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The Angiotensin Converting Enzyme 2 (ACE2) assists the regulation of blood pressure and is the main

target of the coronaviruses responsible for SARS and COVID19. The catalytic function of ACE2 relies on

the opening and closing motion of its peptidase domain (PD). In this study, we investigated the possibility

of allosterically controlling the ACE2 PD functional dynamics. After confirming that ACE2 PD binding site

opening-closing motion is dominant in characterizing its conformational landscape, we observed that

few mutations in the viral receptor binding domain fragments were able to impart different effects on the

binding site opening of ACE2 PD. This showed that binding to the solvent exposed area of ACE2 PD can

effectively alter the conformational profile of the protein, and thus likely its catalytic function. Using a tar-

geted machine learning model and relative entropy-based statistical analysis, we proposed the mecha-

nism for the allosteric perturbation that regulates the ACE2 PD binding site dynamics at atomistic level.

The key residues and the source of the allosteric regulation of ACE PD dynamics are also presented.

1. Introduction

Angiotensin-converting enzyme 2 (ACE2) is a key player in a
variety of crucial biological systems.1 Recently, ACE2 has
gained considerable attention as the human receptor for a
number of coronaviruses, including the ones responsible for
the Severe Acute Respiratory Syndrome (SARS) and the current
Coronavirus Disease 2019 (COVID19).1–3 During coronaviruses
infection, the viral spike protein fragment S13–5 binds to ACE2
at the host cell surface first. Then the viral capsid fuses with
the membrane and injects the viral load into the cell.6

The severity in pathology for these respiratory corona-
viruses, and in particular for COVID19, was correlated with
comorbidities that are related to the Renin–Angiotensin–
Aldosterone System (RAAS). RAAS is the hormonal system
responsible for the regulation of blood pressure as well as
numerous other essential aspects of human physiology.7 The
connection between the RAAS anomalies and coronaviruses’
severity lies in ACE2. In RAAS, ACE2 catalyzes the hormonal
peptide angiotensin-II, a vasoconstrictor, to angiotensin (1–7),
a vasodilator, to lower blood pressure.1,5 Due to this dual role

of ACE2, ACE2 inhibitors were proposed as potential treatment
against coronaviruses infection.8

ACE2 is located at the extracellular side of cell membranes
and interacts with the transmembrane sodium-dependent
neutral amino acid transporter B(0)AT1, which ACE2 helps as
chaperone.1,9,10 ACE2 is composed of an extracellular
N-terminal peptidase domain (PD, residues 19-615) and a
C-terminal collectrin-like domain (CLD residues 616 to 768).
The CLD domain is further divided into the neck domain (resi-
dues 616 to 726) and a transmembrane helix (residues 726 to
768).3 The CLD domain anchors ACE2 to the cell membrane
and aids B(0)AT1 in transporting amino acids.3,9,10

PD domain is responsible for ACE2 catalytic activity and is
the target for coronavirus S1 receptor binding domain (RBD)
binding.3,11 Alteration of the this structural region has the
potential to negate the catalytic ability of ACE2 by restricting
the access to the binding site, which can ultimately impact
ACE2 related pathologies. This could occur via protein allos-
tery, a biological mechanism of protein dynamical and confor-
mational space change via binding to a secondary allosteric
site.

In this study, we present a computational mechanistic
investigation to probe allosteric differences in ACE2 PD via tar-
geted machine learning, structural, and statistical approaches.
Four systems are considered: the ACE2 PD in the apo state,11

the ACE2 PD in presence of the inhibitor MLN-4760,11 and
ACE2 PD complexed with the S1 RBD fragments of
SARS-CoV-112 or SARS-CoV-2.3 Our mechanistic investigations
are based on the ACE2 simulation data provided by D. E. Shaw

†Electronic supplementary information (ESI) available: Tables S1–S4; machine
learning model regularization; Fig. S1–S7. See DOI: https://doi.org/10.1039/
d2ob00606e

Department of Chemistry, Center for Research Computing, Center for Drug Discovery,

Design, and Delivery (CD4), Southern Methodist University, Dallas, USA.

E-mail: ptao@smu.edu

This journal is © The Royal Society of Chemistry 2022 Org. Biomol. Chem., 2022, 20, 3605–3618 | 3605

http://rsc.li/obc
http://orcid.org/0000-0001-5538-9189
http://orcid.org/0000-0002-3127-3971
http://orcid.org/0000-0003-4762-944X
http://orcid.org/0000-0002-2488-0239
https://doi.org/10.1039/d2ob00606e
https://doi.org/10.1039/d2ob00606e
https://doi.org/10.1039/d2ob00606e
http://crossmark.crossref.org/dialog/?doi=10.1039/d2ob00606e&domain=pdf&date_stamp=2022-04-28


Research13 as part of the global initiative that sparked the
scientific community to effectively study coronaviruses, ACE2,
and their interaction.14–17

Molecular dynamics simulations serve as a powerful tool to
explore the relations between molecular structures, their
motions, and protein function by providing the evolution of a
system over time at an atomistic level.18–20 Machine learning
approaches have been applied to the study of biomolecular
system and have helped to reveal the underlying biological
information by tackling the high complexity of molecular
dynamics simulations data.21–23 Among the multitude of
machine learning approaches, Convolutional Neural Networks
(CNN) have gained special interests due to their ability to extract
local patterns in the data structure.24,25 Herein, we developed a
Collective Variable-guided CNN (CV-CNN) model as a novel
scheme to capture the functional and structural differences of
ACE2 PD. Principal component analysis was used to visualize
the high-dimensional protein conformational space. Markov
state model was used to characterize the kinetics of ACE2 PD
dynamics within its conformational space. Lastly, the relative
entropy-based dynamical allosteric network model was
employed to obtain the pathway information of residue-residue
interactions that characterize ACE2 PD functional dynamics.

