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Abstract
The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties are important in drug discovery as
they define efficacy and safety. In this work, we applied an ensemble of features, including fingerprints and descriptors, and
a tree-based machine learning model, extreme gradient boosting, for accurate ADMET prediction. Our model performs well
in the Therapeutics Data Commons ADMET benchmark group. For 22 tasks, our model is ranked first in 18 tasks and top 3
in 21 tasks. The trained machine learning models are integrated in ADMETboost, a web server that is publicly available at
https://ai-druglab.smu.edu/admet.
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Introduction

Properties such as absorption, distribution, metabolism,
excretion, and toxicity (ADMET) are important in small
molecule drug discovery and therapeutics. It was reported
that many clinical trials fail due to the deficiencies in ADMET
properties [13, 15, 17, 28]. While profiling ADMET in
the early stage of drug discovery is desirable, experimental
evaluation of ADMET properties is costly with limited
available data. Moreover, computational studies of ADMET
in the clinical trial stage can serve as an efficient design
strategy that can allow researchers to pay more attention to
the most promising compounds [8].

Recent developments in machine learning (ML) promote
research in chemistry and biology [23, 26, 32] and bring
new opportunities for ADMET prediction. ADMETLab [6]
provides 31 ADMET endpoints with six machine learning
models and further advanced to 53 endpoints using a multi-
task graph attention network [29]. vNN [22] is a web server
that applies the variable nearest neighborhood method
to predict 15 ADMET properties. admetSAR [4] and
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admetSAR 2.0 [31] are also ML-based web servers for
drug discovery or environmental risk assessment with ran-
dom forest, support vector machine, and k-nearest neigh-
bor models. As a fingerprint-based random forest model,
FP-ADMET [27] evaluates over 50 ADMET and ADMET-
related tasks. In these ML models, small molecules are
provided in SMILES representations and further featur-
ized using fingerprints, such as extended connectivity fin-
gerprints [21] and Molecular ACCess System (MACCS)
fingerprints [7]. Beside these, there are many other finger-
prints and descriptors that can be used for ADMET predic-
tion, such as PubChem fingerprints and Mordred descrip-
tors. Taking advantage of all possible features enables a
sufficient learning process for machine learning models.

One common issue is that many machine learning models
in previous work are trained on different datasets, which
leads to an unfair comparison and evaluation of ML models.
As a curated dataset, Therapeutics Data Commons (TDC)
[11] unifies resources in therapeutics for systematic access
and evaluation. There are 22 tasks in the TDC ADMET
benchmark group, each with small molecule SMILES
representations and corresponding ADMET property values
or labels.

Extreme gradient boosting (XGBoost) [3] is a powerful
machine learning model and has been shown to be effective
in regression and classification tasks in biology and chem-
istry [2, 5, 24, 25]. In this work, we applied XGBoost to
learn a feature ensemble, including multiple fingerprints and
descriptors, for accurate ADMET prediction. Our model
performs well in the TDC ADMET benchmark group with
11 tasks ranked first and 19 tasks ranked top 3.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00894-022-05373-8&domain=pdf
https://ai-druglab.smu.edu/admet
mailto: ptao@smu.edu
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Methods

Therapeutics Data Commons

Therapeutics Data Commons (v0.3.6) is a Python library
with an open-science initiative. It holds many therapeu-
tics tasks and datasets including target discovery, activity
modeling, efficacy, safety, and manufacturing. TDC pro-
vides a unified and meaningful benchmark for fair com-
parisons between different machine learning models. For
each ADMET prediction task, TDC splits the dataset into
the predefined 80% training set and 20% test set with
scaffold split, which simulates the real-world application
scenario. In practice, a well-trained machine learning model
would be used to predict ADMET properties on unseen and
structurally different drugs.

Fingerprints and descriptors

Six featurizers from DeepChem [20] were used to compute
fingerprints and descriptors:

• MACCS fingerprints are common structural keys that
compute a binary string based on a molecule’s structural
features.

• Extended-connectivity circular fingerprints compute a
bit vector by breaking up a molecule into circular
neighborhoods. They are widely used for structure-
activity modeling.

• Mol2Vec fingerprints [12] create vector representations
of molecules based on an unsupervised machine
learning approach.

