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Highlights
Machine-learning methods provide
unprecedented opportunities for studies
in understanding and exploiting protein
allostery.

A large amount of data, including simula-
tions related to protein allostery, were
subjected to various types of machine-
learning method to provide deeper
insight into underlying allosteric mecha-
nisms at levels of allosteric residues,
pathways and networks, communities,
and protein ensembles.

Machine-learning methods have done
The fundamental biological importance and complexity of allosterically regulated
proteins stem from their central role in signal transduction and cellular processes.
Recently, machine-learning approaches have been developed and actively de-
ployed to facilitate theoretical and experimental studies of protein dynamics and
allosteric mechanisms. In this review, we survey recent developments in applica-
tions of machine-learning methods for studies of allosteric mechanisms, prediction
of allosteric effects and allostery-related physicochemical properties, and allosteric
protein engineering.We also review the applications of machine-learning strategies
for characterization of allostericmechanisms anddrug design targetingSARS-CoV-
2. Continuous development and task-specific adaptation of machine-learning
methods for protein allosteric mechanisms will have an increasingly important
role in bridging a wide spectrum of data-intensive experimental and theoretical
technologies.
exceptionally well to develop prediction
models for protein allosteric properties,
including allosteric sites and effectors.

Allosteric protein engineering and
design are emerging fields accumu-
lating data for further applications of
machine-learning methods.

Protein allostery has a key role in many
computational studies using machine-
learning methods targeting SARS-
CoV-2, aiming to mitigate the COVID-
19 pandemic.

1Department of Chemistry, Center for
Research Computing, Center for Drug
Discovery, Design, and Delivery (CD4),
Southern Methodist University, Dallas,
TX 75205, USA
2Graduate Program in Computational
and Data Sciences, Schmid College of
Science and Technology, Chapman
University, Orange, CA 92866, USA
3Department of Biomedical and
Pharmaceutical Sciences, Chapman
University School of Pharmacy, Irvine,
CA 92618, USA

*Correspondence:
sxiao@smu.edu (S. Xiao) and
ptao@smu.edu (P. Tao).
Protein allostery at the intersection of modern molecular biology and data
science
Allosteric regulation serves as an efficient strategy for molecular communication and is a common
mechanism used by proteins for regulation of activity and adaptability [1–3]. Allosteric effects
ensue when a certain perturbation occurs at a distal site of a protein that is topographically dis-
tinct from the orthosteric function site of the protein and consequently modulates the activity of
that protein [1–3]. Since the term ‘allostery’ was introduced in 1961 [4], protein allostery has
been one of the focuses of structural biology and is often referred as the ‘second secret of life’,
second only to the genetic code [5,6]. A quantitative elucidation of such a fundamental and
elusive phenomenon is critical to understanding life process and disease therapy [7–9]. It has
been further proposed that all proteins are allosteric: even if it is not known to be allosteric, the
protein could be observed to be allosteric under given conditions, such as the presence of appro-
priate allosteric effectors or mutations [10,11].

The remarkable progress and recent breakthroughs in X-ray crystallography (see Glossary),
nuclear magnetic resonance (NMR) spectroscopy, fluorescence resonance energy
transfer (FRET), and hydrogen–deuterium exchange mass spectrometry (HDXMS)
have enabled structural and dynamic studies of large biomolecules at atomic resolution and
these technologies are often used as diagnostic tools in the study of allosteric interactions and
communications in signaling proteins [12]. Recent advances in single-particle cryogenic elec-
tron microscopy (cryo-EM) have enabled the determination of near-atomic resolution struc-
tures for well-ordered proteins and large macromolecular assemblies, breaking resolution
barriers for studies of allosteric events and allosteric drug discovery [13–15].

Computational approaches have complemented experimental methods and provided detailed
molecular insights into allosteric transformations and regulatory mechanisms. Molecular
dynamics (MD) simulation-based and elastic network model (ENM)-based approaches
represent two main types of computational method to interrogate allosteric mechanisms based
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Glossary
Allosterome: systematic identification
of protein allosteric interactions. It
provides entire allosteric landscapes for
related proteins of interest.
Angiotensin-converting enzyme 2
(ACE2): vital element in the renin–
angiotensin–aldosterone system (RAAS)
pathway that is critical for the regulation
of processes such as blood pressure,
wound healing, and inflammation. ACE2
helps modulate the many activities of
angiotensin II (ANG II). When SARS-
CoV-2 binds to ACE2, it prevents ACE2
from performing its normal function to
regulate ANG II signaling.
Cryogenic electron microscopy
(cryo-EM): microscopy technique
applied to samples cooled to cryogenic
temperatures. It can be used to provide
3D structural information about
biological molecules and assemblies by
imaging noncrystalline specimens. The
on protein dynamics [16–19]. Many other computational approaches correlate protein structural
information at various levels with their allosteric functions. Allosteric molecular events involve a
complex interplay of thermodynamic and dynamic changes that are difficult to observe, simulate,
and interpret. The quantitative elucidation of these highly dynamic processes continues to
present formidable technical and conceptual challenges [20].

Due to its universal importance, protein allostery has been studied with a wide range of ap-
proaches (Figure 1). The past decade has witnessed the rapid development of machine-
learning and deep learning (DL) techniques and their applications to model increasingly complex
chemical and biological phenomena [21–23]. In this review, we survey recent developments and
applications of machine learning to protein allostery along three main themes: prediction and
analysis of allosteric mechanisms; property prediction; and allosteric protein design. We also
provide a perspective for the future development of computational and machine-learning
approaches for studies of protein allostery.