This ensemble of computational tools for analyzing mole-
cular dynamics simulations enabled us to validate and inte-
grate ACE2 PD functional dynamics with atomistic-level
details, which are otherwise inaccessible from experimental
investigations. Our results detail the possibility of the allo-
steric control of the functional dynamics of ACE2: where key
interactions in the solvent exposed region of the ACE2 PD can
force the closing of the catalytic domain.

2. Materials and methods
2.1 Data acquisition

The molecular dynamics trajectories were obtained from D.E.
Shaw research.13 Four systems were investigated based on the
following initial structures: ACE2 ectodomain (peptidase
domain) in an apo open state (PDB ID: 1R42),11 ACE2 ectodo-
main in an inhibitor-bound closed state (PDB ID: 1R4L),11

human ACE2 in complex with the Receptor Binding Domain of
spike protein from SARS-CoV-1 (PDB ID: 2AJF),12 and ACE2 in
complex with the Receptor Binding Domain of spike protein
from SARS-CoV-2 (PDB ID: 6 M17).3 The glycosylation states of
the systems are shown in Fig. S1.† The simulations details are
provided in the ref. 13 and are briefly listed as the following.
The simulations used the Amber ff99SB-ILDN force field26 for
proteins, the TIP3P model27 for water, and the generalized
Amber force field28 for glycosylated asparagine. The carboxy-
late and amino peptide termini, including those exposed due
to missing loops in the crystal structures, are capped with
amide and acetyl groups, respectively. The system was neutral-
ized and salted with NaCl at a final concentration of 0.15 M.
Each system was simulated for 10 µs. The interval between
frames is 1.2 ns. The simulations were conducted at 310 K in

the isothermal-isobaric (NPT) ensemble. In the present study,
the naming of the secondary structure follows the UniProt29

classification and can be found in the ESI Table S1.†

2.2 CV-CNN: collective variable-guided multi-task
convolutional learning

A novel deep learning protocol was developed and
implemented in the present study to obtain critical biologi-
cally relevant information regarding the ACE2 PD dynamics.

2.2.1 Data featurization. The first step to achieve model
interpretability is to provide the learner with reasonable train-
ing data representation. In this study, the following data fea-
turization scheme is adopted. Each frame of the simulations is
represented by a N × N contact matrix for N number of resi-
dues. This contact matrix initially contains residue-to-residue
distances, expressed in angstrom (Å), between the closest
heavy-atoms. Subsequently, the interaction distances exceed-
ing 4 Å were set to zero. This cutoff was chosen as it represents
the upper limit for significant inter-molecular interactions,
such as salt bridges and hydrogen bonding.30,31 This featuriza-
tion strategy enforces the learning of local bonding patterns
correlated with large protein motions. The distances were com-
puted using the python package MDTraj 1.9.3.32

2.2.2 Model architecture. Motivated by the unique feature
of convolutional filters to extract detailed local patterns in the
data structure while retaining the high-level semantics,24,25 a
multi-task Convolutional Neural Network (CNN) model was
implemented in the current study. Convolution is a linear
operation used for feature extraction. In a convolutional layer,
a set of matrices called filters (or kernels) are applied across
the input matrix. For each overlap between a filter and a
portion of the input matrix, an element-wise product is calcu-
lated to obtain the output value in the corresponding position
of the output matrix, called the feature map.33 The latter is
then delivered as the input to the following layers. Because the
convolutional filters extract local feature patterns, we expect
that the model will learn specific short-range bonding patterns
buried implicitly in the data. Accordingly, we defined two
goals for the learning model: the first is a goal of classification
that the CNN model is expected to correctly identify the state
of each molecular dynamics snapshot, which are the two meta-
stable states of ACE2 PD in the presence of SARS-CoV-1 and
SARS-CoV-2 RBD fragments. The second is a goal of regression
that the collective variable, which describes the opening of the
ACE2 binding site, should be correctly predicted by the learn-
ing model. Accordingly, a multi-task CNN architecture was
developed to achieve these two goals simultaneously (Fig. 1).
These two outputs are connected to the convolutional section
of the model via a fully connected (dense) layer, which func-
tions as the latent space. The latter is expected to select for
and optimize the feature patterns that help distinguishing
protein functional states and are correlated with the collective
variable. For these reasons the machine learning model in our
study is referred as CV-CNN.

The outline of the architecture is illustrated in Fig. 1. We
used 32 filters, each of size 4 × 4, for all convolutional layers.
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The dense layers were composed of 64 neurons each. A rectified
linear unit (ReLU) activation function is used for both convolu-
tional and latent dense layer. The normalized exponential func-
tion (softmax) and the linear activation function were used for
the classification and regression layers, respectively. In Table S2,†
the details for each layer are shown. The dropout and L1-regular-
ization strategies were implemented to avoid overfitting and to
promote generalizability of the model.34–36 The details on these
techniques can be found in the ESI.† For the training process,
80% of the data was used for training and validation. The test set,
composed of the remaining 20%, was used for further analysis.
The machine learning analysis here described was performed
using the GPU-accelerated version of TensorFlow 2.0.37

2.2.3 Explainable artificial intelligence (XAI). A crucial
component of our machine learning implementation is to
attribute the contributions of each input dimension to the pre-
dictive outcome of our model, thus revealing the chemical
interactions that are distinct between states upon binding of
different S1 RBD fragments and are correlated with the pocket
opening of the ACE2 PD. Extracting learned information from
machine learning, especially the deep learning models, is a
major ongoing research direction known as the Explainable
Artificial Intelligence (XAI).38 XAI unravels the black box nature
of deep learning and plays a fundamental role in both practical
and ethical AI by serving as a tool for rational improvement of
deep learning models and for granting transparency in the
interpretation of the results.38–41 In the present study, the XAI
technique Gradient-weighted Class Activation Mapping (Grad-
CAM) was implemented and applied to our ACE2-learning
CV-CNN model.25 Grad-CAM is a well-known XAI method in
image processing and has recently shown potential for the ana-
lysis of protein structures.42 Formally, for a datapoint k, Grad-
CAM computes its gradient score yc for a certain class c with
respect to the feature map activation of the last convolutional
layer Ak, which yields the neuron importance weights αk

c.