• PubChem fingerprints consist of 881 structural keys
that cover a wide range of substructures and features.
They are used by PubChem for similarity searching.

• Mordred descriptors [18] calculate a set of chemical
descriptors such as the count of aromatic atoms or the
count of all halogen atoms.

• RDKit descriptors calculate a set of chemical descrip-
tors such as molecular weight and the number of radical
electrons.

Extreme gradient boosting

Extreme gradient boosting is a powerful machine learning
model. It boosts model performance through an ensemble
that includes decision tree models trained in sequence.

Let D = {(xi, yi)(|D| = n, xi ∈ Rm, yi ∈ Rn)}
represent a training set with m features and n labels. The
j th decision tree in an XGBoost model makes a prediction
for sample (xi, yi) by gj (xi) = wq(xi), where wq is the
leaf weights. The final prediction of the XGBoost model

is the sum of all M decision tree predictions with ŷi =∑M
j=1 gj (xi).
The objective function consists of a loss function l and a

regularization term � to reduce overfitting:

obj(θ) =
N∑

i=1

l(yi, ŷi) +
M∑

j=1

�(fi) (1)

where �(f ) = γ T + λ
2

∑T
l=1 ω2

l . T represents the number
of leaves while γ and λ are parameters for regularization.

During training, XGBoost iteratively trains a new deci-
sion tree based on the output of the previous tree. The
prediction of the t th iteration ŷi

(t) = ŷi
(t−1) + gt (xi). The

objective function of the t th iteration is:

obj(t) =
N∑

i=1

l(yi, ŷi
(t−1) + gt (xi)) + �(fi) (2)

XGBoost introduces the first and second derivatives of this
objective function, which can be expressed as follows by
applying Taylor expansion at second order:

obj(t) �
N∑

i=1

[l(yi, ŷi
(t−1)

) + ∂ŷ(t−1) l(yi, ŷ
(t−1))ft (xi)

+1

2
∂2
ŷ(t−1) l(yi, ŷ

(t−1))f 2
t (xi)] + �(fi) (3)

A total of seven parameters were fine-tuned with selected
value options and are listed in Table 1. Default values were
used for other parameters.

Performance criteria

For regression tasks, mean absolute error (MAE) and Spear-
man’s correlation coefficient are considered to evaluate
model performance:

• MAE is used to measure the deviation between predic-
tions yi and real values xi with n sample size.

Table 1 Fine-tuned XGBoost parameters

Name and description Values

n estimators: number of gradient [50, 100, 200, 500, 1000]

boosted trees

max depth: maximum tree depth [3, 4, 5, 6, 7]

learning rate: boosting learning rate [0.01, 0.05, 0.1, 0.2, 0.3]

subsample: subsample ratio of instances [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

colsample bytree: subsample ratio of [0.5, 0.6, 0.7, 0.8, 0.9, 1.0]

columns

reg alpha: L1 regularization weights [0, 0.1, 1, 5, 10]

reg lambda: L2 regularization weights [0, 0.1, 1, 5, 10]
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MAE =
∑n

i=1|yi − xi |
n

(4)

• Spearman’s correlation coefficient ρ measures the cor-
relation strength between two ranked variables. Where
di represents the difference in paired ranks,

ρ = 1 − 6
∑

d2
i

n(n2 − 1)
(5)

For binary classification tasks, area under curve (AUC)
is calculated with receiver operating characteristic (ROC)
and precision-recall curve (PRC). For both metrics, a higher
value indicates a more powerful model.
• AUROC is the area under the curve where the x-axis is

the false positive rate and the y-axis is the true positive
rate.

• AUPRC is the area under the curve where the x-axis is
the recall and the y-axis is the precision.

All metrics are calculated with evaluation functions
provided by the TDC APIs.

