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ABSTRACT
In the current study, multiscale simulation approaches and dynamic network methods are employed to examine the dynamic and ener-
getic details of conformational landscapes and allosteric interactions in the ABL kinase domain that determine the kinase functions. Using
a plethora of synergistic computational approaches, we elucidate how conformational transitions between the active and inactive ABL states
can employ allosteric regulatory switches to modulate intramolecular communication networks between the ATP site, the substrate binding
region, and the allosteric binding pocket. A perturbation-based network approach that implements mutational profiling of allosteric residue
propensities and communications in the ABL states is proposed. Consistent with biophysical experiments, the results reveal functionally
significant shifts of the allosteric interaction networks in which preferential communication paths between the ATP binding site and sub-
strate regions in the active ABL state become suppressed in the closed inactive ABL form, which in turn features favorable allosteric coupling
between the ATP site and the allosteric binding pocket. By integrating the results of atomistic simulations with dimensionality reduction
methods and Markov state models, we analyze the mechanistic role of macrostates and characterize kinetic transitions between the ABL
conformational states. Using network-based mutational scanning of allosteric residue propensities, this study provides a comprehensive com-
putational analysis of long-range communications in the ABL kinase domain and identifies conserved regulatory hotspots that modulate
kinase activity and allosteric crosstalk between the allosteric pocket, ATP binding site, and substrate binding regions.
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INTRODUCTION

Allosteric molecular events involve complex multiscale cas-
cades of thermodynamic and dynamic changes that occur on
different spatial and temporal levels.1–7 The human protein kinases
that orchestrate functional processes in cellular networks are recog-
nized as dynamic regulatory machines that exploit allosteric mecha-
nisms for dynamic switching between the inactive and active kinase
forms, thus enabling an efficient control of activity and adaptabil-
ity during processes of signal transduction and catalysis.8–13 The
wealth of structural knowledge about conformational states of the
kinase catalytic domain, regulatory assemblies, and ligand–kinase
complexes is enormous and has dramatically advanced our under-
standing of the molecular determinants underlying kinase dynam-
ics, function, and binding.11–13 The dynamic equilibrium between
inactive and active kinase states can be affected and selectively
modulated through activated mutations, by posttranslational mod-
ifications, and via ligand and protein binding events. This principle
has been successfully exploited in the discovery of small molecule
kinase modulators.14–16 Conformational transitions between kinase
states are orchestrated by three conserved structural motifs in the
catalytic domain: the αC-helix, the DFG-Asp motif (DFG-Asp in,
active; DFG-Asp out, inactive), and the activation loop (A-loop
open, active; A-loop closed, inactive). The conserved His-Arg-Asp
(HRD) motif in the catalytic loop and the DFG motif are cou-
pled with the αC-helix to form conserved intramolecular networks
termed regulatory spine (R-spine) and catalytic spine (C-spine). A
universal mechanism for dynamically driven allosteric conforma-
tional transformations and activation of kinases can be mediated
by coordinated signal transmission through ordered hydrophobic
architecture of the assembled spine networks.17 Nuclear magnetic
resonance (NMR) studies have been instrumental in deciphering
the allosteric energy landscapes of protein kinases, showing that
the dynamic equilibria between inactive and active states can be
regulated through ligand binding to generate positive allosteric
cooperativity and long-range communication networks between dis-
tal kinase domain regions.18,19 These studies suggested that the
structure and dynamics of the kinase catalytic core and residues
surrounding the active site may have coevolved to optimize the
intramolecular allosteric communication. Crystallographic and bio-
chemical studies have provided a molecular framework for under-
standing mechanisms of ABL regulation by unveiling structural
organization of the regulatory complexes.20,21

Despite the established view of kinases as dynamic regulatory
machines, atomistic characterization of intrinsic allosteric motions
and functionally relevant transient states is often lacking due to
large conformational transformations and short-lived kinase inter-
mediates involved in the kinetics of allosteric shifts. A series of
pioneering NMR studies has provided a detailed atomistic picture
of allosteric regulation in the ABL kinase by showing how interact-
ing signaling modules cooperate with the kinase catalytic domain
to form a multilayered regulatory mechanism that exploits various
allosteric switches at different sites of the regulatory assemblies.22

A further considerable breakthrough in our understanding of the
intrinsic conformational landscape of the ABL kinase domain has
been recently achieved in the NMR experiments by Kalodimos and
colleagues by revealing atomistic details of the hidden conforma-
tional states and determining the thermodynamically stable ground

FIG. 1. The NMR solution structure of the thermodynamically stable fully active
ground state of the ABL kinase domain (pdb id 6XR6) is represented by green rib-
bons with cylindrical helices (a). The NMR structure of ABL in the inactive state I1
(pdb id 6XR7) is represented by red ribbons (b) and the ABL structure in the closed
inactive state I2 (pdb id 6XRG) is represented by blue ribbons (c). The R-spine
residues M309, L320, H380, F401, and D440 in the active state and inactive state
I1 are represented by green and blue spheres, respectively. The R-spine positions
in the inactive state I2 are L309, L320, H380, F401, and D440 and are represented
by blue spheres. The structures point to similarities and differences in the key func-
tional regions of the kinase domain exemplified by the αC helix, the A-loop, and
the P-loop. In particular, A-loop in the inactive state I2 (c) adopts a completely dif-
ferent closed conformation. A fully assembled R-spine in the active ABL state (a)
becomes partially broken in the inactive state I1 (b) and is fully disassembled in
the closed inactive state I2 (c).

state of the ABL in the active state [Fig. 1(a)] and two inactive
conformations.23 By using state-of-the-art NMR techniques, this
study captured the inactive short-lived ABL conformations I1 and
I2 [Figs. 1(b) and 1(c)] that occur only 5% of the time and are
quite different from each other in the critical regions of the A-loop
and the regulatory αC-helix motif. The unprecedented atomistic
characterization of the conformational ABL ensemble has shown
that these states are intrinsically present in the isolated ligand-free
kinase domain and that allosteric transitions between these confor-
mations can be modulated by substrate and ligand binding, allosteric
interactions, and mutations.23

X-ray crystallography and hydrogen exchange mass spectrom-
etry studies have characterized allosteric myristic pocket in the C-
terminal lobe of the kinase domain showing that allosteric inhibitors
GNF-2/GNF-5 and Asciminib can bind to a bent conformation of
the αI helix that serves as a switch promoting interactions with
the SH2 domain in the regulatory complex and stabilization of the
closed inhibited conformation.24,25 At the same time, ligands that
bind to the allosteric pocket but do not cause conformational change
in the αI helix have been found to often function as allosteric acti-
vators of kinase function.26 Remarkably, NMR spectroscopy studies
have recently shown that Imatinib, which inhibits the catalytic site
by inducing a specific inactive ABL conformation, can also act as
an allosteric activator by binding to the myristic pocket and unex-
pectedly promoting kinase activity through binding competition
between the ATP site an allosteric binding site, which becomes func-
tionally relevant in the Imatinib-resistant ABL variants.27 Recent
NMR analyses have suggested an alternative mechanism in which
disassembly of the inhibitory ABL-SH2-SH3 state and opening of
the regulatory core may be directly caused by Imatinib binding
to the ATP site that allosterically enacts breakage of the inter-
domain interfaces.28–30 These crystallographic and NMR studies
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have revealed functional role of allosteric interaction networks in
protein kinases, particularly highlighting the complexity of allosteric
transformations and long-range communication networks between
the ATP binding site, the substate binding region, and the allosteric
site.

