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Allostery is a fundamental process in regulating protein activities. The discovery, design,
and development of allosteric drugs demand better identification of allosteric sites. Several
computational methods have been developed previously to predict allosteric sites using
static pocket features and protein dynamics. Here, we define a baselinemodel for allosteric
site prediction and present a computational model using automated machine learning. Our
model, PASSer2.0, advanced the previous results and performed well across multiple
indicators with 82.7% of allosteric pockets appearing among the top three positions. The
trained machine learning model has been integrated with the Protein Allosteric Sites Server
(PASSer) to facilitate allosteric drug discovery.
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1 INTRODUCTION

Allostery is a fundamental process that regulates protein functional activities and is known to play a
key role in biology (Gunasekaran et al. 2004). In an allosteric process, an effector molecule binds to a
protein at its allosteric site, often resulting in conformational and dynamical changes (Srinivasan
et al. 2014; Huang et al. 2013). Allosteric drug development is promising for many reasons: the
allosteric drugs could be more selective and less toxic with fewer side effects; they can either activate
or inhibit proteins; they can be used in conjunction with orthosteric drugs. Due to these advantages,
the development of allosteric drugs has gradually increased in recent years (Wagner et al. 2016;
Nussinov et al. 2011; Nussinov and Tsai 2013).

Several methods have been developed to detect and predict allosteric sites in proteins, such as
normal mode analysis (NMA) (Panjkovich and Daura 2012), molecular dynamics (MD) simulations
(Laine et al. 2010), and machine learning (ML) models (Amor et al. 2016; Bian et al. 2019; Huang
et al. 2013). Several current methods are available as web servers or open-source packages, such as
Allosite (Huang et al. 2013), SPACER (Goncearenco et al. 2013), PARS (Panjkovich and Daura
2014), AlloPred (Greener and Sternberg 2015), AllositePro (Song et al. 2017), and PASSer (Tian et al.
2021a). These studies have demonstrated the feasibility of allosteric site prediction models which
combine pocket features and protein dynamics. As summarized by Lu et al. (2014), these studies can
be classified as structure-based, dynamics-based, NMA-based, or combined prediction approaches.
In structure-based approaches, such as Allosite, site descriptors describing chemical and physical
properties of protein pockets are calculated as features for prediction. NMA-based approaches, such
as PARS, take the ability of NMA, which can provide global modes that bear functional significance,
for discovering protein sites that can mediate or propagate allosteric signals. In dynamics-based
approaches, MD simulations and a two-state Ga model are used to construct a conformational or

Edited by:
Chia-en A. Chang,

University of California, Riverside,
United States

Reviewed by:
Gennady Verkhivker,

Chapman University, United States
Junmei Wang,

University of Pittsburgh, United States

*Correspondence:
Hao Tian

haot@smu.edu
Peng Tao

ptao@smu.edu

Specialty section:
This article was submitted to

Molecular Recognition,
a section of the journal

Frontiers in Molecular Biosciences

Received: 19 February 2022
Accepted: 23 May 2022
Published: 11 July 2022

Citation:
Xiao S, Tian H and Tao P (2022)

PASSer2.0: Accurate Prediction of
Protein Allosteric Sites Through
Automated Machine Learning.
Front. Mol. Biosci. 9:879251.

doi: 10.3389/fmolb.2022.879251

Frontiers in Molecular Biosciences | www.frontiersin.org July 2022 | Volume 9 | Article 8792511

ORIGINAL RESEARCH
published: 11 July 2022

doi: 10.3389/fmolb.2022.879251

http://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2022.879251&domain=pdf&date_stamp=2022-07-11
https://www.frontiersin.org/articles/10.3389/fmolb.2022.879251/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.879251/full
https://www.frontiersin.org/articles/10.3389/fmolb.2022.879251/full
https://passer.smu.edu/
https://passer.smu.edu/
http://creativecommons.org/licenses/by/4.0/
mailto:haot@smu.edu
mailto:ptao@smu.edu
https://doi.org/10.3389/fmolb.2022.879251
https://www.frontiersin.org/journals/molecular-biosciences
www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences#articles
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2022.879251


energy landscape, in which the latter can be used to calculate
population distribution upon perturbation. SPACER combines
dynamics-based and NMA-based approaches, which apply
Monte Carlo simulations and normal mode evaluation to
unravel latent allosteric sites.