αk
c ¼ 1

Z

X
i

X
j

δyc

δAki;j
: ð1Þ

In eqn (1), i and j are indices for the row and columns in
the activation matrix, 1/Z is the normalization factor. The

importance weights are then calculated for each layer by the
dot product between the weight matrices and the backpropa-
gated gradients with respect to the activation function. The
outcome of the Grad-CAM importance attribution is a
heatmap of regions in the input space that have positive influ-
ence in the recognition of a certain class.25 For each class, the
importance heatmap is a square matrix of size N × N (with N
the number of residues), where the contribution for each pair
of residues is the normalized average importance over all
frames. Grad-CAM is a post hoc XAI method with the advan-
tages of generally applicability to any CNN architecture and
not needing to retrain the model. In this study, Grad-CAM acti-
vation is applied on the test sets of the classes investigated.
The implementation of this method using Keras/TensorFlow
was employed in this study.43

2.3 Relative entropy-based dynamical allosteric network
(REDAN)

The REDAN model developed by Zhou et al.44 was used to
build the quantitative model to accurately describe the ACE2
PD differences in conformational dynamics upon different S1
RBD fragment binding. Relative entropy, or Kullback–Leibler
divergence, is defined as a measure of similarity between the
distributions p for system P and q for system Q.45

DKLðPjjQÞ ¼
ð
pðxÞ ln pðxÞ

qðxÞdx: ð2Þ

In the context of molecular dynamics simulations, protein
conformations can be represented as collections of pair-wise
residue-residue distances. For each pair of residues, the distri-
bution of the distances can be compared between different
states. High relative entropy values indicate that the inter-
action between a residue pair is significantly different between
two states.

In the REDAN implementation, the Dijkstra algorithm46 is
used to identify the shortest path of interactions that connects
two residues. The Dijkstra algorithm computes the path with
the lowest cost between two nodes in a graph by iteratively
looping all possible paths connecting these two nodes and cal-

Fig. 1 The architecture of the collective variable-guided multi-task convolutional neural network (CV-CNN).
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culating their costs.47 In our application, the inverse of the
relative entropy DKL between a pair of nodes i and j based on
their distance distributions in states P and Q is calculated as
the cost for the connection between them:

Cos ti;j ¼ 1
DKLðPijjQjÞ : ð3Þ

If a distance distribution is strongly perturbed between the
two biological states, the interaction considered is likely
important in the propagation of the structural changes in the
protein. This will be reflected by high relative entropy values,
which in turn will cause the cost to be low, making this par-
ticular interaction to be favored in the finding of the allosteric
path with the lowest-cost.

Furthermore, the relative entropy for a pair of nodes i and j
can be weighted by their associated machine learning impor-
tance, αk

c, obtained from Grad-CAM attributions for each
class. As mentioned above, αk

c describes the structural regions
crucial for the functional dynamics of a certain class.
Therefore, this strategy would reveal the ability of a certain
class to use the allosteric path identified and allows the com-
parison of allosteric communication between different classes.
The states of ACE2 in presence of the SARS-CoV-1 or
SARS-CoV-2 S1 RBD fragments are considered as different
classes. This weighted REDAN model allows to compare the
cost associated with the allosteric perturbation when different
allosteric binders are present. The machine learning weighted
cost for a class c is calculated as

Cos ti;j c ¼ 1
DKLðPijjQjÞ expðαkcÞ ð4Þ

and is used to build machine learning weighted REDAN
model.

2.4 Principal component analysis (PCA)

PCA reduces the dimensionality of the data by projecting each
data point onto a few principal components as a lower-dimen-
sional representation of the original data while preserving its
distribution variation.48 The principal components are linear
combinations of input variables and are orthogonal to each
other. Given two variables, x and y, their covariances measure
how these two variables vary in relation to each other using n
data points:

covðx; yÞ ¼ 1
n� 1

Xn
i¼1

ðxi � x̄Þðyi � ȳÞ ð5Þ

where xi and yi are the values in ith data point, and x̄ and ȳ are
the averaged values for variables x and y, respectively.

In PCA, the covariance matrix C is subsequently con-
structed. In this symmetric matrix, each element is a covari-
ance between two variables. For the N variables in the given
dataset with each variable represented as ki, the covariance
matrix has the following form:

C ¼
covðk1; k1Þ . . . covðk1; kNÞ

..

. . .
. ..

.

covðkN ; k1Þ � � � covðkN ; kNÞ

2
64

3
75: ð6Þ

The eigenvectors of C are the components of PCA. The
eigenvalues of C measure the contribution of each component
in the dataset. The larger the magnitude of eigenvalue, the
higher the contribution of its corresponding component, i.e.,
eigenvector. Generally, the eigenvectors with the largest eigen-
values are designated as principal components to form two-
dimensional (2D) or three-dimensional (3D) space for data pro-
jection. The PCA was performed using Scikit-learn
implemented in python.49

2.5 Markov state model (MSM)

MSM50–53 has become increasingly useful network models to
describe the transitions among functional states during allo-
steric events.53–56 The MSM provides the transition probabil-
ities among micro-states.52,57 The collection of the transition
probabilities among n microstates is represented as the tran-

sition matrix T. The element of T is calculated as Tij ¼ cijP
k
cik

,

where cik is the count of the number of times the trajectories
transition from state i to state j within a certain time interval
(referred as lag time τ).

