cases, some predefined reaction coordi-

nates could be constructed manually as features. In general, a robust

feature selection procedure would be desirable for many machine

learning prediction models for protein simulation. However, more sys-

tematic and thorough investigation for feature selection of high

dimensional system presented in the current study is still necessary.

There are 94 residues which can be categorized in 19 groups

(Table 2). This work focuses on the feature groups which contribute

the most to the differentiation of protein states. Therefore, if the den-

sity of a model vector for a particular feature group is significantly

higher than zero, that particular feature group deserves more atten-

tion for further interpretation.

Using SGL method, total of 28 features were selected to achieve

81.4% of Acc. The 28 features are inter-residue distances, as shown

in Table 6. The inter-residue distances are illustrated in Figure 4. The

distance features are located between Groups 1 (Loop 1) and 3 (Loop

2), Groups 1 (Loop 1) and 4 (Beta-strand 2), Groups 1 (Loop 1) and

8 (Beta-strand 3), Groups 1 (Loop 1) and 9 (Loop 5), Groups 1 (Loop 1)

and 10 (Alpha-helix 2), Groups 1 (Loop 1) and 11 (Loop 6), Groups

2 (Beta-strand 1) and 14 (Beta-strand 5), Groups 2 (Beta-strand 1) and

16 (Alpha-helix 3), Groups 10 (Alpha-helix 2) and 15 (Loop 8), Groups

10 (Alpha-helix 2) and 16 (Alpha-helix 3), Groups 10 (Alpha-helix 2)

and 17 (Loop 9), Groups 10 (Alpha-helix 2) and 18 (Beta-strand 6),

Groups 10 (Alpha-helix 2) and 19 (Loop 10). In Table 6, it also shows

the corresponding protein residues. Feature density of each group is

calculated as the number of nonzero elements over the length of the

model vector of the particular group. A higher feature density indi-

cates that the importance of the group is more high. The final coeffi-

cient is multiple of coefficients from the 25 fold, which indicates the

importance of each selected feature. For example, if αi is the model

vector from fold i, then the final coefficient element-wise products

from all 25 folds (α = α1
J

α2
J

α3
J

α4
J

…
J

α25).

In Figure 5, different colors of ideogram represents different

groups. Each group includes different number of protein residues. It

shows not only the inter-residual feature density (pairwise distance)

but also the inter-group feature density for various combination of

parameters with Acc higher than 81%. Figure 5A–F indicate the visu-

alization of inter-residual feature density and inter-group feature den-

sity when the number of selected features is 28, 35, 94, 158, 373, and

1936, respectively. The inter-group feature density illustrated in

Figure 5 provides straightforward representations for the important

groups among all the groups. In addition, inter-residual feature density

illustrated in Figure 5 could provide much finer presentation about

important feature distribution of the system.

On the whole, the inter-residual features between alpha-helix

2 and alpha-helix 3, alpha-helix2 and beta-strand 6 exist in most of

TABLE 4 The performance for
various number of features

No. of features No. of density (%) Accuracy (%) Sensitivity (%) Specificity (%)

1936 40.82 91.50 91.68 91.31

373 7.86 87.30 87.32 87.28

158 3.33 85.41 84.87 85.95.

94 1.98 84.58 83.90 85.26

35 0.74 81.78 80.45 83.11

28 0.57 81.04 79.90 82.18

TABLE 5 Performance comparison between the proposed method and baseline methods

Feature selection methods Classifier methods Accuracy Overall feat density Source

SGL SVM 81.04% 28 (0.57%) —

SGL SVM 91.50% 1936 (40.82%) —

Tree DT 80% 289 (6.10%) Zhou et al.45

Tree ANN 75% 289 (6.10%) Zhou et al.45
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the plots, indicating its importance in discriminating the protein states.

The protein residues P1, K2, I6, N16, I20, G24, K38, P42, Q43, A45,

A46, G50, S65, L66, E67, Q73, A74, V75, E76, T77, L78, R79, N80,

V84, V85, H86, L87, L88, L89 from the above mentioned groups are

critical for allostery of PDZ2 in various experimental studies. Such

observation is indeed in agreement with the result of inter-group fea-

ture selection as in Table 6. With the increase of Acc, the more inter-

residual features are chosen.

4 | DISCUSSION

One of the innovations in the current study is grouping and labeling

large number of atomic distances from protein (4371 for PDZ2 as the

model system in this study) with relatively small number of secondary

structures (19 for PDZ2, Figure 1). This further labeling of the general

features significantly simplified the data processing and interpretation

of the machine learning model developed in this study. In the current

study, Groups 1, 10, 16, and 18 are identified with the most contribu-

tions to the top important features (Table 6). Some of the residues

TABLE 6 The details of 28 features selected by SGL

Group name Protein residues

Group feature density Final coefficientInter- residual group Group 1 Group 2 Residual 1 Residual 2