The past decade has witnessed the rapid development of
machine learning in chemistry and biology (Zhang et al. 2020;
Chen L. et al. 2021; Tian et al. 2020; Tian et al. 2021b; Tian et al.
2022). ML methods have been shown to be superior in the
classification of protein allosteric pockets. Allosite and
AlloPred used support vector machine (SVM) (Suykens and
Vandewalle 1999) with curated features. Chen et al. (2016)
used random forest (RF) (Liaw and Wiener 2002) to construct
a three-way predictive model. Our previous study (Tian et al.
2021a) used an ensemble learning method combining the results
of eXtreme gradient boosting (XGBoost) (Chen and Guestrin
2016) and graph convolutional neural networks (GCNNs) (Kipf
and Welling 2016).

Recently, automated machine learning (AutoML) has emerged
as a novel strategy to implement machine learning methods to
solve real-world problems Hutter et al. (2019). It has been widely
applied in biomedical or chemistry fields like nucleic acid (Chen
Z. et al. 2021), healthcare (Waring et al. 2020), and disease studies
(Karaglani et al. 2020; Panagopoulou et al. 2021). As the name
suggests, AutoML helps to automate the machine learning
pipeline, from data processing, model selection, and ensemble
to hyperparameter tuning. This saves human power from the
time-consuming and iterative tasks of machine learning model
development Yao et al. (2018). Also, AutoML offers the
opportunities to produce simpler solutions with superior
model performance (Elshawi et al. 2019).

In this study, we first defined the baseline for protein allosteric
site prediction, an algorithm that identifies the pocket with the
highest pocket score among all pockets detected by FPocket (Le
Guilloux et al. 2009) as allosteric. This primitive baseline
predictor has accuracy, precision, recall, and F1 score values of
0.968, 0.689, 0.571, and 0.624, respectively. Then, we applied two
AutoML frameworks, AutoKeras (Jin et al. 2019) and AutoGluon
(Erickson et al. 2020), for the prediction of protein allosteric sites.
Our model is shown to be robust and powerful under various
indicators with precision, recall, and F1 score values of 0.850,
0.616, and 0.701, respectively, on the test set, and 82.7% of
allosteric sites in the test set are ranked among the top three
positions. We also applied the well-trained model to predict
allosteric sites from novel proteins that are not included in the
training set and demonstrated their binding structures.

2 MATERIALS AND METHODS

2.1 Protein Database
The protein data used in this work were collected from the
Allosteric Database (ASD) (Huang et al. 2011). Its newest
version contains a total of 1,949 entries of allosteric sites, each
with different proteins andmodulators Liu et al. (2020). However,
data need to be filtered from ASD under certain criteria to ensure
the data quality Zha et al. (2022). To ensure protein quality and

diversity, Huang et al. (2013) selected 90 proteins using the
previous rules: protein structures with either resolution below
3 Å or missing residues in the allosteric sites were removed, and
redundant proteins that have more than 30% sequence identity
were filtered out. ASBench (Huang et al. 2015), an optimized
selection of ASD data, includes a core set with 235 unique
allosteric sites and a core-diversity set with 147 structurally
diverse allosteric sites. Here, we use 90 proteins from ASD
and 138 proteins in the core-diversity set from ASBench. A
total of 204 proteins were used in this study, after removing
the duplicate records. The selected proteins were stored in the
GitHub repository for this study.

2.2 Site Descriptors
FPocket, a geometry-based algorithm to identify pockets, is used
to detect pockets on the surface of the selected proteins. For each
of the detected pockets, 19 numerical features are calculated from
FPocket (Supplementary Table S1). Compared with other web
servers and open-source pocket detection packages, FPocket is
superior in execution time and the ease to be integrated with
other models.