In this study, the first two components of each PCA model
were used as collective variables to construct the MSMs. The
discretization of the conformational space into 200 microstates
was performed using k-means clustering implemented in
scikit-learn.58 The PyEmma python package was used to build
the MSM.59 The default hyper-parameters provided were used
for the analysis. The ergodic cutoff was turned on and the
Maximum Likelihood method was used to achieve the reversi-
bility of the transition matrix. A lag time of 200 ns was chosen.
The MSM was used as a mean to obtain a kinetical clustering
of the conformational space. The metastable states, also
referred to as macrostates, were created using the Perron-
cluster cluster analysis (PCCA) implemented in the PyEmma
package.59

2.6 Root mean square deviation (RMSD)

For a system represented in Cartesian coordinates, RMSD is
calculated to measure the deviation from a reference structure
by taking the square root of the averaged difference between
the atomic coordinates vectors of a reference structure, ri

0 and
of the structure in the ith frame among total of N atoms, ri,

RMSD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðri0 � UiriÞ2

N

vuuut
ð7Þ

Ui is the rotation and translation matrix to superimpose the
structure in the ith frame against the reference structure.
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2.7 Root mean square fluctuation (RMSF)

The RMSF of atom i is calculated as its averaged fluctuation
among T frames.

RMSFi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPT
j¼1

ðrij � Uir̄iÞ2

T

vuuut
ð8Þ

2.8 Radius of gyration

The protein compactness is measured using the radius of gyra-
tion, Rg.

2

Rg
2 ¼

P
miðri � RcÞ2

M
ð9Þ

mi is the mass of the ith atoms, M is the mass of the atoms in
the protein, Rc are the coordinates of the center of mass of the
system, and ri are the coordinates of the i

th atom.

3. Results

ACE2 plays a role in regulation of blood pressure in RAAS by
catalyzing peptide hydrolysis of signaling peptide angiotensin
II to angiotensin (1–7).1,11,60,61 The ACE2 roles in RAAS as a
target for cardiovascular diseases, as well as in coronavirus
pathology as an antiviral target have been studied
extensively.60,61 To explore these aspects of ACE2 biology, most
ACE2 PD structural studies focus on screening of
inhibitors62–67 and on the energetics of complexing with viral
spike proteins.68–73 As the conformational ensemble of pro-
teins are crucial for their biological functions, we investigated
how orthosteric and allosteric binding can affect the func-
tional ACE2 PD conformational dynamics using the inhibitor
MLN-4760 and S1 RBD fragments from SARS-CoV-1 and
SARS-CoV-2.

3.1 Orthosteric and allosteric effects on the conformational
space explored by ACE2 PD

The conformational ensembles that proteins explore are
crucial to biological function. The conformational space
explored by ACE2 PD during extensive molecular dynamics
simulations was examined. Four different systems were con-
sidered: ACE2 in its apo state (ACE2 apo), ACE2 bound to the
inhibitor MLN-4760 (ACE2:inhibitor), ACE2 in complex with
the S1 RBD fragment from SARS-CoV-1 (ACE2:COV1-S1), and
ACE2 in complex with the S1 RBD fragment from SARS-CoV-2
(ACE2:COV2-S1). Only the PD was considered as both enzy-
matic and viral entry mechanisms occur through domain.3 In
all systems, the simulations were stable and reached equili-
brium (Fig. S2†).

The RMSF analysis in Fig. 2a displays the dynamic finger-
print of the ACE2 PD. α1, α2, β5, β6, α20, the α17–α18 loop,
and the α20–β21 loop are the structural regions responsible for
the majority of the protein motions as shown by the highest
fluctuation during the simulations (Fig. 2b). A common
characteristic for these structural components is their location
in proximity to the ACE2 PD entrance (Fig. 3a). This agrees
with previous studies of ACE2, where the catalytic functionality
of ACE2 was proposed to rely on the opening and closing
motion of the ACE2 PD binding site.11 Thus, the binding site
opening motions of ACE2 PD in the different systems are ana-
lyzed and compared. The front and the back of the ACE2 PD
catalytic binding site entrance (Fig. 3a) were considered separ-
ately as they demonstrate distinct dynamical profiles in the
RMSF analysis (Fig. 2a and b). The distance distribution ana-
lyses of the front and back opening/closing motions of the
entrance show a non-synchronized movement (Fig. 3b and c).
ACE2 PD is free to explore its open conformation in the apo
state (Fig. 3b). On the other hand, in the ACE2:inhibitor com-
plexes the MLN-4760 ortho-sterically closes the binding site, as
expected from crystal studies.11

Interestingly, different RBD fragments allosterically affect
the conformational landscape of ACE2 PD in distinct ways.

Fig. 2 Root Mean Squared Fluctuation (RMSF) analysis of ACE2 PD in different systems. (a) RMSF plot of ACE2 PD residues Cα for ACE2:apo, ACE2:
inhibitor, ACE2:COV1-S1, and ACE2:COV2:S1. (b) ACE2 PD fluctuation trends in its apo form. The color gradient from white to red represents the
degree of flexibility from low to high, respectively. Protein rendered with 3D Protein Imaging.74
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The presence of SARS-CoV-2 S1 RBD fragment (ACE2:COV2-S1)
causes a wide distance distribution of the binding site
opening similar to the apo state (Fig. 3b). This contrasts with
the presence of the SARS-CoV-1 S1 RBD fragment (ACE2:COV1-
S1), where the front of the binding site was observed to adopt
a closed conformation, similarly to the ACE2:inhibitor com-
plexes. This indicates that the binding to the ACE2 PD surface
can allosterically cause a population shift on the free energy
landscape, ultimately causing the closing of the protein cata-
lytic site. This trend also affects the protein compactness, as
shown by the radius of gyration (Fig. S3†).

