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Abstract
Overexpression of Forkhead box protein C2 (FOXC2) has been associated with different types of carcinomas. FOXC2 
plays an important role in the initiation and maintenance of the epithelial–mesenchymal transition (EMT) process, which is 
essential for the development of higher-grade tumors with an enhanced ability for metastasis. Thus, FOXC2 has become a 
therapeutic target for the development of anticancer drugs. MC-1-F2, the only identified experimental inhibitor of FOXC2, 
interacts with the full length of FOXC2. However, only the DNA-binding domain (DBD) of FOXC2 has resolved crystal 
structure. In this work, a three-dimensional (3D) structure of the full-length FOXC2 using homology modeling was developed 
and used for structure-based drug design (SBDD). The quality of this 3D model of the full-length FOXC2 was evaluated 
using MolProbity, ERRAT, and ProSA modules. Molecular dynamics (MD) simulation was also carried out to verify its 
stability. Ligand-based drug design (LBDD) was carried out to identify similar analogues for MC-1-F2 against 15 million 
compounds from ChEMBL and ZINC databases. 792 molecules were retrieved from this similarity search. De novo SBDD 
was performed against the full-length 3D structure of FOXC2 through homology modeling to identify novel inhibitors. The 
combination of LBDD and SBDD helped in gaining a better insight into the binding of MC-1-F2 and its analogues against 
the full length of the FOXC2. The binding free energy of the top hits was further investigated using MD simulations and 
MM/GBSA calculations to result in eight promising hits as lead compounds targeting FOXC2.
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Introduction

The epithelial–mesenchymal transition (EMT) is a biologi-
cal process in which the epithelial cells undergo biochemical 
changes to become mesenchymal cells [1, 2]. EMT is essen-
tial for cancer metastasis through the generation of more 
invasive cells with higher migration capacity and increased 
resistance to apoptosis with stem cell-like features [2, 3]. 
The generated cancer stem cells (CSCs) from the EMT pro-
cess have the ability of self-renewal leading to the formation 
of secondary tumors [2, 4, 5]. Several transcription factors 
are activated to initiate the EMT process, including zinc fin-
ger E-box-binding homeobox 1 (ZEB1), Snail, Slug, Twist, 
Goosecoid, and Forkhead Box Protein C2 (FOXC2) [6–9] .

FOXC2 is a member of the FOX family of transcrip-
tion factors that are characterized by the presence of con-
served winged-helix (forkhead) DNA-binding domain 
(DBD). This conserved DBD consists of three α-helices, 
three β-sheets, and two less conserved winged loops. The 
main region for DNA recognition among these second-
ary structures is located near the third helix H3 [10–15]. 
FOX family of transcription factors is divided into 19 
subgroups, including the FOXC subgroup [16]. FOXC 

subfamily consists of two proteins: FOXC1 and FOXC2. 
Both proteins are involved in different developmental pro-
cesses [17]. Mutations in the FOXC2 gene were found 
to be associated with different genetic diseases, such as 
Lymphoedema distichiasis syndrome (LDS) [18]. Overex-
pression of FOXC2 was found to be associated with breast 
and hepatocellular carcinoma through initiating and main-
taining EMT [19–21].

Indirect inhibition of FOXC2 resulted in attenuating the 
cancer metastasis by reversing the effects of EMT, mak-
ing FOXC2 an appropriate drug target for the treatment of 
metastatic cancer [22–24]. This drives the work of Cas-
taneda et al. to develop the first small molecule inhibiting 
FOXC2 [25]. One-bead-one-compound (OBOC) library of 
α-helix mimetics was used to find a proper inhibitor for the 
full-length structure of FOXC2. OBOC library was used 
because of the presence of the H3 domain, in which an α 
helix is essential in the functional role of FOXC2. Screen-
ing of nearly 20,400 compounds of OBOC library was car-
ried out followed by elimination of false positives to find 
the top 16 hits and further filtration of false positives [25].

The most probable hit identified was MC-1-F2 (Fig. 1). 
The MC-1-F2 is the first inhibitor of FOXC2 in vitro. 



1663Molecular Diversity (2023) 27:1661–1674 

1 3

MC-1-F2 was found to induce apoptosis and inhibit colony 
formation capacity in the cell lines with high expression 
of FOXC2. Importantly, the inhibition of FOXC2 by MC-
1-F2 leads to a reversal of EMT and inhibition of cancer 
metastasis in vitro [25].