Machine-learning studies of protein allostery
Dynamics-driven allosteric models have described protein allosteric mechanisms as signal prop-
agation through dynamically modulated functional motions that can occur in the absence of vis-
ible structural changes. The current view recognizes that allostery can often involve an equilibrium
TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 1. Solving the puzzle of allostery with machine learning. Protein allostery has been investigated from multiple
aspects, including fundamental theories, allostery mechanisms, allostery-related properties, and allosteric protein design
With increasing amounts of information and data related to allostery available, machine-learning methods add anothe
piece to the puzzle and have been used more widely to study protein allostery in various areas.
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structures of the samples are preserved
by embedding them in a
low-temperature environment.
Elastic network model (ENM):
computational model used to describe
proteins as structured elastic objects at
a coarse-grained level. Proteins are
treated as points in spacewithmass and
connected by springs. ENMs can
provide essential vibrational dynamics
associated with the given structure and
have been widely used to study protein
dynamics, function, and conformational
changes.
Fluorescence resonance energy
transfer (FRET): distance-dependent
physical process by which energy is
transferred nonradiatively from an
excited molecular fluorophore (the
donor) to another fluorophore (the
acceptor) by means of intramolecular
long-range dipole–dipole coupling.
FRET can be an accurate measurement
of molecular proximity at distances
between 10 and 100 Å and highly
efficient if the donor and acceptor are
positioned within the Förster radius (the
distance at which half the excitation
energy of the donor is transferred to the
acceptor, typically 3–6 nm).
Hydrogen–deuterium exchange
mass spectrometry (HDXMS):
protein is exposed to D2O and induces
rapid amide H→D exchange in
disordered regions that lack stable
hydrogen bonding. Tightly folded
elements are more protected from HDX,
resulting in slow isotope exchange that is
.

r
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mediated by the structural dynamics
(‘breathing motions’) of the protein.
Machine learning: part of artificial
intelligence; leverages data to improve
performance on sets of tasks. It builds a
model based on sample data, known as
training data, to make predictions or
decisions without being explicitly
programmed to do so.
Markov state model (MSM):
theoretical model used to study allosteric
regulatory events. The first step is using
robust dimensionality reduction
techniques to identify suitable collective
variables. Simulation data can be
projected and represented by these
collective variables. Clustering methods
are applied to divide the simulation
projection into metastable states.
Transition probabilities among these
metastable states can be estimated
based on the simulation data.
Molecular dynamics (MD)
simulation: computational method for
analyzing the movements of atoms and
molecules in space. The MD trajectories
of atoms and molecules are determined
by numerically solving Newton's
equations of motion for a system of
interacting particles. The forces between
the particles and their potential energies
are calculated using molecular
mechanics force fields. These
simulations can capture a variety of
important biomolecular processes,
including conformational change, ligand
binding, and protein folding.
Normal mode analysis (NMA):
provides vibrational modes accessible to
a system in an equilibrium state,
approximating the system in harmonic
potentials. This computational model
has been applied to identify and
characterize the slow and global
motions in a macromolecular system.
Nuclear magnetic resonance (NMR)
spectroscopy: used to obtain
information about the structure and
dynamics of proteins, nucleic acids, and
their complexes. The sample is placed
inside a powerful magnet tomeasure the
absorption of radiofrequency signals.
Types of nucleus and distances
between adjacent nuclei can be
determined from absorption information
and can be used to determine the overall
structure of the protein. NMR
spectroscopy can monitor both
conformations and dynamics and can
be applied to partially unfolded proteins.
X-ray crystallography: experimental
technique to determine the 3D structure
of a compound in crystal. The
shift of the pre-existing conformational ensembles due to effector binding [11,24]. In some
perturbation-based simulation methods, mechanical forces are exerted on the allosteric proteins
during simulations to probe protein dynamical and allosteric responses [25–29].

Combined with networkmodels, these approaches can provide insight intomechanistic details of
signaling pathways, predict the response to various perturbations, and guide the identification of
regulatory sites. Despite the established view that many proteins function as dynamic and versa-
tile allosteric regulatory machines, our atomistic understanding of allosteric mechanisms is still at
a rudimentary level, and our knowledge of allosteric functional states and allosteric communica-
tion networks that govern diverse protein functions is surprisingly limited. Due to the lack of a uni-
versal theory, current studies aim to interpret protein allostery at various protein structural levels
(Figure 2). A substantial challenge in investigating the allosteric mechanisms for large multidomain
protein systems is the inherent difficulty of adapting experimental and computational methodolo-
gies to capture the intrinsic flexibility of these structures essential for functionality. The fundamen-
tal biological importance and complexity of these processes require a multifaceted platform of
integrated approaches for characterization of allosteric functional states and atomistic recon-
struction of allosteric regulatory mechanisms. In this review, we detail how machine-learning
methods can be productively used to capitalize on the rapidly growing and rich multidimensional
data on protein dynamics and allosteric protein landscapes. We suggest that machine-learning
approaches have the potential to become a unifying data-centric research tool for synthesizing
advances in theory and experimental technologies, ultimately leading to the development of ro-
bust and efficient computational models and expert systems for the prediction of diverse alloste-
ric effects in protein systems.