The interatomic distances between the backbone Cα in
each conformation from the molecular dynamic simulations
were employed for PCA. The first two principal components,
PC1 and PC2, were selected to represent the conformational
space of the protein dynamics. The conformational space
explored by ACE2:apo overlaps substantially with the confor-
mational space of ACE2:COV2-S1, partially with the confor-
mational space of ACE2:COV1-S1, and very little with the con-

formational space of ACE2:inhibitor (Fig. 3d). The inhibitor
and SARS-CoV-1 S1 RBD fragment drive ACE2 PD to explore
different conformational spaces, exclusive to each system. The
most dominant component in the ACE2 PD conformational
space, PC1, correlates with the opening motion of the front of
the binding site. The second component, PC2, is correlated
with the motion of the binding site back opening. These corre-
lations are illustrated as the gradual change of the front and
back openings along PC1 and PC2, respectively (Fig. 3e and f).

In summation, the opening and closing motions of the
binding site dominate the conformational landscape of ACE2.
The two RBD fragments have significantly different effects on
the ACE2 functional conformational space. SARS-CoV-2 S1
RBD fragment does not strongly perturb the ACE2 apo confor-
mational profile, whereas SARS-CoV-1 S1 RBD fragment allos-
terically induces the closing of the catalytic domain and
increase the overall PD rigidity. The ACE2 inhibitor,
MLN-4760, induces an ortho-steric closing of the ACE2 catalytic
domain.

Fig. 3 Conformational space of ACE2 PD related to the front and back openings of its binding site in different states. (a) Structure of ACE2 peptidase
domain (PD). The helices involving the front and back opening are colored in blue and orange, respectively. The helices involved are the α2 and α4
(Table S1†). (b) Distance distributions of the front opening in the different ACE2 states. The distances reported are the average distance between the
residues the residues 69 to 84 of the α2 and the residues 101 to 116 of α4. (c) Distance distributions of the back opening in the different ACE2 struc-
tures. The distances reported are the average distance between the residues 53 to 68 of the α2 and the residues 117 to 132 of α4. (d) Projection of
each state onto the conformational space represented by the first two components of principal component analysis. Each data point represents a
frame (conformation) of ACE2 PD. Colored scheme: blue for ACE2 apo, orange for ACE2:inhibitor, green for ACE2:COV1-S1, red for ACE2:COV2-S1.
(e) Projection of conformational space explored using the first two components of principal component analysis. The data points are colored based
on the value of average distance between the carbons of the helices at the entrance of ACE2 binding site (front opening). (f ) Projection of confor-
mational space explored using the first two components of principal component analysis. The data points are colored based on the value of average
distance between the carbons of the helices at the back of ACE2 binding site (back opening). Points are colored from light to dark for small to large
distances, respectively. Protein rendered with 3D Protein Imaging.74
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3.2 Functional discretization of ACE2 conformational space

The conformation analysis presented above demonstrates
striking differences in the effects of SARS-CoV-1/2 S1 RBD frag-
ments binding on the ACE2 PD functional dynamics, despite
their high structural and sequence similarities. Thus, specific
interactions established with the ACE2 PD surface are expected
to be responsible for allosteric control of binding site motions.
In the remainder of the study, we pursue a mechanistic expla-
nation of this allosteric phenomenon at atomistic level.
Towards this goal, a target machine learning model, coined
CV-CNN, was developed and used to extract specific inter-
actions correlated with the S1 RBD-related difference in ACE2
binding site dynamics.

For a machine learning model to learn biologically mean-
ingful information, an appropriate data labeling strategy is
needed. A biologically sensible approach is to classify each
conformation of the molecular dynamics simulations by the
functional metastable state to which they belong. The free
energy landscape on the projected conformational surface pre-

sented in Fig. 4 suggests that ACE2 PD explores four distinct
minima during the simulations. The free energy landscape is
further correlated with a kinetical clustering Perron Cluster
Cluster analysis (PCCA+), which is based on MSMs. This clus-
tering analysis is established on the assumption that struc-
tures belonging to the same functional metastable state inter-
convert more frequently than structure separated by high free
energy barriers. From the analysis of the protein relaxation
timescales of molecular motions at different lag-times, four
distinct macrostates, states 1 through 4, are identified, con-
firming the qualitative identification based on population
density. The details on the micro clustering to build the MSM
and the plot of the protein relaxation timescales at different
lag times are presented in Fig. S4.†

The effect of inhibitor or S1 RBD fragment on the peptide
binding site of ACE2 PD is preserved by the clustering analysis
(Fig. 4c). We observe that with exception for state 2, all the
other states are uniquely populated. State 2, which is mostly
populated by ACE2:COV2-S1, is populated by the ACE2 apo and
ACE2:COV1-S1 as well.

Fig. 4 Identification and analysis of ACE2 PD macrostates using kinetical clustering. The clustering method used is PCCA+ on the assumption that
conformations belonging to the same macrostate interconvert rapidly compared to transitioning to another macrostate. (a) Visualization of high-
density areas on the ACE2 conformational space, which correspond to energy minima. (b) Visualization of PCCA+ macroclusters on the projected
conformational space. The flux between the states is included as inverse of mean time passage. The choice of using four clusters was confirmed
from the plot of implied timescales at different lag times of our Markov state model (Fig S3†). (c) ACE2 PD occupation of the different metastable
states. (d) Overlap of the ACE2 PB domain of the representative structures for the four macrostates identified. Macrostates representative structures
are colored based on PCCA clustering. Protein rendered with 3D Protein Imaging.74
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3.3 CV-CNN and REDAN structural characterization of ACE2
PD allostery

After assigning ACE2 PD conformations to functional meta-
stable states on the protein conformational landscape, the
CV-CNN model was implemented to guide the learning of the
structural features that influence the ACE2 PD allostery when
different S1 RBD fragments are bound. ACE2 PD confor-
mations corresponding to state 2 (mainly populated by ACE2:
COV2-S1) and state 3 (mainly populated by ACE2:COV1-S1)
were used to train our novel CV-CNN model. The selected con-
formations were featurized to express short range interactions
as described in the method section. The CV-CNN learning
process has a dual goal. It optimizes the learning of pairwise
residues interaction patterns that distinguish ACE2:COV1-S1
from ACE2:COV2-S1 and are also correlated with the functional
ACE2 PD binding site opening. CV-CNN achieved a 99% accu-
racy in its classification task and 0.4 Å error in predicting the
degree of opening of the binding site (Fig. S5†).