The dissociation constant value (Kd) for the binding of 
MC-1-F2 to the DBD of FOXC2 was higher than 100 µM, 
this indicates that the binding was weak and insufficient for 
the inhibitor to bind to the protein. This insinuates that other 
domains of the protein are involved in the effective binding 
of the inhibitor [25]. In other words, MC-1-F2 was found to 
bind to the full-length structure of FOXC2 not only to the 
DBD. The binding between MC-1-F2 and FOXC2 involved 
both the main scaffold of MC-1-F2 as well as the side chains 
[25].

MC-1-F2 violates the four rules of Lipinski’s rule of 
five, which decreases its probability to be an active drug 
because of its poor physicochemical properties. Therefore 
in this work, we applied both ligand-based drug design and 
structure-based drug design (SBDD) computational methods 
to develop novel compounds with improved physicochemi-
cal properties as potent inhibitors for FOXC2.

Methodology

Ligand‑based drug design (LBDD)

Multi-fingerprint browser based on city-block distance using 
daylight-type substructure fingerprint (sFP) was utilized to 
search for similar analogues to MC-1-F2 in more than 13 
million structures of commercially available compounds in 
the ZINC database and more than 2 million compounds in 
the ChEMBL database [26–30]. sFP is a binary fingerprint 
that represents the molecule in the form of 0 and 1 to indi-
cate the absence and the presence of certain substructures, 
respectively [28, 29].

sFP is used to calculate the city-block distance (CBD) 
through the following equation to measure the similarity 

between molecules A and B, represented as two vectors in 
K-dimensional space.

This search resulted in retrieving nearly 1000 compounds 
from the ZINC database and nearly 10,000 compounds from 
the ChEMBL database.

Lipinski's rule of five was applied to the retrieved similar 
analogues, followed by the removal of compounds contain-
ing toxicity alerts as well as the removal of pan-assay inter-
ference compounds (PAINS) using KNIME [31] to get a 
total of 5414 compounds. This filtration was carried out to 
ensure that the molecules have desirable physicochemical 
properties as drug molecules.

A molecular substructure miner, MoSS, using pair-wise 
maximum common substructure similarity (MCSS) metric, 
implemented in KNIME was used for reliable similarity 
search [32]. MoSS focuses on finding the frequent sub-
structures and the discriminative fragments in a database of 
molecules. Similarity search based on city-block distance 
implemented in the multi-fingerprint browser is fast, thus 
suitable to screen large databases. MoSS MCSS molecule 
similarity was applied as an additional similarity metric on 
the 5414 compounds to ensure the proximity of the retrieved 
compounds to MC-1-F2. This results in a reduction of the 
5414 compounds to 792 compounds. Furthermore, these 792 
compounds were clustered into five different groups based 
on K-Medioids using the values generated by MoSS MCSS 
molecule similarity [31]. Clustering of the molecules was 
carried out to identify common functional groups within the 
retrieved molecules similar to MC-1-F2.

Homology modeling of the full‑length structure 
of FOXC2

The available crystal structures of FOXC2 in the Protein 
Data Bank (PDB) only contain the DBD but not the full 
length of the protein. MC-1-F2, the only identified experi-
mental inhibitor for FOXC2, interacts with other domains 
of FOXC2 in addition to the DBD. Thus, it is necessary to 
develop a three-dimensional (3D) structure of the full-length 
FOXC2 using homology modeling. The target 3D structure 
of FOXC2 consists of 501 residues, this represented the 
full length of the FOXC2 protein including the N-terminal, 
C-terminal, and DBD.

I-TASSER server, implementing Threading ASSEmbly 
Refinement, was used to build 3D structures of full-length 
FOXC2 (UniprotKB Q99958) [33–35]. I-TASSER depends 
on enhanced Profile–Profile threading Alignment (PPA) 
method, in which the target sequence is aligned with the 
protein structures in the PDB, whose pair-wise sequence 

(1)CBDA,B =

K∑

j=1

|Aj − Bj|.

Fig. 1  The structure of MC-1-F2 (the only identified experimental 
inhibitor of FOXC2 protein)
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identity with the target sequence is more than 70%. This 
alignment is carried out to search for similar protein folds 
depending on the sequence using the PPA method. The iden-
tified folds are excised from the threading aligned regions. 
On the other hand, the unaligned parts of the sequence, rep-
resenting the loops, are modeled using ab initio modeling 
[34]. The final structure is an average of the coordinates of 
all the clustered structures generated by replica-exchange 
Monte Carlo simulations [35], which is carried out to 
explore the conformational space.