Machine-learning approaches for molecular simulations and characterization of allosteric
functional states
Without a universally accepted fundamental theory, experimental observations remain the foun-
dation of protein allostery. New advances in experimental techniques often provide new insight
into this ubiquitous phenomenon. For example, recent breakthroughs in single-molecule (sm)
FRET technologies have enabled dynamic studies of large biomolecules. These advances pro-
vided semidirect experimental observation of allostery-related protein dynamics. Combined
with MD simulations at the microsecond scale, smFRET experiments could directly probe transi-
tions among allosteric states with significant conformational changes [30–32]. Recently, the
DeepFRETmethod was developed using a DLmodel to bridge experimental data and protein dy-
namics [33]. These emerging experimental advances provide a solid foundation for computational
and theoretical studies of protein allostery seen in recent years.

Machine-learning approaches have been widely used to facilitate conformational sampling with
MD simulations via optimal selection of reaction coordinates [34–37], enhanced conformational
sampling by active learning [38–40], and even autonomous generation of equilibrium ensembles
without performing MD simulations [41]. With help from machine-learning methods, time-
dependent structural changes can be quantitatively analyzed to provide insight into underlying al-
losteric mechanisms. Takami et al. [42] applied three time-series clustering methods, the unsu-
pervised machine-learning technique for time-series data, to analyze multiple tight–relaxed
state transition trajectories of human adult hemoglobin (HbA). These trajectories were classified
by time-series clustering methods and analyzed to investigate the effect of oxygen molecules
on the structural change of HbA.

In other cases, the allostery-related structural changes could not be easily recognized or charac-
terized. Therefore, several machine-learning models have been developed to identify structural
Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx 3
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Figure 2. Allostery study facilitated by machine learning. Due to the lack of a universal theoretical framework for protein
allostery, the mechanisms of allostery have been elucidated at multiple levels. At the residue level, key individual residues are
identified as important for functions of the target allosteric proteins. At the pathway level, allosteric pathways comprising
multiple residues are identified as main communication channels between the allosteric site and the main functional site. In
some cases, multiple pathways could form networks to enable allosteric signal transduction within the protein structure. The
allosteric community comprises a group of closely related residues associated with allostery. Allosteric protein structure
could be divided into several communities, which interact with each other synergistically to carry out allosteric functions.
From a dynamical point of view, proteins need to transition between different functional states when fulfilling their allosteric
functions. These allosteric functional states could be identified through both computational and experimental studies.

Trends in Biochemical Sciences

crystallized sample is exposed to an
X ray beam to obtain diffraction patterns.
These patterns can be processed to
yield information about the crystal
packing symmetry, the size of the
repeating unit, and a map of the electron
density. The molecular structure can be
built and refined based on electron
density information from diffraction
patterns.
features that can properly describe the slowest dynamics underlying conformational changes.
These features could be used to model protein kinetics that underlie allosteric processes [43–45].

Identifying key protein allosteric residues
As fundamental building blocks of proteins, individual residues are the focus of many protein al-
losteric mechanism studies. Machine-learning methods provide quantitative means to correlate
global protein allostery with individual residues. Many studies aim to identify key residues for pro-
tein allostery through informative and insightful analysis of protein dynamics data using various
machine-learning methods. Zhou et al. [46] applied supervised learning methods [decision
trees and neural networks (NNs)] to build classification models for allosteric states based on
4 Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx
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the simulation data of the second PDZ domain from human PTP1E protein (PDZ2). These accu-
rate classification models provide numerical measurement of the importance of each residue for
overall allostery. The key allosteric residues identified based on this importance were in agree-
ment with results from experimental and computational studies. Similarly, Hayatshahi et al. [47]
applied deep NNs (DNNs) to build a classification model of the PDZ3 domain from the adaptor
protein PSD95 to distinguish otherwise-similar allosteric states using MD simulation data. Their
classification model, a residue response map as a 2D property-residue map, could be con-
structed to represent allosteric effects as residue-specific properties. More recently, Do et al.
[48] introduced a Gaussian-accelerated MD (GaMD), DL, and free energy profiling workflow
(GLOW) to characterize both activation and allosteric modulation of a G protein-coupled receptor
(GPCR). A convolutional NN (CNN) model was used in GLOW to classify the residue contact
maps, from which important residues could be identified.

Mapping of allosteric networks and communication pathways using machine learning
The nature and atomistic details of the allosteric communication between the allosteric site
and the functional site are often difficult to dissect. Experimental approaches could reveal
allosteric hotspots and potential communication pathways in protein structures. Using a
combination of mutagenesis, mass spectrometry, amide HDXMS, and FRET studies, the at-
omistic details and allosteric pathways of the Hsp70 chaperone regulation mechanisms have
been mapped, revealing the previously unrecognized dichotomy of allosteric control in the
chaperone [49–51].

There are many machine learning-based methods to identify allosteric pathway or networks.
Graph theory-based methods are among the most widely used approaches. By mapping
dynamic fluctuations onto a graph, network-based approaches can describe signal transmis-
sion via cascades of coupled residue fluctuations and characterize allosteric communication
pathways in proteins. Zhu et al. [52] applied a graph NN (GNN)-based neural relational infer-
ence (NRI) model, which adopts an encoder–decoder architecture, to simultaneously infer la-
tent interactions for probing protein allosteric processes as dynamic networks of interacting
residues. From the MD trajectories, this model successfully learned the long-range interac-
tions and pathways that can mediate allosteric communications between distant sites. Ma-
chine-learning methods could also be applied to develop various dynamic network models
of allosteric interactions to decrypt the underlying mechanisms driving allosteric effects in
proteins [53].