Grad-CAM, an explainable artificial intelligence method,
was adopted to extract the structural information found by our
CV-CNN model to be crucial in distinguishing ACE2:COV1-S1
and ACE2:COV2-S1 functional dynamics. To extract which
areas of the protein are found to be more important in dis-
tinguishing the dynamics between these two states, the Grad-
CAM results were averaged and pooled over the test set for
each class. The ACE2 PD structural regions identified by Grad-
CAM validate that our CV-CNN model learned structurally
insightful information. These structural regions with high
importance are located either in the proximity of the binding
site entrance (Fig. 5a and b) or are directly involved in the
binding site opening motion (Fig. 5c). Further, CV-CNN recog-
nized that ACE2 PD spike binding locus (Fig. 5a) distinguishes
ACE2:COV1-S1 and ACE2:COV2-S1 dynamics. Interestingly, the
residues in this region bind to several spike mutations,
suggesting that this region likely constitutes the origin of the
allosteric phenomenon observed in ACE2 PD dynamics.

To complement the CV-CNN structural insights and to
obtain a complete picture of ACE2 PD allostery, a mechanistic
investigation of this allosteric perturbation is performed using

the REDAN model of Zhou et al.44 REDAN compares the distri-
butions of residue-residue distances between two different
states, in our case the states with SARS-CoV-1/2 RBD frag-
ments, to identify the allosteric pathways contributing to their
dynamical differences. This comparison is carried via relative
entropy to identify which residues pairs are most affected by
interaction differences between the S1 RBD fragments and
ACE2 PD surface. The affected residue pairs will likely be part
of the network of residue interactions that regulate overall
ACE2 PD conformational dynamics.

To explore the connection among these residues, REDAN
utilizes the shortest path Dijkstra algorithm. In the characteriz-
ation of the allosteric path, the starting and ending points
need to be determined. The starting point is selected from the
α1, β21 and β22 highlighted in our CV-CNN model. These sec-
ondary structures are part of the spike-binding locus of ACE2
PD, and their residues interact with the mutations that differ-
entiate the two S1 RBD fragments. All the residues in these
regions were considered as starting point for the allosteric per-
turbation. The residue that provided the lower cost associated
with the pathway was selected for further analysis (Table S3†).
The residues selected is Asp350. The ending point is Tyr127,
which lies at the entrance of ACE2 PD binding site on the
opposite side of the spike binding region.

The allosteric pathway connecting Asp350 and Tyr127 is
illustrated in Fig. 6. In this pathway composed of 13 residues
in addition to Asp350 and Tyr127 (Fig. 6a and b), three groups
of interactions are observed:

1. Interactions starting from the spike protein complexing
locus to the ACE2 PD core (black dotted lines). These inter-
actions involve residues Asp350, Asp382, Tyr385, His401, and
His378;

2. Bridging interactions that connect the two sides of the
binding site and cause the pulling of the opposite side of the
ACE2 binding domain (purple dotted lines). These interactions
involve residues Glu402, Arg518, and Tyr515;

3. π-Stacking network interactions that propagate the per-
turbation to the opening of the binding site (yellow dotted
lines). These interactions involve residues Tyr515, Phe512,
His505, Phe504, and Tyr127.

Fig. 5 Structural regions found important by the CV-CNN model using Grad-CAM. The Grad-CAM feature importance for state 3 (ACE2:COV1-S1)
was obtained by averaging the importance heatmap for each conformation in the test set for this state. The regions were obtained by pooling the
averaged heatmap into groups of 19 residues each. (a) Most important region includes α1 (residues 40 to 58) and β21 and β22 (residues 344 to 362).
These groups are adjacent to one of the RBD binding regions. (b) Second most important region includes residues 268 to 286 and residues 136 to
153, these groups are located at the entrance of the binding site region. (c) Third most important region includes residues 59 to 77 and 97 to 115.
The residue groups involved are located on the opposite side of the binding site, making this distance representative for the opening and closing of
the binding site.
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The overall effect of these interactions is a pull of the
binding site region opposite to the spike complex locus as
shown by the mesh surface of the residues involved in the allo-
steric path (Fig. 6c). Glu402 is identified as the pivotal residue
in the opening closing mechanism of the binding site (Fig. 6b
and d). This residue interacts with both sides of the catalytic
domain. Its interaction with His378, located in the catalytic
domain, decreases in presence of SARS-CoV-1 S1 RBD frag-
ment. Consequently, the Glu402 side chain is free to rotate to
form a salt bridge with Arg518 and partially a ternary π-cation-
anion75 interaction with Tyr515 (Fig. 6b), both located on the
opposite side of the catalytic domain (Fig. 6a). We propose

that the pulling exerted by the bridging residues is stabilized
by neighboring residues. Specifically, upon the movement of
Glu402, sidechain rotation of Glu398 occurs. This motion
allows Tyr510 to establish a hydrogen bond with Glu398,
uniquely observed in the presence in state 3 (Fig. S6†).

A comparative analysis of the allostery prowess between the
ACE2:COV1-S1 and ACE2:COV2-S1 states was performed by
weighting the relative entropy in this REDAN model with the
machine learning feature importance for each state. The allo-
steric pathway identified above remains as the dominant
pathway in ACE2:COV1-S1 but has lower cost (Table S4†). This
indicates that the residues involved in the path are the key resi-

Fig. 6 Proposed allosteric path used by ACE2 to dictate the closing of the binding site obtained from the REDAN analysis and its structural details.
(a) Residues involved in the allosteric path and their interaction. The path from REDAN was refined to ensure that chemically meaningful interactions
are captured. The raw path can be found in Table S3.† The dotted lines represent interactions. Black dots include the interaction of residues of the
S1 domain-binding side of the ACE2 binding site. The purple indicates interactions that bridge the two sides of ACE2 binding site. The yellow dots
show the π-stacking interactions that reach the opposite side of the binding site. (b) Distance density distributions of key interactions. (c) Surface
mesh representation of the residues involved in the path to show the movement responsible for the binding site closing. The yellow represents state
3, occupied by ACE2:COV1-S1, whilst blue represents state 2, occupied mostly by ACE2:COV2-S1. (d) Details of key interactions in the ACE2 PD brid-
ging area between the two sides of the binding site that stabilize the closed state. Residues in blue and yellow belong to state 2 and 3, respectively.
Protein rendered with 3D Protein Imaging.74
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dues needed to define the dynamic behavior of ACE2:COV1-S1
compared to ACE2:COV2-S1, suggesting a stronger allosteric
communication along the proposed path for ACE2:COV1-S1.