The developed 3D model for the full-length FOXC2 pro-
tein was associated with a Z-score of 3.93. Z-score meas-
ures the difference between the native raw fold of a protein 
and the average score of misfolded structures divided by 
the standard deviation. The normalized Z-score assesses the 
quality of the model as well as the alignment [36]. 1VTN is 
a forkhead protein used as a template sequence for the gen-
eration of the homology model of FOXC2. The normalized 
Z-score of 3.93, larger than 1, indicates a good alignment of 
the FOXC2 protein sequence with the sequence of 1VTN 
protein.

I-TASSER uses the confidence score (C-score) to evaluate 
the quality of the model.

where M is the multiplicity of the clustered structures; 
Mtot is the total number of the I-TASSER structure decoys; 
〈RMSD〉 is the average root mean square deviation (RMSD); 
Z(i) is the highest Z-score of the templates used in the 
PPA threading, and Z0(i) is a Z-score cutoff distinguishing 
between good and bad templates [33–35].

The C-score, with a range between – 5 and 2, was 1.1 for 
the final model, suggesting the high quality of the homol-
ogy model. Furthermore, Molprobity, ERRAT, and ProSA 
modules [37–40] were employed to validate the quality of 
the model.

Molecular dynamics simulations for the homology 
model of FOXC2

Molecular dynamics (MD) simulations were carried out 
for the homology model. The protein was prepared for the 
MD simulation using CHARMM program package ver-
sion 41b1 [41]. The protein was solvated in a cubic box 
using the TIP3P water model [42]. Counter ions  Cl− and 
 Na+ were added to neutralize the charges and maintain 
the ionic strength of the system. The model was mini-
mized followed by heating from 0 to 300 K. The prepared 
system was equilibrated for 10 ns as an isothermal–iso-
baric ensemble (NPT) using OpenMM [43] running on 
GPU. Production of 100-ns simulations was carried out 

(2)C-score = ln

�
M

Mtot

⋅

1

⟨RMSD⟩ ⋅
∏4

i=1
Z(i)

∏4

i=1
Z0(i)

�
,

as a canonical ensemble (NVT). Electrostatic interactions 
were computed using the particle mesh Ewald (PME) [44] 
method. Hydrogen covalent bonds were constrained during 
the simulation using the SHAKE method [44].

RMSD was calculated using the MdTraj package [45], 
where the first frame of the simulation was the reference 
structure. RMSD was used to evaluate the stability of the 
generated model and the convergence of the simulation 
and calculated as

where N is the number of atoms, ri is the coordinate of atom 
i, rref

i
 is the coordinate of atom i in the reference structure, 

and U is the best-fit rotational matrix to align a given struc-
ture onto the reference structure.

Identification of the binding site of the full‑length 
homology model of FOXC2

The binding site of the full-length homology model of 
FOXC2 was determined using the MakeReceptor module 
implemented in the OpenEye scientific package [46–48]. 
MakeReceptor module identifies the active site by deter-
mining the target mask and by generating a negative image 
for the active site. The target mask is the subset of the 
protein suitable for docking, while a negative image is 
the shape of the active site where ligands interact with 
the active site without clashes [46–48]. MC-1-F2 was 
docked against the three binding sites detected by the 
MakeReceptor module. The binding site associated with 
the highest score upon docking of MC-1-F2 was chosen to 
be the active site. The docking score of MC-1-F2 against 
the identified active site was based on four factors: shape 
complementarity of − 13 kcal/mol, hydrogen bond com-
ponent of − 2 kcal/mol, protein desolvation of 6 kcal/mol, 
and ligand desolvation of 8 kcal/mol. Besides the shape 
complementarity component, the ligand desolvation attrib-
utes immensely to the final docking score due to the large 
size of MC-1-F2.

Furthermore, the binding of MC-1-F2 against both the 
full-length model generated by I-TASSER [33, 49, 50] and 
the crystal structure of DBD of FOXC2 (PDB ID: 6O3T) 
was investigated using the BindScope server, a convolu-
tional neural network to predict the binding probability of 
compounds [51–53]. This was performed to validate the 
generated model by I-TASSER [33–35]. The binding prob-
ability of MC-1-F2 to the 3D structure including the full 
length of the protein (the generated homology model) is 
expected to be higher than the PDB structure of DBD only.