Other machine learning-based methods use various correlation relations among residues to
identify potential allosteric pathways. Zhou et al. [54] used the relative entropy concept from in-
formation theory to develop a relative entropy-based dynamical allosteric network (REDAN)
model. The relative entropy is used to measure the response of each residue pair to external
perturbation. The potential allosteric pathways are identified as a series of short-range residue
pairs with the most significant response. Botlani et al. [55] extended the underlying mechanism
of allostery by exploring correlation between ensembles of protein in different allosteric states.
They applied a support vector machine (SVM) approach to quantitively evaluate these correla-
tions using simulations representing different allosteric states of the same protein. Undirected
weighted graph theory was also used to identify the shortest pathway possible for allosteric
signaling mechanisms. Yan et al. [56] proposed the node-weighted amino acid contact energy
network (NACEN) to characterize and predict three types of functional residue: hot spots,
catalytic residues, and allosteric residues. These studies demonstrate the viability and diversity,
as well as uncertainty, of using machine-learning methods to evaluate allosteric contribution
from individual residues.
Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx 5
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Allosteric community models divide different residues into different groups, referred to as com-
munities. These allosteric communities are not necessarily correlated with protein secondary or
tertiary structural components and could provide a higher level of information compared with
pathway and network models. Zhou et al. [57] and Ibrahim et al. [58] developed a community
analysis algorithm based on their machine learning-based classification model for protein allo-
stery. The allosteric communities are built in such a way that the impacts of external perturba-
tions on the distribution differences are maximum across different communities and minimum
within the same community. This algorithm was applied to reveal the allosteric mechanism of
the fungal circadian clock photoreceptor Vivid (VVD), as one member of the light–oxygen–
voltage (LOV) domain, upon photoactivation. Interestingly, two distal loop regions were identi-
fied in the same community. This means that, despite the distance between these two
secondary structures, residue pairs across these two loop regions in VVD carry minimal allosteric
significance. By contrast, these two loops together make a significant contribution to the overall
allosteric effects.

Stetz and Verkhivker [59] applied a graph-based model to Hsp70 chaperones to construct
residue interaction networks. The allosteric communities in Hsp70 were constructed as stable
clusters of residues along the simulations. Astl et al. [60] and Stetz et al. [61] developed alloste-
ric community models for Hsp90 through residue interaction network analysis and noted that
different allosteric communities were correlated through intermodular pathways for long-
range communications. They also applied community models to characterize functional mech-
anisms of Hsp90 allosteric modulation through binding with various allosteric modulators as
well as other protein domains for its regulation [62,63]. Chen et al. [64] applied dynamic net-
work analysis to build a community model to reveal the regulatory effect on GPCR of binding
with G protein-mimicking Nanobody80 (Nb80). Both supervised (NN) and unsupervised
(principal component analysis) learning methods were used for feature extraction and key
residue identification of the dynamical response to the binding event. Compared with pathway
and network models, allosteric community models do not target certain sites in a protein and
could provide a more comprehensive view of underlying protein allosteric mechanisms.
Based on protein dynamics, these community models offer alternative protein structures
related to allostery other than conventional primary, secondary, and tertiary structures. The
communities within protein structures identified in these allosteric community models provide
functional information regarding protein allostery in addition to convention secondary and
tertiary structural information.

Machine-learning approaches for prediction of allosteric binding sites, hotspots,
and phenotypes, and applications in allosteric drug design
Allosteric drug development is among the most promising fields based on allostery for many
reasons: allosteric drugs could be more selective and less toxic with fewer side effects; they
can either activate or inhibit proteins; and they can be used in conjunction with orthosteric drugs.
Discovery of allosteric drugs presents challenges beyond those encountered in orthosteric drug
discovery. To address this challenge, Zhang and coworkers constructed the AlloSteric Database
(ASD) [65] and ASBench [66]. ASD is a platform providing comprehensive information about allo-
steric proteins and their modulators. The database now contains a total of 1949 allosteric protein
entries. ASBench, an optimized selection of ASD data, includes a core set with 235 unique alloste-
ric sites and a core-diversity set with 147 structurally diverse allosteric sites. However, in many
cases, the location of allosteric sites is unknown. It is also difficult to accurately predict whether
the drug will activate or inhibit the protein strength of the allosteric regulation [67,68]. Leveraging
existing sample data usingmachine learning and DL tomake predictions or decisions can help pre-
dict the allosteric components.
6 Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx

CellPress logo


Trends in Biochemical Sciences
Predicting allosteric sites
Several methods have been developed to detect and predict allosteric sites in proteins. These
studies can be classified as sequence-based, structure-based, dynamics-based, normal
mode analysis (NMA)-based, or combined prediction approaches [69]. Machine learning can
help with the detection task since it can deal with numerous input features, including local or static
features of pockets and delocalized or dynamic features of proteins (Table 1).