3.4 Bridging allosteric binding with ACE2 binding site
motion

From our CV-CNN machine learning analysis, the ACE2 region
adjacent to the RBD binding locus was found to differentiate
the conformational dynamics between ACE2:COV1-S1 and
ACE2:COV2-S1 and therefore considered the potential focus of
allosteric control of ACE2 PD functional dynamics. Our tar-
geted machine learning approach CV-CNN combined with the
graph-based statistical analysis REDAN elucidated an allosteric
path that regulates ACE2 PD closing. Aiming to detect the
main interactions at the root of these findings, we performed a
contact analysis between mutated residues in the RBD frag-
ment and ACE2 PD the α1, β21, and β22.

From comparing the top contacts between ACE2 and the S1
RBD fragments (Fig. 7a and b), SARS-CoV-2 S1 RBD fragment
establishes more energetically favorable interactions compared
to SARS-CoV-1. The interactions among the ACE2 PD Lys353
and Asp38 and the SARS-CoV-2 Gln498 and Asn501 could exert
a pulling force on α1, β21, and β22. On the other hand, the
SARS-CoV-1 S1 RBD fragment lacks these interactions. Instead,
Thr487, equivalent to Asn501 in SARS-CoV-2 S1, might steri-
cally push β21 and β22 towards the binding site. The superpo-
sition between these two ACE2 states (Fig. 7c) reveals the con-
certed movement of β21 and β22. In the representative struc-
ture for ACE2:COV2-S1 (blue structure in Fig. 7c), α1 and the

neighboring β21 and β22 are away from the ACE2 core com-
pared to ACE2:COV1-S1 (yellow structure in Fig. 7c). This shift
of β21 and β22 allows for a mechanistic description of allo-
steric propagation. The translation of these secondary struc-
tures shown in Fig. 7d is accompanied by movement of
Phe356. Phe356 is observed to sterically cause a shift in
Asp382, which loses its hydrogen bond with Tyr385. The latter,
in turn, switches its hydrogen bond towards His401, explain-
ing the start of the allosteric path described above.

Ulterior difference between ACE2:COV1-S1 and ACE2:COV2-
S1 systems investigated are the glycosylation sites, which must
be considered when researching the cause of the allosteric per-
turbation to the binding site dynamics. It is important to
stress that the glycols molecules analyzed in this study do not
depict the full glycosylation profile, and thus the analysis is to
find the cause of the specific ACE2 PD allosteric pathway
identified above and not to delineate biological relevant differ-
ences between coronaviruses. Glycosylation sites on residues
53, 90, 322, and 546 in ACE2:COV1-S1 are all present in ACE2:
COV2-S1, excluding the ability of these glycols to cause the
allosteric perturbation observed (Fig. S1†).

Additional glycosylation on residue 103, which lies in the
back of the binding site, is present in ACE2:COV2-S1 but not in
ACE2:COV1-S1. Therefore, the ability of this glycosylation site
to cause the conformational differences observed between
ACE2:COV2-S1 and ACE2:COV1-S1 is further scrutinized. The
conformational profile of the back of the binding site, where
the glycosylation is located, is conserved in the two systems
(Fig. 3c). Furthermore, the possibility of this glycosylation to

Fig. 7 Interaction between coronaviruses S1 RBD fragments and ACE2 PD via contact analysis. (a) Contact analysis between the residues in α1, β21,
and β22 of ACE2 PD and the SARS-CoV-1 S1 RBD residues Tyr484 and Thr487. Residues in yellow belong to ACE2, residues in grey belong to viral
spike S1 RBD fragment. Contacts less than 4 Å for more than 50% of the frames were shown. From the contacts shown only a π-stacking interaction
was found as energetically favored interaction. (b) Contact analysis between the residues in α1, β21, and β22 of ACE2 PD and the SARS-CoV-2 spike
S1 RBD residues Gln498 and Asn501. Residues in blue belong to ACE2, residues in grey belong to viral spike fragment. Contacts less than 4 Å for
more than 50% of the frames were shown. In this case, a strong network of energetically favorable interaction was identified. The RBD residues con-
sidered differ between the two coronaviruses spikes. (c) Details of the overlap of ACE2:COV1-S1 (in yellow) and ACE2:COV2-S1 (in blue). The second-
ary structures represented are α1, β21, and β22. (d) Illustration of the effects of β21 and β22 shift on residues involved in the allosteric path. Protein
rendered with 3D Protein Imaging.74
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prevent the closing of the binding site in ACE2:COV2-S1 can be
ruled out because of the presence of this glycosylation in
ACE2:inhibitor (Fig. S1†), which is able to adopt the closed
conformation (Fig. 3b). The present results suggest that the
conformational differences in the two systems considered do
not derive from their glycosylation differences but from the
contact analysis detailed above.

In summary, the different interactions between ACE2 and
RBD fragments can explain the structural differences observed
in the ACE2 spike complexing regions, specifically in α1, β21,
and β22, which are identified in the CV-CNN machine learning
model. These regions are crucial in the binding site opening
mechanism, identified as the main component of the ACE2
functional conformational landscape. The allosteric propa-
gation pathways from the spike binging region to the opposite
side of the binding site identified using REDAN models com-
plete the picture of allosteric mechanism of ACE2 PD
dynamics.