Computer simulations have explored the free energy landscape
of ABL kinase suggesting that metastable ABL states are often struc-
turally similar to known crystal structures of other kinases in com-
plexes with a variety of inhibitors.31–34 Integration of the molecular
simulations and dynamic network modeling approaches described
conserved allosteric pathways of the ABL and EGFR kinase regula-
tion, providing a mechanistic model of allosteric communications
between the ATP binding and regulatory sites.35–38 Atomistic mod-
eling of the ABL regulatory complexes bound to allosteric inhibitors
and activators has shown that these small molecules can differ-
entially modulate protein kinase activities by altering allosteric
communications between the allosteric pocket and the binding
regions.39,40

A substantial challenge in investigating allosteric mechanisms
for large multi-domain kinase assemblies is the inherent difficulty of
adapting experimental and computational methodologies to capture
the intrinsic flexibility of these structures essential for functionality.
Multidisciplinary structural biology studies that exploited synergies
between NMR technologies, biophysical approaches, and multiscale
computational methods have been particularly fruitful in uncover-
ing the invisible dynamic aspects of diverse protein functions. In
particular, this powerful toolkit of structure-centric techniques has
been applied for mapping allosteric protein landscapes,41–44 dis-
secting ligand-induced modulation of allosteric activation,45 and
characterization of allosteric communication networks that drive
protein regulatory responses.46–48 A general approach of quantifying
mutational effects for multiple molecular phenotypes using a spe-
cific implementation of multidimensional deep mutational scanning
enabled a comprehensive characterization of allosteric mutations
for many proteins.44 Using a combination of triple-resonance NMR
and computational network analysis, the allosteric effects of spe-
cific kinase mutations and communication paths between regulatory
elements and catalytic sites can be characterized.47 Using a com-
bination of NMR spectroscopy, isothermal titration calorimetry
(ITC), small-angle x-ray scattering (SAXS), and MD simulations,
the intramolecular network of communications in PKA-C were elu-
cidated, suggesting that mutation-induced network changes may
compromise highly cooperative regulation process leading to dis-
ease progression.48 Integration of NMR spectroscopy and surface
plasmon resonance revealed dynamic communication networks of
residues linking the ligand-binding site to the activation interface
in the glucocorticoid receptor and identified a specific motif acting
as a ligand- and coregulator-dependent switch for transcriptional
activation.49 Solution NMR experiments and Gaussian-accelerated
molecular dynamics (GaMD) simulations have been performed
to examine the structural and dynamic determinants of allosteric
signaling within the CRISPR-Cas9 HNH nuclease, advancing our
understanding of the allosteric pathway of activation.50 Further
integration of NMR with multi-microsecond molecular dynamics
(MD) simulations and graph-based network modeling probed the
effects of mutations on the structure and allosteric communication
within the CRISPR-Cas9 system, showing that mutations responsi-
ble for increasing the specificity of Cas9 alter the allosteric structure

of the catalytic HNH domain.51 NMR chemical shift covariance
(CHESCA) and projection (CHESPA) analyses52–55 can identify
residue interaction networks that show correlated changes in chem-
ical shifts due to allosteric perturbations caused by ligand binding
or mutations designed to modulate allosteric conformational equi-
libria. Using statistical comparative analyses of NMR chemical shift
variations elicited by the selected perturbations, CHESCA approach
characterizes perturbation-specific chemical shift patterns serving as
signatures of allosteric mechanisms.

In the current study, we propose and integrate several com-
putational approaches to examine principles of the ABL kinase
domain allostery where the predicted allosteric signatures can be
directly compared with structural and biophysical experiments.
Despite unique insights provided by structural approaches in the
characterization of conformational landscapes of the ABL kinase, the
dynamic and energetic details underlying conformational rearrange-
ments in allosteric networks and the role of allosteric regulatory
switches within each of these states are not fully established. MD
simulations are combined with the distance fluctuation coupling
analysis of ABL conformational ensembles to examine the allosteric
role of key functional regions of the kinase domain. We introduce
a perturbation-based network approach that implements a “deep”
mutational profiling of allosteric residue propensities and inter-
actions in the ABL states. In this method, using conformational
ensembles of the ABL structures, we perform systematic modifi-
cations of protein residues and evaluate their effect on allosteric
interactions and intramolecular long-range communications in the
protein structure. By combining MD simulations with dynamic net-
work modeling methods, we show how conformational changes
between the active and inactive ABL states can affect allosteric cou-
plings and modulate the intramolecular communication networks
between the ATP site, the substrate binding region, and the allosteric
myristic pocket. We determine that the preferential communication
paths between the ATP binding site and substrate regions in the
active state become partly suppressed in the closed inactive state I2,
where, in turn, allosteric communications between the ATP site and
the allosteric binding pocket become prevalent. By integrating the
results of MD simulations with dimensionality reduction methods
and Markov state models (MSMs), we analyze the kinetic transi-
tions between the ABL conformational states and show that the ABL
kinase domain can transition following the path from the active
state to the inactive state I1 and then to the inactive state I2, while
direct transitions from active state to inactive state I2 are not favor-
able. Atomistic characterization of dynamic allosteric changes and
identification of allosteric regulatory hotspots provide novel insights
into the role of allostery in diverse kinase functions, particularly in
a mechanism underlying long-range control over communications
between the ATP binding site, the substrate binding region, and the
allosteric binding site. The results of this study suggest that probing
the intramolecular communication networks in the ABL conforma-
tions through targeted modifications of vulnerable network links
may be useful for engineering and modulating kinase activities.

MATERIALS AND METHODS
MD simulations

The crystal structures of the three ABL conformations in the
active state, the inactive state I1, and inactive state I2 were taken from
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the Protein Data Bank (PDB), (PDB ID 6XR6, 6XR7, and 6XRG,
respectively).56 The structures were further preprocessed through
the Protein Preparation Wizard (Schrödinger, LLC, New York, NY)
and included the check of bond order, assignment and adjustment
of ionization states, formation of disulphide bonds, removal of crys-
tallographic water molecules and cofactors, capping of the termini,
assignment of partial charges, and addition of possible missing
atoms and side chains. A box of TIP3P water molecules was used
to simulate each system. Assuming normal charge states of ioniz-
able groups corresponding to pH = 7, sodium (Na+) and chloride
(Cl−) counterions were added to achieve charge neutrality and a
salt concentration of 0.15M NaCl was maintained. All Na+ and Cl−
ions were placed at least 8 Å away from protein atoms and from
each other. The topology and coordinate files for MD simulations
were prepared using tleap57 and all-atom MD simulations were per-
formed with the AMBER ff14SB force field.58 Energy minimization
after addition of solvent and ions was conducted using the steepest
descent method for 100 000 steps in each ABL state. In the prepa-
ration stage, 100 ps of NVT ensemble Langevin MD simulations
were conducted, followed by 200 ps of isothermal–isobaric ensem-
ble (NPT) simulations at 1 atm and 300 K. Three independent 1 �s
NVT MD simulations were conducted for each of the ABL states.
All MD simulations were conducted using the graphics processing
unit (GPU) version of the OpenMM software environment.59 Long-
range electrostatic interactions were calculated using the particle
mesh Ewald method60 with a real space cutoff of 1.0 nm. SHAKE
method was used to constrain all bonds associated with hydrogen
atoms. Simulations were run using a leap-frog integrator with a 2 fs
integration time step.