The static features, such as pocket volume, pocket flexibility, and pocket hydrophobicity, charac-
terize the conformation of protein pockets, and also provide information for classifiers to identify
allosteric sites. Akbar and Helms [70] characterized allosteric pockets using a set of physico-
chemical descriptors and trained a predictive model based on Naive Bayes and artificial NNs.
The predictive models were capable of prioritizing allosteric pockets in a set of pockets found
on a given protein and were encapsulated in the publicly accessible program ALLO. Tian et al.
[71] and Xiao et al. [72] adapted an ensemble learning method combining eXtreme gradient
boosting (XGBoost) and graph CNNs (GCNNs), and an automated machine-learning method
(AutoGluon and AutoKeras) to predict plausible allosteric sites. They deployed both models to
the Protein Allosteric Sites Serveri [71,72]. Chen et al. [73] used the structures of the sites and
the co-crystallized ligands to calculate 43 structural descriptors. These structural descriptors
were used to build a three-way predictive model based on random forest to characterize pro-
tein–ligand binding sites as allosteric, regular, or orthosteric. Huang et al. also applied SVM for
the prediction of allosteric sites using static pocket features, resulting in the web server
Allosite [74].

Dynamic features were also used for allosteric site prediction because allostery is a dynamic be-
havior of the whole protein. Greener et al. used perturbed NMA and pocket descriptors in SVM to
sort pockets in proteins and developed the AlloPred web server to predict allosteric pockets [75].
Song et al. [76] combined pocket features with NMA-based perturbation analysis to build a logis-
tic regression model, AllositePro, to predict allosteric sites in proteins.

Other features were also explored for allosteric site prediction. Mishra et al. [77] used various fea-
tures at the residue level, including amino acid physicochemical properties, rate of residue evolu-
tion, and features for protein geometry and dynamics, to build the Active and Regulatory site
Prediction (AR-Pred) model. Fogha et al. [78] found that crystal additives (CAs), which stabilize
Table 1. Representative allosteric site prediction methods

Features Methods Data setsa Refs

Static pocket features Naive Bayes and neural networks ASD and ASBench [70]

GCNN with XGBoost ASD [71]

Automated machine learning ASD and ASBench [72]

Random forest ASDb [73]

Support vector machine ASD [74]

Pocket features with NMA perturbation Support vector machine ASBench [75]

Logistic regression ASBench [76]

Features at residue level Random forest ASBench [77]

Crystal additive location DBSCAN ASD and ASBenchc [78]

aThe original data sets used to obtain allosteric site data. The data were filtered for high-resolution and non-redundant
structures individually.
bThe PDBbind database was used to obtain information on orthosteric sites.
cThe RCSB PDB was used to obtain protein–crystallographic additive complexes.
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proteins during the crystallization process, tend to aggregate in protein hotspots, especially near
the binding cavities; thus, CAs can be used as a criterion on which to base site-type decisions.
The authors proposed an efficient and easy way to use the structural information of CAs to identify
allosteric sites.

With comparable accuracy but using different methods, these prediction models for allosteric
sites provide ample choice for users. One could also apply methods using different strategies
in the same study and use the consensus results for improved outcomes. The workflow of an al-
losteric site analysis web server AlloFinder is illustrated in Figure 3.

The reversed allosteric communication theory [79] has been used successfully in several studies. It
is based on the premise that allosteric signaling in proteins is bidirectional and can propagate from
TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure 3. The workflow of the AlloFinder web server. After the user uploads a query protein to AlloFinder, all putative
allosteric sites on the protein are predicted. The user can choose one allosteric site to screen a predefined ligand library
virtually. The pocket-generated pharmacophore model for the selected allosteric site is generated for quickly ruling ou
unbound compounds in the library. Conformational sampling of an ensemble of docked conformations is performed for each
compound. The most favorable binding energy of each compound is evaluated and ranked. The top 100 compounds are
provided by the AlloFinder web server. Finally, the predicted allosteric sites and modulators are harnessed to perform
allosterome-mapping analyses of the human proteome [94]. Abbreviation: SDF, Structure Data File.

8 Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx
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an allosteric to an orthosteric site and vice versa [80,81]. Some reversed allosteric communication
approaches are rooted in dynamic network-based models of inter-residue interactions [82,83]. An
integrated computational and experimental strategy exploited reversed allosteric communication
concepts to combine MD simulations with Markov state models (MSMs) for characterization
of binding shifts in protein ensembles and identification of cryptic allosteric sites [84]. In MSMs,
dimensionality reduction techniques are used to generate suitable collective variables to char-
acterize protein conformational space. The simulation of allosteric proteins could be projected
into the space using these collective variables as the distribution in the conformational space.
Clustering methods are generally applied to cluster these distributions into metastable states.
Accordingly, transition probabilities among these metastable states could be estimated based
on the simulation data.

Using the reversed allosteric communication concept, machine-learning methods enable recon-
struction and analysis of the comparative perturbed ensembles of the allosteric states and char-
acterize redistribution of dynamic states in inhibitor-bound versus inhibitor-free systems following
allosteric binding [85]. Thesemachine learning-basedmodels as either classification or regression
models cannot account for the signal transduction between the distal sites and function-related
active sites because no such information is included in the training data to develop these models.

Given that predicted allosteric sites could be used directly for allosteric drug development and
due to recent breakthroughs in protein structure prediction, including AlphaFold2 and others,
allosteric site prediction methods have huge potential for furthering our understanding of protein
allostery.