(3)RMSD =

√√√√ 1

N

N∑

i=1

(Uri − rref
i
)
2
,
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Screening through molecular docking

The 792 compounds obtained from the similarity search 
were screened using molecular docking against the identi-
fied active site of the full-length FOXC2 3D structure. A 
conformational search was carried out for these 792 com-
pounds using the OMEGA2 package [54] to determine the 
most probable conformation for each compound. OMEGA is 
a knowledge-based method efficient in producing bioactive 
conformations of the molecular structures with high qual-
ity. OMEGA method takes the effect of ionization, tautom-
erism, and isomerism into account by generating different 
conformers for the same molecule based on energetic and 
geometric criteria. This is achieved by combining a library 
of fragments along the sigma bond [54].

FRED docking package provided by OpenEye Scientific 
Software Inc. was used to dock these compounds against the 
target active site [46, 47]. In the FRED docking method, a 
systematic examination is carried out for the possible dock-
ing poses. The top hits are determined using the Chemgauss4 
scoring function, which depends on shape complementarity 
[46, 47]. The top 15 hits based on the docking score were 
further validated by calculating the binding probability 
using the BindScope server [51–53]. BindScope server was 
employed as a further filtration step in the virtual screen-
ing process, as it outperforms the classical virtual screening 
methods that depend on simple docking scoring functions 
[55].

De novo structure‑based drug design (SBDD) 
on the full‑length model

Complimentary to the above virtual screening studies to 
find potent inhibitors from the existing databases, de novo 
SBDD using the LIGANN server [56–58] was performed 
based on the active site of the 3D structure of the full-length 
FOXC2 identified by the MakeReceptor module. LIGANN 
is a generative neural network (GNN) that produces ligands’ 
shapes complementary to the protein shape, represented as a 
generative adversarial network. The ligand shape is decoded 
into SMILES strings representing the ligands generated from 
the design (SBDD). Using GNN in the de novo structure-
based design bypasses the challenges faced by the conven-
tional structure-based compound design. This is achieved 
by including the 3D information of the compounds’ binding 
poses during the design process. This was found to top the 
fragment-based drug design (FBDD) by 200% when the size 
of the linker was limited to five atoms [56–58].

A total of 79 new compounds were generated and 
screened through molecular docking using FRED [47, 48] 
against the identified active site of the full-length FOXC2. 
Similarly, the top 15 hits concerning the docking score were 

further validated by calculating the binding probability using 
the BindScope server [51–53].

MM/GBSA calculation

The stability of the binding of the top ten hits to the devel-
oped full-length model of FOXC2 was assessed using 
MD simulations. Amber ff14SB forcefield implemented 
in Amber package was used for the protein [59–61]. The 
ligands were parameterized using General AMBER force 
field 2 (GAFF2) implemented in the AnteChamber module 
[62, 63].

The complexes of the top ten hits were solvated in a cubic 
water box using the TIP3P water model, followed by neutral-
izing the system using  Na+ and  Cl− counter ions. The system 
was then minimized by the steepest descent algorithm and 
equilibrated for 50 picoseconds (ps) as an isothermal–iso-
baric ensemble (NPT) at 300 K. 50-ns simulations for the 
top ten hits were carried out in the form of a canonical 
ensemble (NVT). Electrostatics interactions were accounted 
for using the particle mesh Ewald method. The hydrogen 
bonds were constrained using the SHAKE algorithm [44]. 
The binding free energy of the protein–ligand complexes 
was calculated using Molecular Mechanics/Generalized 
Born Surface Area (MM/GBSA) algorithm implemented in 
AmberTools20 [64].

Results

Ligand‑based drug design: similarity search 
of MC‑1‑F2

Similarity search for analogues to MC-1-F2 compound 
was performed against 15 million commercially avail-
able compounds in ChEMBL and ZINC databases using a 
multi-fingerprint browser [26–30]. This search resulted in 
nearly 11,000 compounds. An additional filtration step was 
employed utilizing MoSS MCSS molecule similarity imple-
mented in KNIME to ensure the proximity of the similar 
analogues retrieved from the initial similarity search [31]. 
The output molecules from this similarity search were fur-
ther filtered by removing the PAINS and the toxicity alerts 
and applying Lipinski’s rule of five. This extensive filtration 
resulted in 792 compounds.