Distance fluctuations coupling analysis
of allosteric residue propensities

The stability and allosteric propensities of protein residues were
evaluated using distance fluctuation coupling analysis of the con-
formational ensembles. The computations and analysis are rooted
in the protein mechanics approach61,62 in which the fluctuations of
the mean distance between a given residue and all other residues
in the conformational ensemble are converted into distance fluc-
tuations coupling indices (DFCIs) that measure the energy cost
of the residue deformation during MD simulations. Our previous
studies39,63 showed that the DFCI parameter can correlate with
allosteric residue propensities/potentials and the mean square fluc-
tuations between a pair of residues could provide an accurate esti-
mate of the signal commute time. The communication propensity
of a pair of residues is inversely related to their commute time
CT(i, j) expressed as a function of the variance of the inter-residue
distance,

CT(i, j) = �(di − �di�)2�. (1)

In our study, MD simulations of the ABL structures are analyzed by
computing the fluctuations of the mean distance between each atom
within a given residue and the atoms that belong to the remaining
residues of the protein. The DFCI index can provide a measure of
the allosteric potential for each residue and is calculated by averaging
the distances between residues over the simulation trajectory using
the following expression:

DFCIi = 3kBT�(di − �di�)2� , (2)

di = �dij�j∗, (3)

where dij is the instantaneous distance between residue i and residue
j, kB is the Boltzmann constant, and T = 300 K. �� denotes an aver-
age taken over the MD simulation trajectory and di = �dij�j∗ is the
average distance from residue i to all other atoms j in the protein
(the sum over j∗ implies the exclusion of atoms that belong to the
residue i). The reported DFCI for each residue is computed as the
average of distance fluctuations for all its atoms i. It should be noted
that in addition, we also computed the mean fluctuations of a given
residue by using Cα atom positions as well as the reduced represen-
tations with a single pseudo-atom per residue61,62 and a more refined
model in which each amino acid is represented by one pseudo-
atom located at the Cα position and either one or two pseudo-atoms
representing the side chain.64 For clarity and consistency of dis-
cussion, the reported DFCIs are based on full all-atom protein
representation.

Dimensionality reduction analysis
of the conformational ensembles

MD equilibrium trajectories were analyzed using the ivis
dimensionality reduction method, which is a machine learning
model that applies a Siamese neural network architecture composed
of three identical neural networks.65,66 Each network is composed
of three dense layers with sizes of 500, 500, and 2000, followed by
a final embedding layer of two neurons. The layers preceding the
embedding layer use the selu activation function,

selu(x) = λ
�������

x if x > 0
αex − α if x ≤ 0.

(4)

The values of α and λ are set as the default values of 1.6733 and
1.0507, respectively.67 The weights in these layers are initialized
randomly using LeCun normal distribution. A linear activation is
used in the final embedding layer initialized with Glorot’s uniform
distribution.

During training, a triplet loss function is calculated as

Ltri(θ) = ��a,p,nDa,p −min(Da,n, Dp,n) +m�+, (5)

where a, p, and n are various kinds of points. a: point of inter-
est, referred to as anchor point; p: positive points, selected through
k-nearest neighbors (KNNs); n: negative points, randomly selected
from the rest of the samples. A margin (m), the minimum distance
gap, was set to the default value of 1. The Euclidean distance (D)
between data points is calculated to quantify the similarity,

Da,b =��n
i=1(ai − bi)2. (6)

Adam optimizer with default learning rate was applied to
train ivis model with GPU acceleration. ivis package (v 2.0.7)
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(https://pypi.org/project/ivis/) was used to implement the
algorithm.

Markov state model

Stochastic Markov state models (MSMs)68–70 have become
increasingly useful states-and-rates network models with the devel-
oped software infrastructure71–74 for describing transitions between
functional protein states and for modeling allosteric events. In MSM,
protein dynamics is modeled as a kinetic process consisting of a
series of Markovian transitions between different conformational
states at discrete time intervals. A specific time interval, referred to
as lag time, needs to be determined to construct transition matrix.
MSM depends on the simulation distribution of the projected low-
dimensional space obtained by the ivis dimensionality reduction
method. First, a MiniBatch k-means clustering method is conducted
to assign each simulation frame to a microstate. Macrostates were
clustered based on the Perron-cluster cluster analysis (PCCA)75 and
are considered as kinetically separate equilibrium states. The tran-
sition matrix and transition probability were calculated to quantify
the transition dynamics among macrostates.

The value of the lag time, as well as the number of macrostates,
is selected based on the result of estimated relaxation time scale.76

The corresponding transition probability is calculated as

Pij(τ) = Prob(xt+τ ∈ Sj�xt ∈ Si). (7)

A proper lag time is required as the MSMs are required to be
Markovian at the chosen lag time, which can be assessed through
the convergence of implied relaxation time scale. The implied time
scale can be calculated using the eigenvalues (λi) in the transition
matrix as

ti = − τ
ln �λi(τ)� . (8)

MSMs were constructed and the implied time scales were calculated
using the PyEMMA package.77 Based on the transition matrix, we
obtain implied time scales for transitioning between various regions
of the phase space and use this information to determine the number
of metastable states. The number of metastable states also defines the
resolution of the model by determining how large a barrier must be
in order to divide the phase space into multiple states.

Dynamic network analysis

A graph-based representation of protein structures78–80 is used
to represent residues as network nodes and the inter-residue edges
to describe non-covalent residue interactions. We constructed the
residue interaction networks using both dynamic correlations81,82

and coevolutionary residue couplings.83,84 To characterize allosteric
couplings of the protein residues and account for a cumulative
effect of dynamic and coevolutionary correlations, we employed
the generalized correlation coefficient.85 The RING program was
also employed for the initial generation of residue interaction net-
works.86 The ensemble of shortest paths is determined from matrix
of communication distances by the Floyd–Warshall algorithm.87

Network graph calculations were performed using the python pack-
age NetworkX.88 The betweenness of residue i is defined as the sum

of the fraction of shortest paths between all pairs of residues that pass
through residue i,

Bk = N�
s≠k≠t

Sst(k)
Sst

, (9)

where Sst denotes the number of shortest geodesics paths connecting
s and t and Sst(k) is the number of shortest paths between residues s
and t passing through the node k.

The following Z-score is then calculated:

Zi = Bk − �B�
σ

. (10)

Through mutation-based perturbations of protein residues, we com-
pute changes in the average short path length (ASPL) averaged over
all modifications in a given position. The change of ASPL upon
mutational changes of each node is given as

�Li = ����Lnode
i ( j)��2�, (11)

where i is a given site, j is a mutation, and�⋅ ⋅ ⋅�denotes averaging over
mutations. �Lnode

i ( j) describes the change of ASPL upon mutation j
in a residue node i. �Li is the average change of ASPL triggered by
mutational profiling of this position.

The Z-score is then calculated for each node as follows:

Zi = �Li − ��L�
σ

. (12)

The ensemble-averaged Z-scores ASPL changes are computed from
network analysis of the conformational ensembles using 1000
snapshots of the simulation trajectory for the native protein system.

RESULTS AND DISCUSSION

MD simulations of the ABL kinase allosteric states

We performed multiple independent all-atom MD simulations
for the ABL kinase states using the structures of the isolated ABL
kinase domain in its active conformational state (pdb id 6XR6) and
two inactive conformational states I1 and I2 (pdb id 6XR7, 6XRG).
All these states have been shown to be intrinsic to the unbound ABL
kinase domain and allosteric structural transitions between these
major conformational states could drive the kinase activities and
response to the substrate and ligand binding (Fig. 1).23 Structural
analysis showed that the inactive ABL states [Figs. 1(b) and 1(c)] are
very different, in which the regulatory DFG motif adopts distinct
“out” conformations in the I1 and I2 states, while the A-loop and
the αC helix undergo significant rearrangements. In particular, the
αC helix moves from its active “αC-in” position to the intermedi-
ate position in the I1 state [Fig. 1(b)] and to the “αC-out” inactive
position in the I2 state [Fig. 1(c)]. In the active “αC-in” state, a
conserved αC helix residue E305 forms an ion pair with K290 in
the β3 strand that coordinates the α and β phosphates of the ATP
[Fig. 1(a)]. A substantial deviation from this arrangement is seen in
the inactive states, which becomes particularly evident in the “αC-
out” I2 state where this hydrogen bond is largely broken [Fig. 1(c)].
The R-spine in ABL consists of M309 from the C-terminal end of
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the αC-helix, L320 from the β4-strand, F01 of the DFG motif in the
beginning of the A-loop, H380 of the HRD motif in the catalytic
loop, and D440 of the αF-helix [Figs. 1(a) and 1(b)]. The R-spine
subnetwork is fully assembled in the active ABL kinase [Fig. 1(a)]
but becomes partially decoupled in the inactive state I1 [Fig. 1(b)]
and fully disassembled in the inactive state I2 [Fig. 1(c)]. The C-spine
is comprised of hydrophobic residues (V275, A288, L342, C388,
L389, V336, S457, and I451) and connects the kinase lobes anchoring
catalytically important sites to the C-terminus of the αF-helix.