4. Discussion and conclusion

The peptide hormone angiotensin II is a crucial part of RAAS
where it acts as vasoconstrictor. Its mis-regulation can cause
hypo- and hyper-tension, potentially leading to heart failure.
To ensure proper regulation of this hormone, RAAS employs
the protein ACE2. ACE2 plays a crucial role in the regulation of
blood pressure via converting the angiotensin II to the vasodi-
lator angiotensin (1–7). Past structural studies of inhibitors
binding showed that functional motions of the peptidase
domain of ACE2 play a role in its catalytic ability. In addition
to ligands’ orthosteric control of binding site opening, simu-
lations of the ACE2 PD in complex with RBD fragments of the
S1 domains of SARS-CoV-1 and SARS-CoV-2 can be leveraged
to investigate the possibility of allosteric control of ACE2 PD
functional motions.

In this study, we investigated the dynamic profiles of the
ACE2 PD and identified selective allosteric control on the
human enzyme using RBD fragments of the S1 domains via
advanced computational approaches. We combined standard
methods of trajectory analysis with a custom CV-CNN and stat-
istical REDAN analysis to identify key residues in the allosteric
network.

The investigations of ACE2 PD conformational dynamics
showed differences in binding site motions upon inhibitor or
S1 RBD binding. The projection of the principal components
that define the ACE2 conformational space showed that these
ACE2 systems fell into distinct functional metastable states.
The ACE2 PD binding site opening-closing motion was identi-
fied to be dominant in characterizing the conformational land-
scape of the protein. Strikingly, different S1 RBD fragments
imparted distinct effects on the opening of ACE2 PD, despite
their similarity. Specifically, the SARS-CoV-1 RBD fragment
caused the closing of ACE2 PD catalytic domain, similar to its
response when an inhibitor is bound within the binding site.
As ACE2 catalytic activity is contingent on these binding site

dynamics, this evidence for allosteric-induced binding site
closing might open the possibility to the allosteric inhibition
of ACE2.

Using a novel CV-CNN machine learning model and
REDAN statistical analysis, we propose the mechanism for the
allosteric perturbation that regulates the ACE2 PD binding site
dynamics. The allosteric path for closing the ACE2 binding site
is based on the flip of residues Glu402, which interacts with
Tyr515 and Arg518 to close the binding site. Further, we pro-
posed a series of side-chain motions, namely Tyr510 and
Glu398, that assist the stabilization of the closed states. The
difference in the interactions between the allosteric binders
and the human receptor are proposed to be the cause of the
difference in allosteric effect observed. Our CV-CNN machine
learning model identified the region in the ACE2 surface
where the allosteric activation is most likely to start. This
region, composed of α1, β21, and β22, is in contact with some
mutations in the RBD fragments considered, further validating
this region as an allosteric center in ACE2. In our contact ana-
lysis between the ACE2 PD α1, β21, and β22 and the RBD frag-
ments, we propose that binding to these surface secondary
structures can induce a concerted shift of the β21 and β22 due
to interactions between ACE2 PD Tyr41 and RBD Tyr484
(Fig. 7a).

The similarities between ACE2:inhibitor and ACE2:COV1-
S1 dynamic profiles show an additional structural factor
linked to the ACE2 PD binding site closing. His378, His505,
Tyr515, identified as part of the ACE2 PD allosteric path in
our analyses, are key residues in the interaction with the
ACE2 inhibitor MLN-4760.11 As MLN-4760 causes the
binding site to close, it supports the involvement of these
residues in the closing of ACE2 PD binding site. This
suggests that the proposed allosteric pathway is intrinsic of
ACE2 functional dynamics. Furthermore, the orthosteric
binding of the ligand causes a decrease in flexibility of the
disordered region adjacent to β21 and β22, which are located
on the ACE2 PD surface. The same decrease in flexibility in
ACE2:COV1-S1 is likely caused by the interaction of Glu329
and Arg426 (Fig. S7†). This comparison invigorates the allo-
steric connection proposed between ACE2 PD surface and
binding site opening motion and shows the bidirectionality
of the allosteric phenomenon.

This study represents an advancement of the understand-
ing of ACE2 conformational dynamics, its implications, and
can be leveraged to guide further studies. However, potential
limitations of the current work must be considered. The
systems analyzed lack a complete description of the microhe-
terogeneity of the glycosylated residues. This leads to an
incomplete interaction profile between ACE2 PD and viral S1
RBD fragments.76–79 Furthermore, the consideration ACE2 in
membrane-bound dimeric form, full length viral spike, with
other partners such as TMPRSS2, can impact ACE2 PD
dynamics as well. Due to these limitations, the results pre-
sented should not be elaborated in the context of corona-
viruses pathology without further testing but should be inter-
preted as a demonstration of the possibility to allosterically
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control ACE2 PD conformational dynamics and how the allo-
steric perturbation can propagate within the domain.

In summary, ACE2 is essential in regulating the RAAS
system by converting the vasoconstrictor Angiotensin-II into
the vasodilator Angiotensin (1–7). The accessibility of the
binding site is a fundamental prerequisite for this protein to
exert its catalytic activity, thus the modulation of binding site
opening via allosteric binding is of interest. The knowledge of
the residues involved in the closing mechanism of ACE2 could
help design ACE2 PD variants to induce the closing of the
binding site. This, for instance, could be used to design ACE2
variants that are able to complex coronaviruses while not inter-
fering with the RAAS system. A potential therapeutic appli-
cation for such variants lies in ACE2 administration therapy.80

Furthermore, the identification of common residues used by
both the coronaviruses spikes and ACE2 inhibitor to induce
closing of the catalytic domain could help the development of
ACE2 inhibitors by rationally strengthening interactions that
might trigger closing of the binding site.
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