Machine-learning models based on deep mutational scanning
Currently, experimental data remain the primary foundation for the development of allostery-related
computational models for understanding, predicting, and engineering biophysical properties of al-
losteric proteins. Emerging deep mutational scanning (DMS) experiments combine saturation mu-
tagenesis of a protein with a high-throughput functional test and deep sequencing and provide
unbiased and systematic single mutational information of target proteins. Such large and quantita-
tive data sets enablemachine-learning approaches to predict allosteric properties from sequences.
Leander et al. [86] carried out DMS of four homologous bacterial allosteric transcription factors
(aTFs). They further developed predictionmodels using NNmodels and genetic algorithms to iden-
tify hotspots of homolog proteins and to predict the structural andmolecular properties of allosteric
hotspots. Faure et al. [87] generated mutagenesis libraries of the C-terminal SH3 domain of the
human growth factor receptor-bound protein 2 (GRB2-SH3) and third PDZ domain from the adap-
tor protein PSD95 (PSD95-PDZ3) domains, which contain both single and double amino acid sub-
stitutions. A NN model was developed using DMS data to predict the binding free energy change
upon single amino acid substitutions in both systems. These prediction models were used to map
the energetic and allosteric landscapes of the target domains.

These recent studies demonstrate the potential of DMS data to facilitate the development of ma-
chine learning-based methods for protein allostery-related properties at the residue level and
even theoretical landscaping models for protein allostery.

Evaluating allosteric effectors
Binding with allosteric modulators is the main allosteric perturbation in many cases. Some studies
aimed to distinguish allosteric modulators from nonallosteric modulators. Several physically rele-
vant compound descriptors of molecules were computed, and the feature differences were then
correlated with chemical property differences. Wang et al. [88] and Smith et al. [89] concluded
Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx 9
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that allosteric modulators are generally more aromatic, structurally rigid, and more hydrophobic.
This general idea can help with preliminary screening of allosteric modulators.

Similar to using machine-learning models to identify allosteric sites for proteins, machine-learning
models could be developed to classify modulators as allosteric or nonallosteric. For example,
Hou et al. [90] trained six types of machine-learning model using different combinations of features
for an 11-class classification task with ten GPCR subtype classes and a random compounds
class. This was the first study of the multiclass classification of GPCR allosteric modulators.

Other studies focus on developing generative models to build and evaluate allosteric inhibitors
targeting various receptors. Different methods and training data have been used to develop various
machine learning-based models with comparable performance. Bian and Xie [91] first established
a general molecule generation model (g-DeepMGM) with a half million compounds collected
from the ZINC database, and then constructed a target-specific molecule generation model
(t-DeepMGM) based on the transfer learning process of reported cannabinoid receptor 2
(CB2) ligands. Yang et al. [92] first trained a Transformer-encoder-based generator on the
1.6 million data sets in ChEMBL to learn the grammatical rules of known drug molecules.
Transfer learning is used to introduce the prior knowledge of drugs with known activities
against particular targets into the generative model to construct new molecules similar to the
known ligands. Reinforcement learning is used to combine the generative model and the pre-
dictive model to generate molecules with drug-like properties that are expected to bind well
with the target.

Vennila and Elango [93] used the voxelized representation of five different conformational states of
the PDK1 allosteric site (the PIF pocket) to predict 1D SMILES imparted in the LiGANN pipeline in
the playmolecule platform, in which, for a given protein shape, a generative adversarial NN (GANN)
produces complementary ligand shapes in a multimodal fashion. Huang et al. [94] built AlloFinder,
which identifies potential endogenous or exogenous allosteric modulators and their involvement in
the human allosterome. AlloFinder automatically amalgamates allosteric site identification, alloste-
ric screening, and allosteric scoring evaluation of modulator–protein complexes to identify allosteric
modulators, followed by allosteromemapping analyses of predicted allosteric sites andmodulators
in the human proteome. More recently, Miljković et al. [95] applied random forest, SVM, and DNN
models to predict different classes of kinase inhibitor targeting different allosteric sites. Compounds
were represented using molecular fingerprints without other structural information being consid-
ered. Given that the authors were struck by the consistently good performance across different
methods used in this study, this demonstrated that machine-learning methods in general could ex-
tract key chemical features for certain properties using appropriate features.

Identifying receptors for allosteric inhibitors
In some scenarios, potential receptors need to be identified for known substrates with significant
pharmaceutical effects. These substrates may include allosteric effectors interacting with phar-
macology networks. Rodrigues et al. [96] developed a novel strategy to identify potential targets
of known allosteric effectors using self-organizing map-based prediction of drug equiva-
lence relationships (SPiDER) model. This model uses a consensus of unsupervised self-
organizing maps, consensus scoring, and statistical analysis to identify potential targets
for known active substrates. Using this approach, the authors identified 5-lipoxygenase
as an allosteric inhibiting target for β-lapachone as a clinical-stage, natural product with
thorough validation. As an emerging field of computer-aided molecule design, there are
many potential directions in which machine-learning methods could be applied specifically
for allosteric modulator development.
10 Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx
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Outstanding questions
How can the underlying mechanisms of
protein allostery be formulated at
different structural levels, including
individual residues, allosteric pathways,
and networks?

How can advanced experimental
techniques, such as smFRET, be
used to characterize protein allostery
at the microscopic level?

Could protein ensembles generated
from simulations be used directly to
shed light on underlying allosteric
mechanisms?