MD simulations revealed important differences in the confor-
mational dynamics of the ABL kinase core and long-range dynamic
coupling between the binding sites that may be relevant for kinase
inhibition and activation (Fig. 2). By monitoring the root mean
square fluctuations (RMSF) profile, we observed that the active ABL
kinase state is more stable than both the inactive forms, display-
ing smaller thermal fluctuations in the intrinsically more flexible
N-terminal lobe and A-loop [Fig. 2(a)]. The dynamics of the inac-
tive state I1 showed larger fluctuations, but the overall shape of the
RMSF profile remained mostly similar [Fig. 2(a)]. More significant
differences in the dynamics were seen in the fully inactive state I2,
with large thermal fluctuations observed in the middle of the A-loop
that could obstruct the substrate Y412 position and inhibit substrate
binding. Of particular importance is the dynamic behavior of the key

regulatory elements of the catalytic kinase domain, particularly the
400-DFG-402 motif and the R-spine residues.

The DFG-in motif in the active form flips by adopting the DFG-
out conformation in both inactive states [Figs. 2(b) and 2(c)]. This
DFG movement is local in the I1 state but is much larger in the
fully inactive state I2 where F401 translates by ∼10 Å to occupy a
distinct hydrophobic pocket [Fig. 2(c)]. Notably, while experiencing
pronounced structural rearrangements between the active and inac-
tive ABL states, the DFG motif is stabilized in each of these ABL
conformations and is anchored through a local interaction network
formed with another indispensable stable element of the kinase core
N387 residue. These residues displayed exceedingly small thermal
fluctuations in both the active and inactive I2 state [Fig. 2(a)], indi-
cating that the interactions formed by the DFG motif are important
for control of allosteric conformational changes in the ABL kinase.
Indeed, the hydrogen bonding network between the N387 and D400
residues was experimentally shown to stabilize the DFG-in active
conformation acting as a conformational switch for the DFG flips.89

The conformational fluctuations of the regulatory αC-helix (residues
299-311) were markedly smaller in the active ABL state where the
stable “αC-in” conformation is coupled to the assembled R-spine
required for activation [Fig. 2(a)]. In the disassembled R-spine net-
works of the inactive states, L320, H380, F401, and D440 residues

FIG. 2. Conformational dynamics profiles of the ABL kinase domain states. (a) The root mean square fluctuation (RMSF) profiles are shown for the active ABL form in green
lines, for the inactive I1 state in red lines, and for the inactive closed I2 state in blue lines. (b) Structural superposition of the ensemble-averaged conformations for the active
state (in green ribbons), for the inactive I1 state (in red ribbons), and for the inactive I2 state (in blue ribbons). (c) Structural overlay of the regulatory 400-DFG-402 motif
from the MD-averaged conformations of the active state (green sticks), the I1 state (red sticks), and the I2 state (blue sticks). A large movement of the F401 residue in the
DFG-out conformation of the closed inactive I2 state can be seen. The covariance maps of dynamic cross correlations between pairs of residues in the ABL active state (d),
the inactive state I1 (e), and the inactive state I2 (f). Cross correlations of residue-based fluctuations vary between +1 (correlated motion; fluctuation vectors in the same
direction, colored in dark red) and −1 (anticorrelated motions; fluctuation vectors in the same direction, colored in dark blue). The values >0.5 are colored in dark red and
the lower bound in the color bar indicates the value of the most anticorrelated pairs.
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experienced moderate fluctuations, while the larger displacements
were seen for the αC-helix spine residue M309 (and L309 respec-
tively in I2) [Fig. 2(a)]. Interestingly, the thermal fluctuations of the
regulatory αI-helix on the C-lobe (residues 504-517) are small in
all three states, displaying even greater stability in the inactive ABL
states. This helix is a key structural motif involved in the formation
of the allosteric binding pocket.25–27

The cross correlation matrices of residue fluctuations along the
low frequency modes highlighted broadly distributed and strong
positive inter-residue couplings in the ABL active state [Fig. 2(d)].
In this form, long-range couplings were also observed between the
kinase lobes, including the allosteric and ATP binding sites. Fur-
thermore, the active ABL state featured strong positive coupling
between the αF-helix anchoring the central core of the catalytic
domain and the αD-helix and A-loop [Fig. 2(d)]. These correlations
may reflect allosteric couplings along the C-spine and R-spine in the
active state that link the ATP binding site and the substrate binding
regions. These dynamic couplings are weakened in the inactive state
I1 [Fig. 2(e)] but the overall pattern of cross correlations between
different functional regions remained intact. A marked reduction
of the positive long-range dynamic couplings was observed in the
inactive state I2 [Fig. 2(f)]. In this state, a delocalization of cou-
pled fluctuations in the catalytic core was observed, signaling not
only a weakening of the long-range couplings but also a reorga-
nization of the locally coupled structural elements in the kinase
domain. In general, the cross correlation maps of residue fluctua-
tions in the catalytic domain were indicative of more cooperative
allosteric interactions in the active kinase state as compared to looser
and narrower patterns of correlated motions seen in the inactive
states.

Collective dynamics analysis of the ABL
conformational states reveals conserved hinge
positions controlling modulation of allosteric changes

We characterized collective motions for the ABL states aver-
aged over the ten lowest frequency modes using principal compo-
nent analysis (PCA) of the MD trajectories (Fig. 3). The local min-
ima along these profiles provide information about potential hinge
regions that may control functional movements, while the maxima
typically point to the protein regions undergoing global functional
movements. It is assumed that functional movements along the pre-
existing slow modes could drive allosteric transformations between
the active and inactive states and provide insight into the role of
functional kinase residues in modulating population-shift allosteric
changes between ABL states. The overall shape of the essential pro-
files and the key hinge centers were generally preserved across the
three ABL states but showed considerable differences between glob-
ally moving regions in the inactive states (Fig. 3). The predicted
hinge positions 317-LVQLLGV-323 and 335-EFMTYGN-341 can
mediate large-scale movements of the N-terminal lobe [Fig. 3(a)].
This finding is consistent with the experimental evidence,90 sug-
gesting that mutations in these regions can increase the hinge
flexibility and modulate the kinetics of allosteric changes between
kinase states. According to experimental studies, allosteric transi-
tions related to domain movements can be modulated by muta-
tions into the hinge region to generate two mutants with increased
flexibility.90

The importance of hinge residues located between the N-
and C-lobes of the kinase was also confirmed using NMR analy-
sis, which revealed that mutational disruption of the three molec-

FIG. 3. ollective dynamics profiles of the ABL conformational state. The essential mobility profiles are averaged over the first 10 major low frequency modes. (a) The
slow mode profiles of the ABL kinase domain are shown for the active state (in green lines), the inactive I1 state (in red lines), and the inactive I2 state (in blue lines).
Structural maps of the essential mobility profiles on PCA of the active state (b), the inactive I1 state (c), and the inactive I2 state (d). The mobility profiles are projected onto
experimentally determined ABL structures represented by ribbons and colored from blue to red according to the rigidity-to-flexibility scale determined by PCA. The R-spine
residues are shown in spheres colored according to their level of rigidity/flexibility and annotated.
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ular brake residues N549, E565, and K641 in FGFR2K (Q319,
E335, K397, respectively, in ABL) activates the enzyme.91,92 These
studies suggested that a functionally important allosteric pathway
between the DFG motif and the molecular brake residues is medi-
ated by I547 (V317 in ABL) located away from the nucleotide
and substrate binding pockets. Here, consistent with these stud-
ies, we found that dynamic changes in V317 are coupled with the
F401 of the DFG motif (Fig. 3). In addition, our analysis revealed
another hinge cluster of locally interacting residues that is formed
by residues N387, C388, A399 and the regulatory 400-DFG-402
motif [Fig. 3(a)]. According to our findings, the local interaction
clusters of hinge residues anchored by V317 and N387 are dynam-
ically coupled to the F401 of the DFG motif. Given the regulatory
role of hinge centers in modulating allosteric transitions, we sug-
gest that local structural perturbations of residues in these clusters
may induce global rearrangements between the functional ABL
states.