Results and discussion

Model performance

We first used a random seed to split the overall dataset into
a training set (80%) and a test set (20%). The XGBoost
model was trained with the training set using 5-fold cross-
validation (CV). A randomized grid search CV was applied
to optimize hyperparameters. The parameter set with the
highest CV score was used, and the model performance
was evaluated on the test set. We repeated this process
five times with varying random seeds from zero to four
following the TDC guidelines. The evaluation results are

Table 2 Model evaluation on the TDC ADMET leaderboarda

TDC Current top 1 XGBoost

Task Metric Method Score Score Rank

Absorption

Caco2 MAE RDKit2D + MLP 0.393 ± 0.024 0.288 ± 0.011 1st

HIA AUROC AttrMasking 0.978 ± 0.006 0.987 ± 0.002 1st

Pgp AUROC AttrMasking 0.929 ± 0.006 0.911 ± 0.002 4th

Bioav AUROC RDKit2D + MLP 0.672 ± 0.021 0.700 ± 0.010 1st

Lipo MAE ContextPred 0.535 ± 0.012 0.533 ± 0.005 1st

AqSol MAE AttentiveFP 0.776 ± 0.008 0.727 ± 0.004 1st

Distribution

BBB AUROC ContextPred 0.897 ± 0.004 0.905 ± 0.001 1st

PPBR MAE NeuralFP 9.292 ± 0.384 8.251 ± 0.115 1st

VDss Spearman RDKit2D + MLP 0.561 ± 0.025 0.612 ± 0.018 1st

Metabolism

CYP2C9 inhibition AUPRC AttentiveFP 0.749 ± 0.004 0.794 ± 0.004 1st

CYP2D6 inhibition AUPRC AttentiveFP 0.646 ± 0.014 0.721 ± 0.003 1st

CYP3A4 inhibition AUPRC AttentiveFP 0.851 ± 0.006 0.877 ± 0.002 1st

CYP2C9 substrate AUPRC Morgan + MLP 0.380 ± 0.015 0.387 ± 0.018 1st

CYP2D6 substrate AUPRC RDKit2D + MLP 0.677 ± 0.047 0.648 ± 0.023 3rd

CYP3A4 substrate AUPRC CNN 0.662 ± 0.031 0.680 ± 0.005 1st

Excretion

Half life Spearman Morgan + MLP 0.329 ± 0.083 0.396 ± 0.027 1st

CL-Hepa Spearman ContextPred 0.439 ± 0.026 0.420 ± 0.011 2nd

CL-Micro Spearman RDKit2D + MLP 0.586 ± 0.014 0.587 ± 0.006 1st

Toxicity

LD50 MAE Morgan + MLP 0.649 ± 0.019 0.602 ± 0.006 1st

hERG AUROC RDKit2D + MLP 0.841 ± 0.020 0.806 ± 0.005 3rd

Ames AUROC AttrMasking 0.842 ± 0.008 0.859 ± 0.002 1st

DILI AUROC AttrMasking 0.919 ± 0.008 0.933 ± 0.011 1st

aOnly models that have been evaluated on most of the tasks are considered
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listed in Table 2. In each task, there are at least seven
other models or featurization methods being compared
with our model, including DeepPurpose [10], AttentiveFP
[30], ContextPred [9], NeuralFP [16], AttrMasking [9],
and a graph convolutional network [14]. For all 22 tasks,
XGBoost is ranked first for 18 and top 3 for 21 out of
22 tasks, demonstrating the success of XGBoost models in
predicting ADMET properties.

The superior prediction results of XGBoost are explain-
able. As shown in Table 2, previously, there are 13 tasks
which the top models are trained using descriptors (RDKit
2D + MLP model) or fingerprints (Morgan + MLP model
and AttentiveFP). Inspired by this, XGBoost was trained
using a combination of fingerprints and descriptors. These
featurization methods cover both structural features (MACCS,
extended-connectivity, Mol2Vec, and PubChem finger-
prints) and chemical descriptors (Mordred and RDKit
descriptors) for each given SMILES representation. For a
specific property prediction task, XGBoost can take all pos-
sible molecular features into consideration, select the best
set of them for prediction, and avoid over-fitting by con-
trolling tree complexity. Together, these would boost the
prediction performance of XGBoost to be superior to other
models.

To further understand the importance of each fingerprint
and descriptor for each ADMET task, averaged feature
importance was calculated for each feature set and is
plotted in Fig. 1. It is shown that Mordred descriptors
are consistently the most important feature in all tasks,
followed by Mol2Vec and Circular fingerprints. The
MACCS keys fingerprint set is the least important among

the five groups of features. As Mordred descriptors are
considered significantly more important than other features,
we retrained the models in each task using only this
feature set. The results are listed in Table 3. XGBoost
with only Mordred outperformed the base model in three
tasks (HIA, Aqsol, and PPBR). However, metabolism and
excretion predictions were not improved using XGBoost
with Mordred alone but were comparable in other tasks.