K-Medoids clustering based on MoSS MCSS molecule 
similarity was applied to the 792 compounds identified from 
the similarity searching resulting in five groups. Group 1 
contains 209 molecules, group 2 contains 88 molecules, 
group 3 contains 75 molecules, group 4 contains 308 mol-
ecules, and group 5 contains 112 molecules. Each group 
is represented by a representative molecule illustrated in 
Fig. 2. These five representative molecules were selected 
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as the cluster centers of above five groups from K-Medoids 
clustering analysis. Group 1 is the largest among all five 
groups and is the most similar to MC-1-F2 based on MoSS 
MCSS molecule similarity. 1,3,5-Triazine-2,4-diamine was 
found to be the common functional group in the representa-
tive structures of all five groups. The role of this functional 
group in the binding of MC-1-F2 and the similar analogues 
to FOXC2 protein should be further investigated.

Quality of the generated 3D structure 
of the full‑length FOXC2

The developed full-length model of FOXC2, generated by 
I-TASSER [33–35], shows 70% sequence identity to the 
1VTN target sequence. In addition, the Z-score of the devel-
oped model is 3.93, reflecting the good quality of the model. 
The quality of the developed model was also assessed using 
MolProbity [33]. 85.4% of the residues lie within a favorable 
area in the Ramachandran plot. Only 3.6% of the residues, 
17 residues out of the total of 501 residues, were identified 
to be outliers in the Ramachandran plot (Fig. 3). Moreover, 
no residues were forming unfavorable bonds or violating the 
acceptable tetrahedral geometry or the chiral volume of the 
protein structure. This supports that the developed struc-
ture of the full-length FOXC2 protein has good quality and 
should be suitable for the consequent SBDD studies.

The homology model of the full-length protein was also 
validated using the ERRAT server [34] to check the quality 
of the model by calculating the non-bonded interactions 

between different atom types. The model is considered 
acceptable if the overall quality is higher than 50%. In 
addition, the higher the overall quality score, the more 
reliable the homology model. The overall quality of the 

Fig. 2  Five groups were generated from clustering the 792 com-
pounds obtained from the similarity search of MC-1-F2 against 15 
million commercially available compounds in ChEMBL and ZINC 
databases [26–30]. The representative structure of each group is 

shown in comparison to the structure of MC-1-F2 (the only identified 
experimental inhibitor of FOXC2). 1,3,5-Triazine-2,4-diamine was 
found to be the common functional group in the representative struc-
tures of all five groups

Fig. 3  Ramachandran plot, produced by MolProbity module [33], to 
validate the quality of the 3D structure of the full-length FOXC2 pro-
tein. 85.4% of the residues, 428 residues, lie within favorable regions 
of the Ramachandran plot. Only 3.6% of the residues are outliers
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first 300 residues (0–305) of the model is 81.8% (Fig. 4a). 
The overall quality of the last 200 residues (306–501) of 
the protein is 78.9% (Fig. 4b). With the weighted average 
of the model’s quality surpassing 81.2%, the developed 
model of the full-length FOXC2 protein is considered as a 
good model. Moreover, less than 3% of the residues exceed 
the 99% error value for the non-bonded interaction. This 
further supports and validates the quality of the generated 
model.

ProSA module [39, 40] was employed to evaluate the 
quality of the model by calculating the energy of the resi-
dues as well as the Z-score of the overall structure. ProSA 
Z-score indicates the statistical significance of the model 
by comparing its score to the knowledge-based scores of 
proteins of similar size with the same folds [39, 40]. The 
quality of the protein folds was evaluated based on the 
energy of the amino acid residues. The lower the energy of 
the residues the better the model. The energy of the resi-
dues of the developed model was associated with energy 
ranging from − 1 to 1 kcal/mol (Fig. 5a). This indicates 
the low energy of the protein folds comparing to random 
conformers of similar size. Z-score measures the deviation 
of the total energy of the model for 3D structures gener-
ated by X-ray and NMR with similar sizes. The model was 
associated with a Z-score of – 4.29 (Fig. 5b). This reflects 
that the generated model of the full-length FOXC2 is sta-
ble with low energy and has quality well comparable with 
proteins with similar sizes from PDB.