The differences between the slow mode profiles of the ABL
states are manifested in the distributions of the moving regions.
The P-loop region (residues 267-275) in the N-terminal lobe dis-
played smaller functional displacements in the active state and the
inactive I2 state, even though the P-loop adopts a kinked confor-
mation in the active state and a more stretched conformation in
the I2 state [Fig. 3(a)]. Notably, the shape of the slow mode pro-
files in this region featured a sharp local minimum (local hinge)
that is precisely aligned with the Y272 residue. Indeed, the pack-
ing interactions between Y272 and F302 and hydrogen bonding of
Y472 with E305 are responsible for stabilizing the P-loop and the
αC helix-out conformation. At the same time, the P-loop in the
inactive I1 state appears to exhibit large functional displacements in
slow modes [Fig. 3(a)]. This may be indicative of the “transitional”
nature of the inactive I1 state that acquires increased mobility in
the functional regions (including the P-loop) to facilitate adapta-
tion of the fully inactive state. The slow mode profiles also pointed
to similar and moderate displacements of the A-loop (residues
395-420) in the active state and inactive I1 states [Fig. 3(a)] as the
A-loop conformation is in an open conformation in both of these
forms.

In contrast, significantly larger functional displacements can be
afforded in the A-loop of the inactive state I2. We argue that func-
tional movements of the P-loop and especially distorted A-loop in
the inactive state I2 could provide driving force for allosteric changes
and conformational adjustments of the ABL in the inactive state.
Consistent with this assertion, Imatinib binding to the I2 state may
induce additional structural changes in these regions required for
optimizing the inhibitor-ABL interactions.23 Structural mapping of
the slow mode profiles onto the ABL structures highlighted subtle
but important variations in the distribution of the immobilized and
globally flexible kinase segments in slow modes [Figs. 3(b)–3(d)]. In
the active state, the stable regions are aligned with the R-spine and
C-spine regions linking the kinase lobes as well as the ATP active site
and the substrate binding region [Fig. 3(b)]. The immobilized core
becomes smaller in the state I1 [Fig. 3(c)] where a fraction of the R-
spine (H380, F401, and D440) is aligned with the hinge regions but
the disassembled component in the αC-helix (M309, L320) appeared
to be prone to larger displacements. A further readjustment of the
moving regions could be seen in the state I2 [Fig. 3(d)], in which only
the F401 residue of the R-spine remains rigid in the low frequency

motions, while other components of the R-spine can undergo dis-
placements, thus compromising the integrity of the R-spine required
for activating kinase function.

To summarize, the collective dynamics analysis revealed an
important integrating role of the hinge cluster that includes locally
interacting and strongly coupled stable residues N387, C388, A399,
D400, and F401 that collectively may function as a global coordi-
nator of the kinase functional movements. The dynamic couplings
between this rigid hinge cluster and flexible functional regions of
the αC-helix, P-loop, and A-loop capable of undergoing coordi-
nated movements can serve as a potential mechanism for modulat-
ing allosteric transformations between the active and inactive ABL
states.

Distance fluctuation coupling analysis
of stability and allosteric residue
preferences in the ABL functional states

Using the results of MD simulations, we conducted the distance
fluctuation coupling analysis and examined how these distributions
and positions of the local peaks change in different ABL states
(Fig. 4). In this model, dynamically correlated residues whose effec-
tive distances fluctuate with low or moderate intensity are expected
to communicate with higher efficiency than the residues that expe-
rience large fluctuations. By using the DFCI profile of the active
state as the reference, we evaluated how dynamic changes in the
inactive states can modulate the allocation of stable residues with
high allosteric preferences (or allosteric potential) (Fig. 4). A similar
shape of the DFCI profile was observed for all ABL states, reveal-
ing that specific regions of the catalytic core could form hubs of
dynamic couplings. To examine the role of these regions, we first
analyzed the distribution obtained for the ABL active state. The
multiple peaks distributed in the kinase domain reflected the pres-
ence of many spatially distributed allosteric centers mediating a
broad network that links the kinase lobes and the binding sites
[Fig. 4(a)]. Strikingly, the characteristic peaks of the distribution
corresponded to the N387, C388 (C-spine), L389 (C-spine), A399,
400-DFG-402 residues, and W424 from the substrate binding region
24-WTAPE-428 of the C-lobe [Fig. 4(a)]. All these positions have
been experimentally recognized as functionally important for kinase
function, with the DFG motif being critical for differences between
the inactive and active states, the C-spine residues responsible for
catalysis, and the substrate binding residues. W424 is the experimen-
tally validated allosteric node in which mutations (Y404A in protein
kinase A) can decouple dynamic couplings and shift the dynamic
equilibrium.93

In the inactive state I1, the DFCI distribution revealed an
important change as the indices for N387, A399, D400, and F401
were reduced. According to our model, this may indicate the
increased flexibility and partial weakening of the interactions in
this key hotspot cluster [Fig. 4(b)]. In the ABL inactive state I2, we
observed a partial reorganization of the DFCI distribution peaks
in which the depletion of some peaks may narrow the spectrum
of mediating centers in the allosteric network, whereas the role of
locally coupled N387, A399, D400, F401, and L403 residue is ampli-
fied as this cluster emerged as a single dominant hotspot of dynamic
couplings in the kinase domain [Fig. 4(b)].
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FIG. 4. The residue-based DFCI profiles for the ABL conformational states. (a) The DFCI distributions for the active state (in orange bars) and the inactive state I1 (in
maroon-colored bars). (b) The DFCI distributions for the active state (in orange bars) and the inactive state I2 (in maroon-colored bars). The positions of the R-spine
residues (M309/L309, L320, H380, F401, D440) are shown in magenta-colored filled circles. The residues involved in the N387-mediated local contact network (N387,
C388, A389, D400, F401) are shown in yellow-colored filled squares. A close-up of the local interaction cluster mediated by N387 in the ensemble-averaged conformation
of the active form (c), the inactive I1 state (d), and the inactive I2 state (e). The interacting residues are shown in atom-colored sticks and specific interaction contacts are
annotated.

The role of the predicted functional residues in mediating the
dynamic inter-residue couplings in the ABL catalytic domain can be
better understood by examining the local interaction clusters formed
by these key sites in different ABL states. In the ABL active state, the
carbonyl oxygen of N387 is hydrogen bound to NH of A399, and
the amide group of N387 makes several hydrogen bonds with the
side chain and carbonyl oxygen of D400 [Fig. 4(c)]. A strong inter-
action cluster formed by N387 with A399 and D400 in the active
state provides additional support to the fully assembled R-spine and
contributes to stabilization of the DFG-in active conformation. This
is consistent with a critical role of N387 residue acting as a confor-
mational switch of the ABL dynamics found in the functional studies
showing that mutations of N387 that weaken the local interactions
in this cluster can allosterically promote the increased global flexibil-
ity of ABL and facilitate faster Imatinib dissociation.89 Interestingly,
a recent computational study showed that Imatinib can dissociate
from the wild-type ABL and ABL-N387S mutant through two dis-
tinct pathways where the predominant Imatinib unbinding pathway
through the kinase hinge region in the wild-type ABL is altered in
the ABL-N387 mutant and occurs via the αC-helix region.94