1–3 Loop 1 Loop 2 P1 N16 2.86% 9.6036E-31

1–4 Loop 1 Beta-strand 2 P1 I20 8% 1.2559E-26

1–4 Loop 1 Beta-strand 2 P1 G24 8% �1.5256E-12

1–8 Loop 1 Beta-strand 3 K2 K38 3.33% �7.6462E-46

1–9 Loop 1 Loop 5 K2 P42 10% 2.3101E-73

1–9 Loop 1 Loop 5 K2 Q43 10% �1.0090E-60

1–10 Loop 1 Alpha-helix 2 K2 A46 4% 7.2234E-54

1–11 Loop 1 Loop 6 K2 G50 2.22% 2.1611E-59

2–14 Beta-strand 1 Beta-strand 5 I6 S65 7.14% 8.6464E-36

2–16 Beta-strand 1 Alpha-helix 3 I6 A74 1.59% 5.8091E-30

10–15 Alpha-helix 2 Loop 8 A45 L66 8% 6.5626E-66

10–15 Alpha-helix 2 Loop 8 A45 E67 8% 1.2873E-70

10–16 Alpha-helix 2 Alpha-helix 3 A45 Q73 15.56% 7.7743E-58

10–16 Alpha-helix 2 Alpha-helix 3 A45 A74 15.56% 6.4350E-56

10–16 Alpha-helix 2 Alpha-helix 3 A45 V75 15.56% 5.8432E-49

10–16 Alpha-helix 2 Alpha-helix 3 A45 E76 15.56% 1.4509E-46

10–16 Alpha-helix 2 Alpha-helix 3 A45 T77 15.56% 7.9182E-56

10–16 Alpha-helix 2 Alpha-helix 3 A45 L78 15.56% 2.1162E-57

10–16 Alpha-helix 2 Alpha-helix 3 A45 R79 15.56% 1.0561E-55

10–17 Alpha-helix 2 Loop 9 A45 N80 5% 3.2852–81

10–18 Alpha-helix 2 Beta-stand 6 A45 V84 17.14% 6.5555E-57

10–18 Alpha-helix 2 Beta-stand 6 A45 V85 17.14% 3.9407E-50

10–18 Alpha-helix 2 Beta-stand 6 A45 H86 17.14% 5.3979E-72

10–18 Alpha-helix 2 Beta-stand 6 A45 L87 17.14% 2.3291E-80

10–18 Alpha-helix 2 Beta-stand 6 A45 L88 17.14% 8.3000E-57

10–18 Alpha-helix 2 Beta-stand 6 A45 L89 17.14% 6.4652–74

10–19 Alpha-helix 2 Loop 10 A45 Q93 10% 1.5272E-73

10–19 Alpha-helix 2 Loop 10 A45 S94 10% 4.6970E-67

F IGURE 4 Key inter-residue distances selected using sparse
group lasso (SGL) method
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from these Groups have been reported as critical for allostery of

PDZ2 in various experimental studies, including Ala45 in Group 10,70

and Q73, Ala74, Val75, E76, Thr77, Leu78, R79 in Group 16.70–73 In

addition, there are more residues associated with high importance

revealed in the current study that are also identified as key allosteric

residues in the experimental characterization of PDZ2 allostery: N16,

I20, G24, Q43, L66, N80.71,73

The key residues identified through SGL also large overlap with

findings from several computational studies. The most prominent

observation is that the Alpha-helix 3 as Group 16 consisting residues

F IGURE 5 Visualization of inter-
residual feature density (pairwise
distance) for various combination of
parameters
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Q73 through R79 highlighted in this study is also identified as con-

taining many hot residues through perturbation response scanning

study,23 and part of allosteric path through protein structure network

and elastic network model-based strategy.74 Similarly, part of beta-

strand 2 as group 4 (residues 20 and 24) and beta-stand 6 as group

18 (residues V84, V85, L87 and L88) are associated with important

features in this study, and are also identified as hot residues,23 or part

of allosteric path.74 Numerous other residues associated with high

importance from this study are also highlighted by these computa-

tional studies, including P1, K2, I6, K38.

These agreements between our refined feature selections and

experimental as well as other computational studies about PDZ2 pro-

vide necessary and reassuring validation for this study, rendering our

strategy as a general approach applicable for other allosteric proteins.

These presentations based on the rigorous feature selection proce-

dure presented in this study, provide comprehensive and innovative

ways to build reliable and informative machine learning models for

complicated biological systems.

5 | CONCLUSIONS

Machine learning models have started to be applied in many computa-

tional chemistry studies. Due to the complexity of molecular systems,

especially bio-macromolecules such as proteins, rigorous feature

selections procedure remains as a challenging problem but is neces-

sary for reliable model building. In this study, we applied SGL method

as feature selection method to develop reliable classification model

for protein allostery using allosteric PDZ2 protein as model system.

Comparing to a previous machine learning study about the same pro-

tein, this study demonstrated that the SGL method could be used to

develop classification models differentiating protein in different allo-

steric states with the comparable Acc but with much fewer features.

Four balanced performance measures were used to evaluate the

selected features, including classification Acc, Spe, Sen, and feature

density. The final classification models using support vector machine

method provide the same classification Acc (81%) with merely 28 fea-

tures among total of 4743 features, which is much smaller than

289 features used in a previous study. Dividing the amino acid resi-

dues in the protein into secondary structures as additional label for

feature selection procedure is shown as an effective and informative

way to illustrate important feature distribution. This study demon-

strates the effectiveness of SGL as general feature selection method

for complex biomolecular systems, and warrant further investigations

to develop more novel and thorough feature selection approaches in

computational chemistry.
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