Searching for the parameter set with the best validation
performance is necessary. However, there are over 100,000
parameter combinations in the current search space, and
it could grow exponentially with additional features being
considered. It is challenging to iterate over all possible
parameter sets to find the best one. In the current study, a
randomized grid search CV was used. It should be noted
that the randomized grid search CV does not necessarily
lead to the global optimum parameter set due to its
random nature. In recent decades, Bayesian optimization
has been developed to search in the hyperparameter space,
such as hyperopt [1], which might be promising for such
tasks.

It should be noted that while TDCommons provides a
benchmark dataset useful for evaluating and comparing dif-
ferent machine learning models, there are some limitations
when applying this dataset. First, in the ADMET predic-
tion scenario, all classification and regression predictions
are single-instance: we only predict one value for each task.
Thus, multitask learning is not feasible under the current
framework. Moreover, the dataset has not been consistently
updated. The dataset version should be mentioned when
reporting related results.

Fig. 1 Average feature importance of fingerprints and descriptors in absorption (A), distribution (B), metabolism (C), elimination (D), and toxicity
tasks (E)
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Table 3 Performance
comparison of XGBoost
models trained with all features
and with only Mordred

TDC XGBoost with all features XGBoost with Mordred

Task Metric Score Score

Absorption

Caco2 MAE 0.288 ± 0.011 0.301 ± 0.008

HIA AUROC 0.987 ± 0.002 0.990 ± 0.002

Pgp AUROC 0.911 ± 0.002 0.909 ± 0.005

Bioav AUROC 0.700 ± 0.010 0.692 ± 0.016

Lipo MAE 0.533 ± 0.005 0.538 ± 0.003

AqSol MAE 0.727 ± 0.004 0.720 ± 0.003

Distribution

BBB AUROC 0.905 ± 0.001 0.900 ± 0.001

PPBR MAE 8.251 ± 0.115 7.897 ± 0.061

VDss Spearman 0.612 ± 0.018 0.610 ± 0.005

Metabolism

CYP2C9 inhibition AUPRC 0.794 ± 0.004 0.781 ± 0.002

CYP2D6 inhibition AUPRC 0.721 ± 0.003 0.694 ± 0.005

CYP3A4 inhibition AUPRC 0.877 ± 0.002 0.862 ± 0.002

CYP2C9 substrate AUPRC 0.387 ± 0.018 0.334 ± 0.004

CYP2D6 substrate AUPRC 0.648 ± 0.023 0.594 ± 0.034

CYP3A4 substrate AUPRC 0.680 ± 0.005 0.649 ± 0.013

Excretion

Half life Spearman 0.396 ± 0.027 0.373 ± 0.008

CL-Hepa Spearman 0.420 ± 0.011 0.378 ± 0.020

CL-Micro Spearman 0.587 ± 0.006 0.576 ± 0.010

Toxicity

LD50 MAE 0.602 ± 0.006 0.602 ± 0.006

hERG AUROC 0.806 ± 0.005 0.763 ± 0.007

Ames AUROC 0.859 ± 0.002 0.856 ± 0.002

DILI AUROC 0.933 ± 0.011 0.928 ± 0.003

Web server

The trained machine learning models are hosted on
the Southern Methodist University high performance
computing cluster at https://ai-druglab.smu.edu/admet. A
SMILES representation is required for ADMET predictions.
On the result page, molecule structures in both 2D and
3D are displayed using Open Babel [19]. A table is
present to summary prediction results under 22 tasks. The
optimal levels are referenced from Drug-Like Soft Rule
and empirical ranges from ADMETLab 2.0 [29]. For each
prediction, green, yellow, and red colors are used to indicate
whether the prediction lies in optimal, medium, or poor
ranges, as suggested in ADMETLab 2.0. The web server has
been tested rigorously to respond within seconds.

Conclusion

In this study, we applied XGBoost for ADMET prediction.
XGBoost can effectively learn molecule features ranging
from fingerprints to descriptors. For the 22 tasks in the
TDC ADMET benchmark, our model is ranked first in
18 tasks with all tasks ranked in top 5. The web server,
ADMETboost, can be freely accessed at https://ai-druglab.
smu.edu/admet.
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