In the inactive I1 state, the interactions mediated by the N387
residue are weakened due to the loss of hydrogen bonding seen in
the active state that could not be compensated by suboptimal N387
side chain contacts with the carbonyl oxygen of F401 [Fig. 4(d)].
On the other hand, in the inactive I2 state, the hydrogen bonding

mediated by the side chain of N387 with the backbone of A399
and side chain of D400 can be partly restored [Fig. 4(e)]. In addi-
tion, F401 of the DFG-out motif is rigidified in its inactive position
through favorable contacts with F336 and L403 residues. Our results
suggest that the structural changes in the local interactions medi-
ated by N387 can be coupled with the potential allosteric role of
these residues. This may partly explain why F401V mutation that
enhances stability of the local interactions in this region could pref-
erentially stabilize the inactive I2 state but not the I1 inactive form.23

In addition, the N387-mediated contact network in the I2 state can
rigidify the H380-F401-D440 fragment of the distorted R-spine,
thereby disfavoring movements required to restore connections with
M309/L320 N-terminal component of the R-spine [Fig. 4(e)]. The
observed reorganization of the intramolecular contacts between key
stabilization centers could therefore promote a complete disintegra-
tion of the R-spine and alter the intramolecular allosteric network.
Structural mapping of the major distribution peaks associated with
the N387 interaction network that includes A399, D400, and F401
residues illustrated the coupling of this local cluster with the R-
spine residues (Fig. 5). In the active ABL state, the N387 cluster
is tightly coupled to the fully assembled R-spine and together with
Y412, R405, and R381 of the 380-HRD-382 motif form an intercon-
nected stabilizing network connecting the kinase lobes and linking
the binding sites [Fig. 5(a)]. The “grip” of the N387 mediating
interactions on the partially disassembled R-spine in the inactive
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FIG. 5. Structural mapping of the N387-medited local interaction cluster and the
R-spine residues in the active state (a), the inactive I1 form (b), and the inactive
I2 conformation (c). The residues involved in the N387-mediated local contact net-
work (N387, A389, D400, F401) are shown in atom-colored sticks. The R-spine
residues are shown in red spheres and annotated. The ABL structures are shown
in light-pink colored ribbons.

state I1 is reduced [Fig. 5(b)]. On the other hand, the N387 clus-
ter could strengthen the disassembled R-spine in the inactive state I2
[Fig. 5(c)].

To summarize, the DFCI analysis revealed a key role of locally
interacting functional residues N387, A399, D400, and F401 that
feature a high allosteric potential. Our results indicated that these
allosteric centers together with the R-spine residues could mod-
ulate dynamic couplings and the intramolecular communication
networks in the ABL states.

Network-based mutational profiling of allostery:
Conformation-specific reorganization of allosteric
interaction networks modulates the intramolecular
communications

The residue interaction networks in the ABL conformational
states were built using a graph-based representation of protein
structures78–80 in which residue nodes are interconnected through
dynamic81,82 and coevolutionary correlations.83,84 In this method,
we perform systematic modifications of protein residues and eval-
uate their effect on the dynamic inter-residue couplings and the
residue interaction network organization as was initially proposed
in our previous studies.95 By computing mutation-induced changes
in the topological network parameters such as ASPL that charac-
terize the efficiency and robustness of allosteric communications in
the ABL states, we identify the allosteric regulatory hotspots as posi-
tions in which the average effect of mutations can cause a significant
ASPL change, leading to network alterations that may compromise
the efficiency of allosteric communications in the ABL states. The
mutational profiling distribution in the active state featured a con-
siderable number of peaks that are broadly distributed in the kinase
domain [Figs. 6(a) and 6(b)]. The key sites that affect allosteric com-
munication in the active ABL are precisely aligned with the R-spine
residues L320, H380, F401, and D440 [Fig. 6(a)]. In addition, the
local interaction cluster anchored by N387 is also involved in medi-
ating the allosteric network in the active form. The distribution
highlighted a noticeable peak in the substrate binding motif 424-
WTAPE-428 of the C-lobe, which is consistent with the results of
functional studies, showing that W424 can act a conserved allosteric

node linked to the R-spine residues.93 Structural mapping of the 20
residues featuring the highest allosteric potentials showed a broad
and dense interaction network connecting the substrate site with
the ATP site [Fig. 6(b)]. This network is determined by connectivity
afforded through dynamic couplings between the αC-helix-in, the
fully assembled R-spine, and the substrate binding site in the active
state. The predicted topological map of allosteric communications
in the active ABL is consistent with the experimentally observed
patterns of the intramolecular cooperativity in other kinases. For
example, biochemical experiments identified a similar dynamically
coupled allosteric network between the ATP- and substrate binding
sites in Src kinase, showing that robust intramolecular communi-
cations and long-range cooperativity in the active state underlie
the enzymatic kinase function.96 Our findings are also consistent
with the NMR-based CHESCA analysis of correlation maps between
functional network communities in the active state of PKA enzyme
showing strong allosteric communications between the ATP binding
site, the αC-helix, and the A-loop.48

We also found that modifications of residues from the allosteric
binding pocket (R351, A356, L359, L360, A363, L448, L451, T453,
Y454, M456 G482, C483, V487, F512, V525, L529) could induce only
minor changes in the allosteric communications of the active form
and thus have a minor effect on the efficiency of the allosteric net-
works [Figs. 6(a) and 6(b)]. It appeared from this analysis that the
long-range couplings between the allosteric site and the ATP site
may be partially depleted in the active kinase form. These observa-
tions are consistent with recent biochemical and structural studies
showing a lack of cooperation between ATP-competitive inhibitors
that stabilize the αC-helix-in kinase conformation and allosteric
inhibitors of ABL.97–100 At the same time, these studies suggested
that conformation-selective ATP-site inhibitors that favor the inac-
tive ABL conformations can afford a stronger binding cooperation
of the allosteric site with the ATP site. An alternative view based
on NMR and isothermal titration calorimetry studies suggested that
Asciminib can bind ABL concomitantly with both type-1 and type-2
ATP-competitive inhibitors to form ternary complexes.98

Mutational scanning of allosteric propensities in the inactive
state I1 featured a similar distribution shape but revealed reduced
peaks associated with the R-spine positions M320, H380, and
F401, while the peak corresponding to D440 completely vanished
[Figs. 6(c) and 6(d)]. In the I1 state, the αC helix remains in the “in”
conformation with the catalytic bridge K290-E305 intact as in the
active state, but the DFG motif swings into inactive “out” position,
rendering this state catalytically inactive.23 From structural map-
ping of the top allosterically sensitive positions, it is evident that the
allosteric network becomes weaker and involves only a portion of
the R-spine. Nonetheless, our results suggested that allosteric com-
munications between the ATP site and the substrate binding site in
the inactive I1 state can be still functional but less robust than in
the active form [Fig. 6(d)]. Interestingly, despite a partially discon-
nected R-spine, allosteric communication flow between the N-lobe
and C-lobe of ABL can still be preserved owing to a large number
of mediating centers in the functional regions. These observations
are consistent with NMR and network-based studies of allostery in
p38γ kinases,47 showing that a physically connected R-spine in the
inactive state may be “dynamically” sufficient to enable allosteric
signal propagation between the binding sites along the conserved
architecture, while a completely assembled R-spine is a necessary
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FIG. 6. Mutational profiling of allosteric residue propensities in the ABL states. The residue-based Z-score profile estimates the average mutation-induced changes in the
ASPL network parameter for the active state (a), the inactive I1 state (c), and the inactive I2 state (e). The profiles are shown in brown-colored lines. The positions of the
R-spine residues on the distribution are highlighted in magenta-filled circles. The residues in the N387-anchored mediating local cluster (N387, C388, A399, D400, F401) are
shown in orange-colored circles. The sites targeted by Imatinib-resistant mutations G269E, 71H, Y272H, E274V, T334I, F378V, and H415V are indicated by yellow-colored
filles squares. Structural mapping of the top 20 kinase residues with the highest allosteric mediating potential in the active state (b), the inactive I1 state (d), and the inactive
I2 state (f). The highlighted centers (shown in red spheres) are determined by Z-score evaluation of mutational effects on the intramolecular communication paths. The
mapped allosteric mediating sites form intramolecular communication routes connecting the ATP site, the substrate binding region, and the allosteric pocket. The observed
shifts in preferential communication paths between the active site and the inactive state I2 are highlighted.

prerequisite for phospho-transferase activity. Consistent with this
study, we similarly found that stronger dynamic residue correlations
and a broader interaction network in the active ABL form ensure
efficient allosteric communication mediated by the fully assembled
R-spine.