Homology modeling and molecular dynamics 
simulations

RMSD was calculated over the time course of 100-ns MD 
simulation to check the stability of the generated model as 
well as the convergence of the simulation. The simulation 
remains stable after the first 10 ns. A high rise in the RMSD 
value from 0 to 1.15 nm was observed during the first 10 ns 
of simulations. However, the RMSD remains within the 
range of 0.05 nm for the rest of the simulations (Fig. 6), 
indicating the stability of the generated 3D model of the 
full-length FOXC2.

Root mean square fluctuation (RMSF) was calculated for 
the full-length model of FOXC2 after the first 10 ns. The 
first frame was used as the reference structure. The fluctua-
tions of the RMSF values are less than 0.1 nm for all the 
residues, except for the first ten residues with high fluctua-
tions of nearly 0.25 nm to 0.5 nm. This indicates the high 
flexibility of the N-terminal. RMSF shows that model is 
stable as indicated by the limited fluctuation profile of the 
residue throughout the simulation (Fig. 7).

Identification of the generated model active site

The interaction of MC-1-F2 was investigated with the three 
detected sites from the MakeReceptor module [46–48]. The 
binding site associated with the highest score upon docking 
of MC-1-F2 was chosen as the active site. The interaction 

Fig. 4  ERRAT plot [34] for the 3D structure of FOXC2. Misfolded 
regions are represented by the red bars. Regions with low error rate 
are represented by the white bars. Regions with an error rate between 

95 and 99% are represented by the yellow bars. a ERRAT plot for 
residues 1–305; b ERRAT plot for residues 306–501
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of MC-1-F2 with FOXC2 involved not only the DBD of the 
protein but also part of the C-terminal. This agrees with the 
experimental data that MC-1-F2 inhibitor binds to the full 
length of the protein [25]. The binding mode of MC-1-F2 
upon docking involves important residues ASN 449, LEU 
459, SER 476, TYR 481, THR 484, and TYR 488. This 
may be because the C-terminal of the protein contains extra 
secondary structures in the full-length FOXC2 comparing 
to DBD, providing a stable binding site (Fig. 8). Using the 
BindScope server, the binding probability of MC-1-F2 to 
the full-length protein was compared to that of the DBD. 
This was implied to validate and ensure the better binding of 
MC-1-F2 to the identified active site comparing to the DBD. 

It was found that the binding probability of MC-1-F2 against 
the full-length model was higher than the DBD (Table 1). 
This agrees with the experimental data that MC-1-F2 inter-
acts with not only the DBD but the full length of FOXC2 
[25].

Screening using the docking method 
against the determined active site (LBDD)

The 792 compounds obtained from the similarity search for 
the analogues to MC-1-F2 were docked against the deter-
mined active sites of the full-length FOXC2 using FRED 
[46, 47]. The docking scores of the top 15 molecules range 

Fig. 5  ProSA plot for the 3D structure of full-length FOXC2. a 
Energy plot for the 501 residues of the full-length FOXC2 lie between 
1  kcal/mol and −  1  kcal/mol. This plot represents the local model 
quality of the model. b The model is associated with a Z-score of 

− 4.29, represented by the black dot. This plot represents the overall 
quality of the model quality. Z-score was calculated for the proteins 
of the same size in PDB, including structures obtained through X-ray 
crystallography (light blue) and NMR spectroscopy (dark blue)

Fig. 6  RMSD of the 100-ns molecular dynamics simulation of full-
length FOXC2 homology model 3D structure

Fig. 7  RMSF of the full-length FOXC2 homology model 3D struc-
ture
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from – 13 to – 6 kcal/mol (Table S1). The docking scores 
of similar analogues are higher than MC-1-F2. This may be 
attributed to the smaller size of the analogues compared to 
MC-1-F2.

The top 15 molecules based on FRED docking 
scores contain the main scaffold of MC-1-F2 inhibitor, 

1,3,5-triazine-2,4-diamine functional group in particular. 
The top hits were further evaluated using the BindScope 
server [51–53] to calculate the binding probability and to 
identify the most probable hits. The compounds with bind-
ing probability equal to or higher than 0.85 were selected. 
This additional filtration using binding probability resulted 
in choosing only 3 compounds from the top 15 hits. The 
selected 3 compounds are illustrated in Fig. 9.