For the 90 proteins from ASD, a pocket is labeled as either 1
(positive) if it contains at least one residue identified as binding to
allosteric modulators or 0 (negative) if it does not contain such
residues. Therefore, a protein structure may have more than one
positive label. A total of 2,123 pockets were detected with 133
pockets being labeled as allosteric sites. For the 138 proteins from
ASBench, a total of 3,708 pockets were detected. A pocket is
labeled as 1 (positive) only if its centroid is the closest to that of
the allosteric modulator, otherwise 0 (negative).

2.3 Automated Machine Learning
The implementation of the state-of-the-art ML methods
normally requires extensive domain knowledge and
experience. This process includes data preparation and
preprocessing, feature engineering, model selection, and
hyperparameter tuning, which are time-consuming and
challenging. Automated machine learning aims to free human
effort from this process.

Keras is an open-source software library that provides a
Python interface for artificial neural networks. Keras offers
consistent and simple APIs and provides clear and actionable
error messages. It also has extensive documentation and
developer guides. AutoKeras (Jin et al. 2019) is an AutoML
system based on Keras, enabling Bayesian optimization to
guide the network morphism for efficient neural architecture
parameter search. In the current study, AutoKeras v1.0.16 is
applied.

Developed by Amazon Web Services, AutoGluon (Erickson
et al. 2020) automates these ML tasks and achieves the best
performance. Moreover, AutoGluon includes techniques for
multi-layer stacking that can further boost ML performance.
AutoGluon is advantageous in: (1) simplicity: straightforward
and user-friendly APIs; (2) robustness: no data manipulation or
feature engineering required; (3) predictable-timing: ML models
are trained within the allocated time; (4) fault-tolerance: the
training process can be resumed after interruption. Also,
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AutoGluon is an open-source library with transparency and
extensibility. Another advantage is that the AutoGluon
framework uses a multi-layer stacking with k-fold bagging to
reduce the model’s variance. The number of layers and the value
of k are heuristically determined within the framework.
AutoGluon v0.2.0 is applied in this study with 14 base models,
including random forest, XGBoost, and neural network. The
models are listed in Supplementary Table S2.

2.4 Performance Indicators
For binary classification, the results can be evaluated using a
confusion matrix (Table 1).

Various indicators could be constructed based on the
confusion matrix to quantify the model performance: (1)
precision measures how well the model can predict real
positive labels; (2) recall measures the ability to classify true-
positive and true-negative; (3) F1 score is the weighted average of
precision and recall. These indicators are calculated through Eqs
1–3. The higher the values of these indicators, the better the
model’s performance.

Precision � TP
TP + FP

, (1)

Recall � TP
TP + FN

, (2)

F1 score � 2 × Precision × Recall
Precision + Recall

. (3)

3 RESULTS AND DISCUSSION

3.1 Baseline With FPocket
FPocket detects pockets on the surface of the selected proteins
and sorts them in the descending order of pocket scores, which
reflect the putative capacity of the pocket to bind a small
molecule. The scoring function formula in FPocket is shown
in the supporting information. As described in FPocket, a training
dataset containing 307 proteins was first generated to determine
the weights of the five features in calculating the pocket score.
These proteins are filtered based on a previous study for the
evaluation of PocketFinder (An et al. 2005), which is trained on
5,616 protein–ligand complexes, including 4,711 unique proteins
and 2,175 unique ligands. As proposed, PocketFinder can be used
to predict ligand-binding pockets and suggest new allosteric
pockets, leveraging the allosteric site prediction power to FPocket.

We notice that many positive pockets have relatively high
pocket scores. For 70.6% of the total 204 proteins used in our
study, the top-ranked pocket among the pockets detected is
positive in our labeling method. For 84.3% of proteins in the

test set, the positive pockets are among the top three ranked
positions. Among all the positive pockets, nearly 90% of them
appear in the first eight positions (Figure 1).