The structural and dynamic changes in the inactive I2 state
appeared to incur more significant rearrangements in the interac-
tion network in which contributions of the R-spine residues with
the exception F401 are reduced [Fig. 6(e)]. The invariant cluster
of allosteric hotspots includes N387, C388, L389, A399, D400, and
F401 residues [Figs. 6(e) and 6(f)]. However, in contrast to other
ABL states, we observed the emergence of additional mediating cen-
ters in residues L406, Y408, Y412, L448, I451, T453, Y454 as well as
residues from the allosteric binding pocket [Fig. 6(f)]. Notably, the
mutation-sensitive allosteric centers also include C-spine residues
C388, L389, and I451. NMR analysis showed a significant role of
Y408 in increasing the population of the I2 state, and the interactions
of the displaced Y412 A-loop residue with the L403/L406/M407
positions are important in allosteric changes of the inactive I2
form.23 The structural map of top 20 allosteric centers revealed a nar-
rower and more localized pattern as compared to the active state and
I1 [Fig. 6(f)]. Strikingly, the predicted mediating centers in the inac-
tive I2 state form an allosteric route between the ATP binding site

and the allosteric binding pocket, while the long-range communica-
tions between the ATP and substrate binding sites become partially
depleted.

Our results revealed that the allosteric communications of the
ATP site with the substrate binding region and allosteric pockets
may coexist and are not mutually exclusive. However, the presented
findings indicated a potential shift in the allosteric communication
ensemble of the I2 state that favors long-range coupling between the
ATP site and allosteric binding pocket [Figs. 6(e) and 6(f)].

These findings are consistent with recent NMR studies showing
lack of synergy and “weak antagonism” between allosteric inhibitor
Asciminib bound in the allosteric site and ATP-competitive
inhibitors that stabilize the open αC-helix ABL conformation,
whereas in contrast, an ATP-competitive inhibitor of ABL that
stabilizes the αC-helix-out, closed conformation showed increased
synergy with Asciminib binding.97 According to these experiments,
the mechanism by which Asciminib binding inhibits the ABL cat-
alytic function may be related to the synergy between the allosteric
site and the ATP site in the inactive ABL conformations.

To summarize, the central finding of the network-based muta-
tional scanning analysis is conformation-specific modulation of
the allosteric interactions that may control shifts in the preferen-
tial communication routes connecting the ATP site, the substrate
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binding site, and the allosteric binding pocket. Notably, our results
and analysis are performed using the experimentally determined
conformational states of the unbound ABL catalytic domain and
did not consider the complete regulatory ABL-SH2-SH3 construct
where the presence of the interacting SH2 and SH3 domains in
the assembled state can influence the dynamic properties of the
allosteric pocket. Nonetheless, the presented data provided evi-
dence that allosteric crosstalk between the binding site and regu-
latory site can be differentially modulated in the active and inac-
tive states through “activation” and “suppression” of the regula-
tory hotspots and preferential stabilization of conformation-specific
communication routes.

Dimensionality reduction analysis and Markov
state model of allosteric transitions

While the analysis of MD simulations and functional move-
ments provided important insights into the underlying conforma-
tional landscape of ABL, the high dimensionality of the datasets
produced by simulations often hinders salient dynamic signatures
associated with the mechanisms of allosteric transitions. Here, to
facilitate the conformational landscape analysis we employed a
deep learning-based dimensionality reduction method to project
the results of MD simulations into low-dimensional space.65–67 The
loss function used for the training process in ivis is a triplet loss
function that calculates the Euclidean distance among data points
and simultaneously minimizes the distances between data of the
same labels while maximizing the distances between data of different
labels, thus allowing to preserve both local and global structures in a
low-dimensional space. The pairwise Cα distances are often used to
characterize protein conformations and movements. In ABL kinase,
there are 287 residues, leading to 41 041 pairs of Cα distances. To
obtain a low-dimensional space projection of the MD ensembles, the
ivis dimensionality reduction method was applied to the produced
distance dataset. We observed the active state covers a wider region
in comparison with the other two states [Fig. 7(a)].

Moreover, there is no overlap between the active state and the
inactive state I2 but instead a big gap as shown in the ivis 2D sur-
face [Fig. 7(a)]. In addition, we noticed that the low-dimensionality

projection of the MD ensemble highlighted a topological similar-
ity between the active state and the inactive I1 state while also
demonstrating a larger conformational space available for the open
active ABL conformation [Fig. 7(a)]. A different low-dimensional
signature was obtained for the inactive I2 conformation, reflect-
ing considerable structural and dynamic rearrangements in this
state, which are associated with the disassembly and partitioning of
intramolecular interaction networks [Fig. 7(a)].

Importantly, compared with dimensionality reduction meth-
ods, ivis method was shown to be more robust for construct-
ing MSMs and maintaining high similarity between high and low
dimensions with the least information loss. Using the conforma-
tional ensembles of the ABL states and ivis dimensionality reduction,
we constructed MSM and performed analysis of the macrostates to
obtain insight into the kinetic aspects of allosteric transformations
in ABL. The projected low-dimensional space produced by the ivis
method [Fig. 7(a)] was applied to the MSM construction. In the ivis
2D space, a MiniBatch k-means clustering method was applied to
partition the 2D data into 500 microstates. The implied time scales
were calculated with lag times ranging from 1 to 2500. The top 15
time scales are shown in Fig. 7(b). The trend of implied relaxation
time scale revealed that the estimated time scale converged after∼2500 steps, which was chosen as the lag time in the construction
of MSM. Based on the gap of time scales, the number of macrostates
was set to eight and the distribution of macrostates with their transi-
tion probabilities enabled analysis of allosteric changes between the
active and inactive ABL states (Fig. 8). After partition of the MSM
microstates to macrostates, the stationary distribution and transi-
tion probabilities were calculated based on the constructed MSM.
According to the MSM partition of states, macrostates 1–3 belong
to the active kinase conformation, macrostates 4 and 6 are associ-
ated with the inactive structure I1, and macrostates 5–8 belong to
the inactive structure I2 (Fig. 8). For each macrostate, the RMSD
between its representative structure and the corresponding ABL
conformation was calculated. Based on the root mean square devi-
ation (RMSD) values, macrostates 1, 6, and 7 were assigned as the
active state, inactive state I, and inactive state I2, respectively, while
other five macrostates were designated as intermediate states (Fig. 8).

The structural signatures of the obtained ABL macrostates are
consistent with the MSM study of ABL kinase that revealed a total of

FIG. 7. 2D ivis dimensionality reduction
map and the corresponding implied time
scales under different lag times. (a) The
distribution of three protein conforma-
tions on the reduced 2D space. (b) The
estimated relaxation time scale of MSMs
under different lag times. The number of
steps in MD simulations were used as
lag times, ranging from 1 to 2500. In each
lag time, an MSM was constructed, and
the estimated relaxation time scale was
calculated from the transition matrix. The
implied time scale converged with a lag
time of 2000 steps, which was chosen for
MSM construction in further analysis.
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FIG. 8. MSM analysis of the ABL conformational landscape. Macrostates 1–3
belong to the active kinase conformation, macrostates 4 and 6 are associated with
the inactive structure I, while macrostates 5–8 belong to the inactive structure I2.
Based on the RMSDs between representative structures in macrostates and the
corresponding native structures, macrostate 1, 6, and 7 were considered as the
active state, inactive state I1, and inactive state I2, respectively. Other macrostates
were treated as intermediate states.