With their ability to analyze large amounts
of data to build highly performing
prediction models, how can machine-
learning methods be used to develop
prediction models for allosteric sites?

How can potential modulators
targeting allosteric proteins with
desired properties be effectively
developed using machine learning-
based approaches?

Is it feasible to engineer or even
develop novel allosteric proteins with
desired properties? If so, how could
machine-learning methods be used to
facilitate these developments?

How can machine learning-based
computational analysis and prediction
methods related to protein allostery
be used to address the pharmaceuti-
cal challenges caused by the COVID-
19 pandemic?
Machine-learning studies for allosteric protein design
One of the goals of studying protein allostery is developing novel proteins that carry improved or
novel allosteric functions. Given that this is a new area, large amounts of data related to the allo-
stery of different proteins have yet to be used in the developing process. In an early study, Zayner
et al. [97] studied over 100mutations of Avena sativa LOV domain 2 (AsLOV2) as a light-activated
protein. In this experimental study, the authors used various experimental methods to character-
ize the target mutations of AsLOV2. The biggest lesson learned through this study was that most
mutations, which were expected to be highly disruptive substitutions, turned out to be modest or
had no effect on function, even with many mutations displaying enhanced photoactivity. These
counterintuitive results signify the importance of a deeper and more comprehensive understand-
ing of protein allostery in the effort to design an enhanced or novel allosteric molecular apparatus.

Weinkam et al. [98] used simulation data of a set of ten proteins and their mutations to build pre-
diction models for allostery. They built a decision-based machine-learning model with a wide
range of features, including geometric- and energy-based features, to predict mutational effects
on protein allosteric activity. This prediction function will help with protein-engineering efforts to
develop modified protein allosteric activities and functions. Xiao et al. [99] used systematic ma-
chine-learning approaches to analyze the allostery of thrombin as a multifunctional serine prote-
ase at the conformational ensemble level. Their study provided mechanistic insight into allostery
of one key thrombin mutant with ample intramolecular interaction details.

Successful cases of allosteric protein design are still mainly based on the expertise and experi-
ence of researchers. For example, García-Fernández et al. [100] developed a novel biosensor
by fusing two ion channels, a tetrameric viral Kcv channel and the dimeric mouse TREK-1 chan-
nel, to a physiologically unrelated membrane GPCR protein. The GPCR displayed regulatory ef-
forts toward both fused ion channels. The authors fine-tuned the length of linkers connecting
GPCR with the two ion channels. The successful fusion between two physiologically unrelated
allosteric proteins to design a novel biosensor indicates a direction for computational studies
based on structural and simulation data and machine-learning modeling to identify potential
candidates and appropriate designs for linkers. In a more traditional study, D’Amico et al. [101]
developed enhanced tryptophan synthases through mutations at a distant, surface-exposed
network residue. It is expected that data-driven strategies using machine-learning methods
could catalyze the breakthrough in allosteric proteins designs in the near future.

There is at least one study using a machine-learning method to model evolutionary relations among
allosteric proteins. Astl and Verkhivker [102] used a systematic approach and carried out ENM anal-
ysis of 235 unique allosteric protein entries from ASBench. Using residue interaction network models
of the target proteins, they evaluated the coevolution of key residues for different allosteric proteins
and identified unifying molecular signatures shared by allosteric systems. Application of their models
to protein kinases revealed molecular signatures of known regulatory allosteric residues. Allostery-
related protein evolution is a relatively uncharted area, mainly due to the lack of unified theoretical
models of protein allostery. The applications of suitable machine-learning models to correlate protein
allosteric mechanisms with evolution point to a new direction for deciphering protein allostery.

Concluding remarks and future perspectives
Allostery is an intrinsic but elusive ubiquitous phenomenon in proteins. We have reviewed
research progress in protein allostery using machine-learning methods in various frontiers.
Although many theories and models have been developed to interpret this phenomenon, there
is no simple equation to quantify allostery. Machine learning helps explain the mechanism in
different dimensions, residues, pathways, networks, and communities. Given that there is no
Trends in Biochemical Sciences, Month 2022, Vol. xx, No. xx 11
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universal theory for all allosteric regulations, it might be that protein allostery theory or mecha-
nisms cannot be unified because of the diversity of protein structures and dynamical behaviors.

Important implementations of protein allostery include the prediction of various protein
allostery-related properties. Suitable for processing large amounts of data and developing reliable
prediction models in general, data-drivenmachine-learning methods have been applied to develop
computational models to predict protein allosteric binding sites and modulators. Those prediction
models have been made available with easy access to the research community and have been
widely used in many studies related to protein allostery. The biggest impact made on protein
allostery studies using machine-learning methods is mainly in applications, as demonstrated by
the emphasis on machine-learning method-based approaches that focused on allosteric mecha-
nisms of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) (Box 1) and modulators
as ligands to target various receptors in this virus (Box 2).

Despite the promising developments presented in this review, readers should also be aware of the
limitations of machine learning-based methods for protein allostery study. In general, the use of a
machine-learning model is restricted by the training data source and model construction. Machine
learning-based models may not lead to a universal theory to explain general allosteric events.