Here, we designed a baseline for allosteric site prediction: a
predictor that predicts the pocket with the highest pocket score as
positive, and others as negative.We applied this baseline model to
the data and evaluated the performance. The confusion matrix is
shown in Table 2. The accuracy, precision, recall, and F1 score
values are 0.968, 0.706, 0.574, and 0.633, respectively.

A model could be evaluated as useful if it either has higher
performance indicator values (classifying power) or higher top

TABLE 1 | Binary classification results in a confusion matrix.

Real positive Real negative

Predicted positive True-positive (TP) False-positive (FP)
Predicted negative False-negative (FN) True-negative (TN)

FIGURE 1 | Rank of positive pockets among all pockets. Nearly 90
percent of positive pockets appear among the first eight pockets sorted by the
pocket score.

TABLE 2 | Confusion matrix of the baseline predictor.

Real positive Real negative

Predicted positive 144 60
Predicted negative 107 4844

FIGURE 2 | Amounts of pockets for proteins. The amount varies from 4
to 91.
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three probabilities (ranking power) than this baseline
predictor model.

3.2 Model Selection and Fine-Tuning on the
Validation Set
The number of pockets that FPocket detects for each individual
protein ranges between 4 and 91 for 204 proteins used in this study
and has an average value of 25 (Figure 2). The pockets with positive
labels only account for 4.87% (251 out of 5,155) in all pockets,
making this dataset highly imbalanced. Data imbalance happens in a
classification problem where the samples are not equally distributed
among classes. This could lead to unsatisfactory model performance
because the trained machine learning model might not learn
sufficiently from the limited minority examples.

There are mainly two effective ways, over-sampling and
under-sampling, to handle an imbalanced dataset (Lemaître
et al. 2017). Over-sampling expands the size of the minority
class by randomly duplicating existing examples or generating
new but similar examples. However, this could result in
overfitting for some machine learning models. Also, in the
context of protein allosteric sites, the generated allosteric sites
may not be biologically reasonable. Due to these reasons, under-
sampling was applied to adjust the composition of the training
data in the following procedure.

We first randomly split the selected 204 proteins into a training
set with 122 proteins, a validation set with 41 proteins, and a test set
with 41 proteins. To balance the training process, we only kept a
certain number, referred to as the cutoff position, of top pockets
based on their pocket scores generated by FPocket for each protein in
the training set. For example, if the cutoff position is set to 5, only the
first five pockets sorted by FPocket for proteins in the training set
were used for the model training purpose. For cutoff positions from
4 to 8, both AutoKeras and AutoGluon models are trained and
validated (Figure 3). The pocket descriptors generated by FPocket
were used as features.Whether a pocket is allosteric or not according
to ASD is represented as 1 for allosteric or 0 for nonallosteric. In the

validation and test sets, a predicted value above 0.5 indicates an
allosteric site, and a predicted value below 0.5 indicates a
nonallosteric site.

Based on AutoKeras and AutoGluon model performance
using cutoff values ranging 4–8, the value of 6 leads to the
balance between the precision and recall with the highest F1
score. When the cutoff is smaller than 6, the unsatisfactory
performance might result from insufficient data for models to
learn. When the cutoff is larger than 8, the performance starts to
drop because of the unbalanced and low-quality data. Therefore,
the cutoff value of 6 was selected to produce the final model.

In the final model, the mean values of accuracy, precision,
recall, and F1 score for the AutoKeras model were calculated as
0.955, 0.853, 0.595, and 0.675, respectively. These values for the
AutoGluon model are 0.976, 0.919, 0.656, and 0.754, respectively.
The results show that the AutoGluon model has a better
performance than the AutoKeras model and thus was selected
for further test and final deployment.

3.3 Test Set Performance
The final AutoGluon model using the cutoff position as 6 was
tested on the test set, where the model was used to evaluate all the
detected pockets. The metric values shown are comparable to its
performance using the validation set (Table 3), indicating the
good prediction power of this model.