De novo design of inhibitors against full‑length 
FOXC2 (SBDD)

Docking of the 79 molecules, obtained from de novo struc-
ture-based design using LIGANN [56–58], against the 
detected active site of the full-length FOXC2 was carried 

Fig. 8  The detected active site, associated with the best binding of 
MC-1-F2 upon docking, of the full-length model of FOXC2 using 
the MakeReceptor module in the OpenScientific package [46–48]. a 
Shape complementarity against MC-1-F2. MC-1-F2 is illustrated in 
the form of sticks. The detected active sites are illustrated in the form 

of the mesh showing the C-terminal helices, the domain to which 
MC-1-F2 binds. b The binding mode of MC-1-F2 upon docking. 
ASN 449, LEU 459, SER 476, TYR 481, THR 484, and TYR 488 are 
identified as important residues for binding with MC-1-F2

Table 1  The binding probability 
of MC-1-F2 against the 
developed model of the full-
length FOXC2 using I-TASSER 
and the DBD crystal structure 
of FOXC2

Model used Binding 
probabil-
ity

I-TASSER 0.9757
DBD Crystal 

structure (PDB 
ID:6O3T)

0.8483

Fig. 9  The top 10 hits identified 
by augmenting both LBDD and 
SBDD by docking the com-
pounds obtained from similarity 
search and de novo structure-
based design against the full-
length FOXC2. The molecules 
are labeled for the method used 
to generate the molecule either 
LBDD (similarity search) or 
SBDD (de novo structure-based 
design). In addition, the binding 
probability (BP) of the molecule 
against the full-length FOXC2 
obtained from the BindScope 
server is also listed [52–54]
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out using FRED [46, 47]. Compounds generated from 
SBDD have higher docking scores than the compounds 
generated from LBDD. The docking score of the top 15 hits 
generated from SBDD ranges from – 17 to – 11 kcal/mol 
(Table S2). The higher docking scores could be attributed 
to the smaller and the simpler compounds obtained from de 
novo SBDD comparing to the compounds obtained from 
LBDD. The compounds with binding probability equal to 
or higher than 0.85 as evaluated using BindScope server 
[51–53] were selected. This additional filtration resulted in 
choosing 7 compounds from the top 15 hits. The selected 7 
compounds, illustrated in Fig. 9, do not have the 1,3,5-tria-
zine-2,4-diamine moiety which was an essential functional 
group in the hits from the similarity search.

In summary, the top 10 hits obtained from this filtration 
included 3 compounds from the similarity search (LBDD) 
and 7 compounds from de novo structure-based design 
(SBDD). Some of the compounds, especially those obtained 
from LBDD, were structurally similar to MC-1-F2 (Fig. 1).

Since the main problem with the experimentally identi-
fied inhibitor MC-1-F2 was the unfavorable physicochemical 
properties which results in difficulty purifying the compound 
using HPLC, the physicochemical properties of the top ten 
hits were inspected. The physicochemical properties of the 
compounds generated from the similarity search were found 
to have a higher polar surface area (PSA) comparing to those 
generated from the de novo structure-based design (Table 2). 
The top ten hits, obtained from augmenting both LBDD and 
SBDD, have a larger number of hydrogen bond acceptor 
moieties than hydrogen bond donor moieties. This is also a 
feature in the experimentally identified inhibitor MC-1-F2. 
In addition, the top ten hits follow both the Veber’s rule [65] 
and Lipinski’s rule of five, where the PSA for all the top 
ten hits is less than 140 Å2 unlike MC-1-F2 (Table 2). The 
physicochemical properties of the top 10 hits are favorable 
comparing to MC-1-F2. This will provide better bioavail-
ability and a higher chance of being an efficient drug, as well 
as an easier synthesis process.

The binding modes of the top ten hits were investigated 
in comparison to MC-1-F2. All the top ten hits and MC-
1-F2 share interactions with four specific residues, ASN449, 
LEU459, SER476, and THR484, in the identified active site 
(Fig. 10).

The stability of the identified binding mode was further 
evaluated using MD simulations of the top ten hits. The low 
deviation of the RMSD values reflects the convergence of 
the simulations (Fig. 11). The fluctuation of the RMSD val-
ues for each trajectory is less than 0.25 nm. This indicates 
the stability of the binding between the top ten hits and the 
identified active site of the developed full-length of FOXC2 
(Fig. 11).

The binding free energies of the top ten hits targeting 
FOXC2 were calculated using MM/GBSA method. The 
binding affinities of eight identified ligands are higher than 
the experimental inhibitor (MC-1-F2), except for compound 
5 with a slightly lower binding affinity and compounds 4 and 
10 with positive binding free energy (Fig. 12). This implies 
the effectiveness of augmenting LBDD and SBDD in identi-
fying new inhibitors for FOXC2 with better physicochemical 
properties.