Nevertheless, given the success in numerous studies of protein allostery using machine-
learning methods, we expect to see the current trend to continue with more applications
using machine-learning methods suitable for protein systems, especially dynamical processes.
Due to the uniqueness of protein systems, there is a need to develop machine-learning
methods for different purposes, including dimensionality reduction methods with accurate
decoding functionality, time-dependent data series analysis, and features suitable for chemical
structures, protein structures, and protein assembly structures. With more data available
and deeper insight into protein allosteric mechanisms, we expect to see systematic devel-
opment in allosteric protein engineering and even de novo allosteric protein design. With
the continuous accumulation of more data and information from chemical and biological
sciences related to protein allostery, there are increasing opportunities for advanced and
specific machine-learning methods to be integrated into this interdisciplinary field (see
Outstanding questions).
Box 1. Allosteric mechanisms against the SARS-CoV-2 viral spike protein

Coronavirus disease 2019 (COVID-19), caused by SARS-CoV-2, emerged in late 2019 and then quickly spread around
the globe. The infection involves the attachment of the receptor-binding domain (RBD) of the SARS-CoV-2 viral spike
(S) protein to angiotensin-converting enzyme 2 (ACE2) receptors on the peripheral membrane of host cells [103].
The open and closed conformations of ACE2 differ from each other by the degree of opening of the catalytic site cleft of
the peptidase domain (PD). These structural insights identified ACE2 as a viable target to block S1 recognition through
allosteric control of open–closed transitions necessary for S1 recognition [104,105].

Extensive studies have revealed that SARS-CoV-2 shares many biological features with, but has higher infectivity than,
SARS-CoV [106]. Delgado et al. [107] aimed to understand the host receptor recognition mechanism of SARS-CoV-2
to explain this. Affinity propagation algorithm, an unsupervised machine-learning algorithm, was used for clustering anal-
ysis of CoV and CoV-2 spike-ACE2 systems. Trozzi et al. [108] developed a collective variable-guided (CV)-CNNmodel as
a novel scheme to capture the functional and structural differences of the ACE2 extracellular N-terminal PD. The REDAN
model was used to obtain the pathway information of residue–residue interactions that characterize ACE2 PD functional
dynamics. Uyar and Dickson [109] distinguished several all-atom MD simulations by linear discriminant analysis (LDA) to
show persistent differences in the ACE2 structure upon binding. This allows the prediction of which compounds lead to
free versus bound states and to pinpoint long-range ligand-induced allosteric changes in the ACE2 structure. Ray et al.
[103] focused on the correlations between the RBD and residues in distant, allosteric sites. These computational studies
provided insight at the atomistic level into the infection process of SARS-CoV-2 and paved the way for allosteric drug de-
sign to treat COVID-19.
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Box 2. Allosteric drug development against SARS-CoV-2

During the COVID-19 pandemic, developing drugs based on an allosteric mechanism of recognition between the SARS-CoV-2 spike protein and ACE2 proteins was an
important strategy. Iyengar [110] used the machine-learning method partial order optimum likelihood (POOL) to predict allosteric binding sites in protein structures from
SARS-CoV-2. Other studies focused on identifying allosteric modulators for either SARS-CoV-2 spike proteins or ACE2 as potential drugs. Karki et al. [104] introduced
an application of a DNN-based drug screening method, validating it using a docking algorithm against approved drugs for drug-repurposing efforts, and extending the
screen to a library of 750 000 compounds. Jain et al. [111] built predictive models, using both machine-learning and pharmacophore-basedmodeling, with screening data
from a SARS-CoV-2 cytopathic effect reduction assay. Experimental testing with live virus provided 100 active compounds out of the predicted hits from the screening
result of optimized models. The SARS-CoV-2 main protease (Mpro) is required for maturation of the virus and infection of host cells; thus, the key question is how to block
its activity. Kaptan et al. [112] combined atomistic simulations with the machine-learning methods, Gaussian mixture model (GMM) and partial least squares-based func-
tional mode analysis (PLS-FMA) model, and found that the enzyme regulates its own activity by a collective allosteric mechanism that involves dimerization and binding of a
single substrate. Their results suggest that dimerization of main proteases is a general mechanism to foster coronavirus proliferation and proposes a strategy that does not
depend on the frequently mutating spike proteins at the viral envelope. Verkhivker and coworkers [113–119] performed a series of computational studies to explore
allosteric mechanisms and potential regulatory effects of SARS-CoV-2 spike proteins for different strains (Figure I). They applied different allosteric models using various
machine-learning methods to formulate allosteric interaction pathway and network model for the binding of the SARS-CoV-2 spike proteins. These studies demonstrate
the positive impact that advanced and mature computational modeling of protein allostery using machine-learning methods could exert on real global public health
emergencies.

TrendsTrends inin BiochemicalBiochemical Sciences Sciences

Figure I. Landscape-based protein stability analysis and network modeling of multiple conformational states of the severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) spike D614G mutant. Multiple computational methods and models were used in this study of SARS-CoV-2 spike
protein allostery focusing on its D614G mutant. Coarse-grained simulations were carried out for trimers of this protein. Residue interaction networks were identified
based on both dynamic correlations and coevolutionary residue couplings. A community model was built based on a graph theory representation of protein
structure. The impact on protein allostery through mutational perturbation was revealed through both network and community models. The ensemble-based
analysis characterized the dynamic signatures of the conformational landscapes for the target protein. The combination of multiple allosteric models revealed a
hinge-shift mechanism leading to the increased stability of the open form in the mutant [119].
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