It is also expected that a powerful machine learning model is
capable of ranking allosteric sites in the top positions. In the

FIGURE 3 | (A) AutoKeras and (B) AutoGluon models performance for all pockets of the proteins in the validation set based on different cutoff positions. The cutoff
value for the training set ranges from 4 to 8. Each model was trained in 10 independent runs for each value. The mean and standard deviation of each metric were
calculated. A cutoff of 6 was considered reaching a balance between recall and precision with the highest F1 score.

TABLE 3 | Classifying power and ranking power of AutoGluon models on the
test sets.

Indicator Mean value Top position Mean value

Precision 0.850 Top 1 65.1%
Recall 0.616 Top 2 77.8%
F1 score 0.701 Top 3 82.7%
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current study, we evaluated the ranking power of our models by
calculating the ranking probabilities of the allosteric sites at the
top 1, 2, and 3 positions. The probabilities of allosteric sites,
shown in Table 3, indicate that the final prediction model could
rank the known allosteric sites among the top three positions for
the majority of the test set. Taking the classifying power and
ranking power together, our method has a great performance on
allosteric site predictions.

3.4 Novel Protein Prediction
To further evaluate the performance of our model, we tested our
model using 50 randomly picked proteins that are in the core set
but not included in the core-diversity set in ASBench. Among
these proteins, 22, 11, and 3 of their allosteric sites are ranked as
first, second, and third, respectively. This leads to 72% of the
additional test set with their true allosteric sites being ranked
among the top three by our model. We also plot nine structures
highlighting predicted allosteric sites and modulators (Figure 4).
Our model successfully predicted allosteric sites as the top site for
seven out of these proteins (Figures 4A–G), with the probabilities
of 58.94%, 79.40%, 78.30%, 82.16%, 95.78%, 96.12%, and 85.11%,
respectively. For protein in Figure 4H, the top pocket has a
probability of 80.37%, and the real allosteric site is predicted at the
second place with a probability of 77.20%. For protein in
Figure 4I, the top pocket has a probability of 77.24%, and the

real allosteric site is predicted at the second place with a
probability of 51.09%.

In some cases, the fallaciously predicted top one pockets are close
to and even merge into the pocket labeled as allosteric (Figures 4H,

FIGURE 4 | Structures of nine proteins with modulators and predicted pockets. PDB IDs of these proteins are: (A) 2FPL, (B) 2R1R, (C) 3BCR, (D) 4PFK, (E) 1Q5O,
(F) 3PEE, (G) 4HO6, (H) 1XMV, and (I) 2OZ6. The yellow pockets are labeled as allosteric, and the lime molecules are modulators. For (A–G), the allosteric pockets are
successfully predicted as top one by our model. For (H,I), the red pockets are predicted as the first place, and the allosteric pockets are predicted as the second place.

FIGURE 5 | Allosteric probability results of chain A of protein 5DKK
returned by command line API of PASSer.
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I). Consequently, it is not straightforward to determine whether the
predicted top one pockets are false-positive. This complication of
model interpretation could result from the data preprocessing (pocket
detection and pocket labeling). In reality, two pockets might
collectively act as one allosteric site in a biological process but
being identified as two individual pockets in our model.

3.5 Web Server
The model has been integrated into the Protein Allosteric Site
Server. The server can be either accessed at https://passer.smu.edu
or through the command line. Here is an example using the
command line to test the chain A of protein 5DKK using the
AutoML model.

# !/bin/bash
curl −X POST \
−d pdb=5dkk −d chain=A −d model=autoML \
https://passer.smu.edu/api

This returns the top 3 pocket probabilities with residues in the
json format, as shown in Figure 5, which can be easily parsed for
further usage. Therefore, this provides a chance for large-scale
searching applications for allosteric drug discovery.

4 CONCLUSION

Several machine learning-based methods have been developed for
allosteric site prediction over the past few years. In this study, we
applied an emerging ML technique, automated machine learning, to
further improve the performance of protein allosteric site prediction
models. The AutoML framework is capable of automating the
machine learning model pipeline. The developed allosteric site
prediction model, PASSer2.0, performs well under multiple
indicators and is shown to have a good ranking power with a
high percentage of ranking allosteric sites at top positions.
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