16 important macrostates differing in the functional conformations
adopted by the αC-helix (in, out), the DFG motif (in, out), the P-loop
(kinked, extended), and the A-loop (open closed).31 We observed
that each macrostate is metastable with high probabilities to remain
in the same macrostate.

Moreover, the macrostates can more easily interconvert within
each of the allosteric ABL states but have higher kinetic barriers for
transition to the other states (Fig. 8). For example, for the inactive
state I1 (macrostates 4 and 6), there is an overall probability of 6.9%
to shift between two macrostates, but only 2.3% to transition to the
active state and 0.6% to the inactive state I2 (Fig. 8). The transition
probabilities revealed that ABL kinase can transition following the
path from the active state to the inactive state I1 to the inactive state
I2 while direct transitions from the active state to the inactive state
I2 are kinetically unfavorable. Furthermore, there is an overall 3%
probability to transition from the active state to inactive state I1 (2%
from macrostate 3 to 6 and 1% from macrostate 2 to 6) but only 0.6%
probability to transition from the inactive state I1 to inactive state I2
(from macrostate 4 to 8). These results are consistent with the exper-
imental findings of a linear equilibrium between the ground active
state G and inactive states G↔ I1 ↔ I2 where the kinetic exchange
between the active and inactive state I2 is slow due to DFG flip and
dramatic rearrangements in the A-loop.23

Structural superposition of microstates 1–3 with the structure
of the ABL active conformation highlighted the variability of the
P-loop and open A-loop [Fig. 9(a)]. The P-loop can directly affect
ligand binding and experiences transitions from the “kinked” con-
formation in microstate 1 to an “extended” conformation seen in
macrostates 2 and 3 [Fig. 9(a)]. Interestingly, the extended P-loop
conformation may be a preferable form as it was observed in a large
number of protein kinase crystal structures,31 while a less common
partially folded “kinked” conformation is seen in the active ABL

FIG. 9. Structural analysis of the ABL macrostates. (a) Structural superposition
of the conformations representing macrostates 1(in green ribbons), 2 (in red rib-
bons), and 3 (in blue ribbons) that belong to the active kinase conformation. The
experimental active state conformation is shown in light-pink ribbons. (b) Structural
superposition of the conformations representing macrostates 4 (in green ribbons)
and 6 (in red ribbons) that belong to the inactive I1 state. The experimental I1
conformation is shown in light-pink ribbons. (c) Structural superposition of the con-
formations representing macrostates 5 (in green ribbons), 7 (in red ribbons), and
8 (in blue ribbons) that belong to the inactive I2 state (shown in light-pink ribbons).

form23 and is important for selective binding of Imatinib for ABL
kinase over c-SRC kinase.101,102 A substantial conformational vari-
ability of the open A-loop in the macrostates associated with the
active ABL form was also noticeable [Fig. 9(a)]. Importantly, in these
macrostates, the αC-helix maintains active “in” conformation, which
is the key signature of the active kinase state [Fig. 9(a)]. By aligning
the microstates 4 and 6 with the structure of the inactive I1 state,
we observed appreciable variations in the main functional regions
αC-helix, the P-loop, and the A-loop [Fig. 9(b)]. While the A-loop
in these macrostates undergoes moderate conformational changes,
more significant displacements were observed for the αC-helix that
experienced movements between the αC helix-in and the inactive αC
helix-out positions [Fig. 9(b)].

In the I1 structure, the kinase adopts the DFG-out/αC-in con-
formation and becomes catalytically inactive. The analysis of I1
macrostates showed that dynamically this inactive state may be sus-
ceptible to large movements of the αC-helix that would facilitate
conformational transformation to the spectrum of inactive ABL con-
formations. We also observed large displacements of the “extended”
P-loop conformations that are coupled with reciprocal movements
of the αC-helix [Fig. 9(b)]. Overall, these findings pointed to globally
increased functional movements of the key functional regions in the
I1 macrostates.

Structural variations among microstates 5, 7, and 8 that belong
to the inactive I2 state are even more significant particularly in the
N-lobe and A-loop [Fig. 9(c)]. We noticed appreciable displace-
ments of the P-loop that can adopt various “extended” stretched
conformations that are necessary to accommodate diverse closed
conformations of the A-loop. At the same time, the αC-helix move-
ments are moderate and similar to the αC-helix-out position in
the inactive I2 structure [Fig. 9(c)]. The macrostates revealed a
remarkable diversity of the closed A-loop conformations that may
be available in the I2 state. It was proposed in the original struc-
tural study that Imatinib could bind preferentially to the ABL I2 state
but induces additional changes to optimize the binding energy.23

MSM analysis indicated that Imatinib binding can induce a less
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intrinsically favorable “kinked” conformation of the P-loop and
significantly reduce mobility of the closed A-loop. As a result, Ima-
tinib binding may significantly reduce conformational mobility and
impair favorable entropy intrinsically present in the I2 state that
could only be partly compensated by the ligand–protein interactions
and result in the observed moderate binding affinity.23 Structural
analysis of macrostates associated with low-populated forms of the
ABL kinase can expand our understanding of “hidden” allosteric
states and invisible aspects of protein kinase functionalities. While
computationally predicted inactive macrostates represent short-
lived intermediates, their dynamic proximity to the experimentally
determined inactive conformations may be leveraged for the design
of selective inhibitors with reduced sensitivity to drug-resistant
mutations.

CONCLUSIONS

In this work, we introduced and synergistically applied several
computational approaches to examine at atomistic detail confor-
mational landscapes and mechanisms of allosteric regulation in the
distinct functional states of the ABL kinase domain. By using MD
simulations and ensemble-based distance fluctuations analysis, we
characterized a critical role of dynamic coupling between N387
residue, the regulatory 400-DFG-402 motif, and the R-spine residues
in mediating structural stability and allosteric communications in
the ABL states. Our results revealed a previously unappreciated
role of N387 as a regulatory anchor that couples functional kinase
regions to modulate allostery in the kinase domain. These results are
consistent with the recent biophysical experiments and explain the
importance of N387 in modulating long-range functional effects in
the ABL kinase.

We proposed a network-based mutational profiling approach
for probing allosteric residue propensities and communications that
revealed a group of conserved allosteric regulatory hotspots in the
ABL states. The results of mutational disclosed profiling modulation
of the allosteric interaction networks between the active and inactive
states where the long-range communication pathways between the
ATP binding site and substrate regions are dominant in the active
state but are partially suppressed in the closed inactive state I2 and
replaced with the stronger allosteric couplings are between the ATP
site and the allosteric binding pocket. The important finding of this
study is evidence of conformation-specific modulation of allosteric
interaction networks and communications that can alter preferen-
tial communication routes and crosstalk between the ATP site, the
substrate binding site, and allosteric site. These results agree with the
latest NMR experiments suggesting a stronger cooperativity between
the ATP binding site and allosteric pocket in the inactive closed
conformation.97

By integrating the results of MD simulations with MSM-based
identification of macrostates, we analyzed the kinetic transitions
between the ABL functional conformations that follow the path from
the active state to the inactive state I1 and then to the inactive state
I2, while direct transitions from active state to inactive state I2 are
not favorable. Through structural analysis of the ABL macrostates,
we showed that conformational variability and long-range coopera-
tivity between the functional regions of αC-helix, the P-loop, and the
A-loop can provide a concerted mechanism for allosteric transitions
underlying regulation of the kinase activity. We argue that probing

and exploiting diverse ensemble of the intramolecular communica-
tion networks in the ABL conformations through targeted modi-
fications of vulnerable network link and inter-community bridges
may be useful for engineering and modulating kinase activities.
Together with NMR studies of kinase dynamics and advances in
deep mutational scanning of allostery,103–105 the proposed computa-
tional approach may open up new venues for probing kinase-centric
signaling processes and engineering of allosteric functions.
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