Discussion and conclusion

MC-1-F2 is the first identified inhibitor of FOXC2 pro-
tein, but has unfavorable physiochemical properties. This 
resulted in difficulty purifying the drug during its synthe-
sis. The two main computational drug design approaches: 
ligand-based drug design (LBDD) and SBDD were applied 
to find new hits with desirable physicochemical properties. 
The top eight hits identified from both LBDD and SBDD 
have favorable physicochemical properties following both 
Lipinski’s and Veber’s rules [65]. We anticipate that the 
favorable physicochemical properties will play important 
roles in our future efforts to examine the efficacy of small 

Table 2  The physiochemical 
properties calculated by FRED 
[46, 47] of the top ten hits 
obtained from both LBDD 
and SBDD in comparison to 
the experimentally identified 
inhibitor MC-1-F2

Compound no. Generated from Molecular weight No. of ON No. of OHNH PSA

1 Similarity search (LBDD) 451.5 3 10 105.7
2 LIGANN (SBDD) 395.5 0 6 44.6
3 LIGANN (SBDD) 404.5 0 5 41.5
4 LIGANN (SBDD) 396.5 1 4 33.1
5 Similarity search (LBDD) 391.5 2 6 92.4
6 LIGANN (SBDD) 404.5 0 4 44.9
7 LIGANN (SBDD) 447.6 1 4 35.6
8 LIGANN (SBDD) 267.4 0 2 12.5
9 LIGANN (SBDD) 396.5 0 4 24.3
10 Similarity search (LBDD) 388.5 3 7 82.6
MC-1-F2 Experimental Inhibitor 746.9 9 18 229.5
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molecule inhibitors of FOXC2 in vivo as well as to per-
form clinical and translational research.

The top eight hits were found to share a common bind-
ing mode, including four residues: ASN449, LEU459, 
SER476, and THR484. That is why more studies should 
be carried out to investigate the role of these four resi-
dues and the C-terminal of FOXC2 protein in its role in 
the EMT process. The binding modes of MC-1-F2 and 
the top eight hits suggest that these could be allosteric 
compounds. In a previous study, it has been shown that 
MC-1-F2 retains FOXC2 in the cytoplasm resulting in the 
inhibition of FOXC2 nuclear localization, and the cyto-
plasm-retained FOXC2 becomes subjected to 26S-protea-
some-mediated degradation [25]. Examining the roles that 
these four residues and the C terminus of FOXC2 play in 
the FOXC2 protein–protein interactions associated with 

FOXC2 nuclear localization could lead to a mechanistic 
understanding of FOXC2 inhibitors.

The developed model for the full length of FOXC2 with 
I-TASSER was found to be stable as indicated by the RMSD 
value ranging between 1.15 and 1.20 nm after the first 10 ns 
and throughout the remainder of the 100-ns simulations. 
This reflects the stability of the model and supports the use 
of the model as the basis for the SBDD.

FOXC2 is a new interesting therapeutic target for the 
development of anticancer drugs by inhibiting its role in 
initiating and maintaining the EMT process. Augment-
ing both LBDD by carrying out a similarity search for 
MC-1-F2 against both ZINC and ChEMBL databases and 
SBDD by carrying out homology modeling, MD, de novo 
structure-based design, and MM/GBSA calculations helped 
in identifying new possible hits. Moreover, applying several 

Fig. 10  The binding modes of the top ten hits obtained from both 
LBDD and SBDD show common interactions with four residues in 
the active site (ASN 449, LEU 459, SER476, and THR484). Only 
one molecule from each strategy is shown for simplification. a The 

interaction of compound 10 as representation for the interaction of 
the compounds obtained from LBDD; b The interaction of compound 
8 as representation for the interaction of the compounds obtained 
from SBDD

Fig. 11  RMSD plot of the top ten hits and MC-1-F2 calculated over 
the 50-ns simulations

Fig. 12  The binding free energies of the top ligands targeting the 
developed full-length FOXC2 protein. Compounds 4 and 10 are not 
plotted due to their positive binding free energy
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filtration steps by carrying out docking using FRED and 
using BindScope, a convolutional neural network approach, 
and binding free energy calculations ensured that the top 
eight hits obtained had the desirable physicochemical prop-
erties unlike the experimental inhibitor identified MC-1-F2.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11030- 022- 10519-0.
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